Modeling of Time Geographical Kernel Density Function under Network Constraints
Abstract
:1. Introduction
2. Research Background
2.1. PNA Measurement
2.2. Probabilistic PNA
3. Kernel Density Function in Time Geography
3.1. Ridged Density Function
3.2. Peak-Type Density Function
3.3. Saddle-Shaped Kernel Density Function
4. Application
4.1. Methods
4.2. Results
4.3. Verification
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winter, S.; Yin, Z.-C. Directed movements in probabilistic time geography. Int. J. Geogr. Inf. Sci. 2010, 24, 1349–1365. [Google Scholar] [CrossRef]
- Kuijpers, B.; Miller, H.J.; Neutens, T.; Othman, W. Anchor uncertainty and space-time prisms on road networks. Int. J. Geogr. Inf. Sci. 2010, 24, 1223–1248. [Google Scholar] [CrossRef]
- Horne, J.S.; Garton, E.O.; Krone, S.M.; Lewis, J.S. Analyzing animal movements using Brownian bridges. Ecology 2007, 88, 2354–2363. [Google Scholar] [CrossRef]
- Song, Y.; Miller, H.J. Simulating visit probability distributions within planar space-time prisms. Int. J. Geogr. Inf. Sci. 2014, 28, 104–125. [Google Scholar] [CrossRef]
- Buchin, K.; Sijben, S.; van Loon, E.E.; Sapir, N.; Mercier, S.; Arseneau, T.J.M.; Willems, E.P. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds. Mov. Ecol. 2015, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, D.; Kuijpers, B. Visit Probability in Space–Time Prisms Based on Binomial Random Walk. ISPRS Int. J. Geo-Inf. 2020, 9, 555. [Google Scholar] [CrossRef]
- Song, Y.; Miller, H.J.; Zhou, X.; Proffitt, D. Modeling Visit Probabilities within Network-Time Prisms Using Markov Techniques. Geogr. Anal. 2016, 48, 18–42. [Google Scholar] [CrossRef]
- Downs, J.A. Time-Geographic Density Estimation for Moving Point Objects. In Proceedings of the International Conference on Geographic Information Science, Zurich, Switzerland, 14–17 September 2010; pp. 16–26. [Google Scholar]
- Horner, M.W.; Zook, B.; Downs, J.A. Where were you? Development of a time-geographic approach for activity destination re-construction. Comput. Environ. Urban Syst. 2012, 36, 488–499. [Google Scholar] [CrossRef]
- Horner, M.W.; Wood, B.S. Capturing individuals’ food environments using flexible space-time accessibility measures. Appl. Geogr. 2014, 51, 99–107. [Google Scholar] [CrossRef]
- Kuijpers, B.; Othman, W. Modeling uncertainty of moving objects on road networks via space–time prisms. Int. J. Geogr. Inf. Sci. 2009, 23, 1095–1117. [Google Scholar] [CrossRef]
- Montello, D.R. Handbook of Behavioral and Cognitive Geography; Edward Elgar Publishing: Cheltenham, UK, 2018. [Google Scholar]
- Long, J.A. Modeling movement probabilities within heterogeneous spatial fields. J. Spat. Int. Sci. 2018, 2018, 85–116. [Google Scholar] [CrossRef]
- Miller, H.J. Tobler’s first law and spatial analysis. Ann. Assoc. Am. Geogr. 2004, 94, 284–289. [Google Scholar] [CrossRef]
- Miller, H.J. A measurement theory for time geography. Geogr. Anal. 2005, 37, 17–45. [Google Scholar] [CrossRef]
- Miller, H.J. Movement analytics for sustainable mobility. J. Spat. Int. Sci. 2020, 20, 115–123. [Google Scholar] [CrossRef]
- Song, Y.; Miller, H.J.; Stempihar, J.; Zhou, X. Green accessibility: Estimating the environmental costs of network-time prisms for sustainable transportation planning. J. Transp. Geogr. 2017, 64, 109–119. [Google Scholar] [CrossRef]
- Lee, J.; Miller, H.J. Measuring the impacts of new public transit services on space-time accessibility: An analysis of transit system redesign and new bus rapid transit in Columbus, Ohio, USA. Appl. Geogr. 2018, 93, 47–63. [Google Scholar] [CrossRef]
- Jaegal, Y.; Miller, H.J. Measuring the structural similarity of network time prisms using temporal signatures with graph indices. Trans. GIS 2020, 24, 3–26. [Google Scholar] [CrossRef]
- Tong, L.C.; Zhou, L.; Liu, J.; Zhou, X. Customized bus service design for jointly optimizing passenger-to-vehicle assignment and vehicle routing. Transp. Res. C-Emerg. Technol. 2017, 85, 451–475. [Google Scholar] [CrossRef]
- Rao, W.; Wu, Y.-J.; Xia, J.; Ou, J.; Kluger, R. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Transp. Res. C-Emerg. Technol. 2018, 95, 29–46. [Google Scholar] [CrossRef]
- Tang, J.; Song, Y.; Miller, H.J.; Zhou, X. Estimating the most likely space-time paths, dwell times and path uncertainties from vehicle trajectory data: A time geographic method. Transp. Res. C-Emerg. Technol. 2016, 66, 176–194. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.-C.; Wu, Y.; Winter, S.; Hu, L.-F.; Huang, J.-J. Random encounters in probabilistic time geography. Int. J. Geogr. Inf. Sci. 2018, 32, 1026–1042. [Google Scholar] [CrossRef]
- Yin, Z.-C.; Jin, Z.-H.-N.; Ying, S.; Liu, H.; Li, S.-J.; Xiao, J.-Q. Distance-Decay Effect in Probabilistic Time Geography for Random Encounter. ISPRS Int. J. Geo-Inf. 2019, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Loraamm, R.W. Incorporating behavior into animal movement modeling: A constrained agent-based model for estimating visit probabilities in space-time prisms. Int. J. Geogr. Inf. Sci. 2020, 34, 1607–1627. [Google Scholar] [CrossRef]
- Downs, J.A.; Horner, M.W. Probabilistic potential path trees for visualizing and analyzing vehicle tracking data. J. Transp. Geogr. 2012, 23, 72–80. [Google Scholar] [CrossRef]
- Haynes, R.; Lovett, A.; Sünnenberg, G. Potential accessibility, travel time, and consumer choice: Geographical variations in general medical practice registrations in Eastern England. Environ. Plan. A 2003, 35, 1733–1750. [Google Scholar] [CrossRef]
- Papinski, D.; Scott, D.M. Route choice efficiency: An investigation of home-to-work trips using GPS data. Environ. Plan. A 2013, 45, 263–275. [Google Scholar] [CrossRef]
- Yao, J.; Lin, C.; Xie, X.; Wang, A.J.; Hung, C.-C. Path planning for virtual human motion using improved A* star algorithm. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 12–14 April 2010; pp. 1154–1158. [Google Scholar]
- Li, J.; Wang, X.; He, Z.; Zhang, T. A personalized activity-based spatiotemporal risk mapping approach to the COVID-19 pandemic. Cartogr. Geogr. Inf. Sci. 2021, 48, 275–291. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Huang, K.; Ying, S.; Huang, W.; Kang, Z. Modeling of Time Geographical Kernel Density Function under Network Constraints. ISPRS Int. J. Geo-Inf. 2022, 11, 184. https://doi.org/10.3390/ijgi11030184
Yin Z, Huang K, Ying S, Huang W, Kang Z. Modeling of Time Geographical Kernel Density Function under Network Constraints. ISPRS International Journal of Geo-Information. 2022; 11(3):184. https://doi.org/10.3390/ijgi11030184
Chicago/Turabian StyleYin, Zhangcai, Kuan Huang, Shen Ying, Wei Huang, and Ziqiang Kang. 2022. "Modeling of Time Geographical Kernel Density Function under Network Constraints" ISPRS International Journal of Geo-Information 11, no. 3: 184. https://doi.org/10.3390/ijgi11030184
APA StyleYin, Z., Huang, K., Ying, S., Huang, W., & Kang, Z. (2022). Modeling of Time Geographical Kernel Density Function under Network Constraints. ISPRS International Journal of Geo-Information, 11(3), 184. https://doi.org/10.3390/ijgi11030184