Characteristics of False-Positive Active Fires for Biomass Burning Monitoring in Indonesia from VIIRS Data and Local Geo-Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used in This Study
2.1.1. VIIRS Active Fire
2.1.2. High-Resolution Images
2.1.3. Geospatial Supporting Data
2.2. Methodology
3. Results
3.1. Characteristic of Thermal Anomalies Other Than Biomass Fire
3.2. Zone Map of False-Positive Active Fires for Biomass Burning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coskuner, K.A. Assessing the performance of MODIS and VIIRS active fire products in the monitoring of wildfires: A case study in Turkey. IForest (Viterbo) 2022, 15, 85–94. [Google Scholar] [CrossRef]
- Davies, D.; Ederer, G.; Olsina, O.; Wong, M.; Cechini, M.; Boller, R. NASAs Fire Information for Resource Management System (FIRMS): Near Real-Time Global Fire Monitoring Using Data from MODIS and VIIRS; Goddard Space Flight Center, Goddard Space Flight Center: Greenbelt, MD, USA, 2019.
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Schroeder, W.; Giglio, L. Visible Infrared Imaging Radiometer Suite (VIIRS) 750 m Active Fire Detection and Characterization Algorithm Theoretical Basis Document; University of Maryland: Washington, DC, USA, 2016. [Google Scholar]
- Sofan, P.; Bruce, D.; Schroeder, W.; Jones, E.; Marsden, J. Assessment of VIIRS 375 m active fire using tropical peatland combustion algorithm applied to Landsat-8 over Indonesia’s peatlands. Int. J. Digit. Earth 2020, 13, 1695–1716. [Google Scholar] [CrossRef]
- Li, P.; Xiao, C.; Feng, Z.; Li, W.; Zhang, X. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Glob. Chang. Biol. 2020, 26, 2970–2987. [Google Scholar] [CrossRef]
- Nadarajan, A.S.S.R.; Santhosh, A.; Ramesh, R. Analysis of Forest Fire in Australia using Visible Infrared Imaging Radiometer Suite. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 482–486. [Google Scholar]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Sakti, A.D.; Anggraini, T.S.; Ihsan, K.T.; Misra, P.; Trang, N.T.; Pradhan, B.; Wenten, I.G.; Hadi, P.O.; Wikantika, K. Multi-air pollution risk assessment in Southeast Asia region using integrated remote sensing and socio-economic data products. Sci. Total Environ. 2022, 854, 2023. [Google Scholar] [CrossRef]
- Chroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Roberts, G.; Freeborn, P. New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens. Environ. 2010, 114, 1876–1895. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Wickramasinghe, C.H.; Jones, S.; Reinke, K.; Wallace, L. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sens. 2016, 8, 932. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Sofan, P.; Bruce, D.; Jones, E.; Marsden, J. Detection and validation of tropical Peatland flaming and smouldering using Landsat-8 SWIR and TIRS bands. Remote Sens. 2019, 11, 465. [Google Scholar] [CrossRef] [Green Version]
- Tanpipat, V.; Honda, K.; Nuchaiya, P. Modis hotspot validation over Thailand. Remote Sens. 2009, 1, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. RST-FIRES, an exportable algorithm for early-fire detection and monitoring: Description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens Environ. 2016, 186, 196–216. [Google Scholar] [CrossRef]
- Sakti, A.D.; Fauzi, A.I.; Takeuchi, W.; Pradhan, B.; Yarime, M.; Vega-Garcia, C.; Agustina, E.; Wibisono, D.; Anggraini, T.S.; Theodora, M.O.; et al. Spatial Prioritization for Wildfire Mitigation by Integrating Heterogeneous Spatial Data: A New Multi-Dimensional Approach for Tropical Rainforests. Remote Sens. 2022, 14, 543. [Google Scholar] [CrossRef]
- Mitchell, S.; Jones, S.; Reinke, K.; Lorenz, E.; Reulke, R. Assessing the utility of the TET-1 hotspot detection and characterization algorithm for determining wildfire size and temperature. Int. J. Remote Sens. 2016, 37, 4731–4747. [Google Scholar] [CrossRef]
- Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Calle, A.; Salvador, P. The active fire FRP estimation: Study on sentinel-3/SLSTR. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1046–1049. [Google Scholar] [CrossRef]
- Sifakis, N.I.; Iossifidis, C.; Kontoes, C.; Keramitsoglou, I. Wildfire detection and tracking over Greece using MSG-SEVIRI satellite data. Remote Sens. 2011, 3, 524–538. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Siegert, F.; Zhukov, B.; Oertel, D.; Limin, S.; Page, S.E.; Rieley, J.O. Peat fires detected by the BIRD satellite. Int. J. Remote Sens. 2004, 25, 3221–3230. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Wooster, M.J. Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int. J. Ofwildl. Fire 2005, 14, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4. Nasa; NASA: Washington, DC, USA, 2018.
- Li, F.; Zhang, X.; Kondragunta, S.; Csiszar, I. Comparison of Fire Radiative Power Estimates From VIIRS and MODIS Observations. J. Geophys. Res. Atmos. 2018, 123, 4545–4563. [Google Scholar] [CrossRef]
- Zhukov, B.; Lorenz, E.; Oertel, D.; Wooster, M.; Roberts, G. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens. Environ. 2006, 100, 29–51. [Google Scholar] [CrossRef]
- Goldammer, J.G. Forest on Fire. Sci. Compass-Rev. 1999, 286, 2098–2102. [Google Scholar] [CrossRef]
- Hoscilo, A.; Page, S.E.; Tansey, K.J.; Rieley, J.O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildl. Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Sakti, A.D.; Tsuyuki, S. Spectral Mixture Analysis of Peatland Imagery for Land Cover Study of Highly Degraded Peatland in Indonesia. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science; Copernicus Publications: Göttingen, Germany, 2015; Volume XL-7/W3. [Google Scholar]
- Zhang, T.; Wooster, M.J.; Xu, W. Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote Sens. Environ. 2017, 198, 407–424. [Google Scholar] [CrossRef] [Green Version]
- MAGMA Indonesia. Volcano Types in Indonesia. PVMBG, Pusat Vulkanologi dan Mitigasi Bencana Geologi (the Centre of Vulcanology and Geological Hazard Mitigation of Indonesia). 2021. Available online: https://magma.vsi.esdm.go.id (accessed on 26 July 2022).
- Hogg, R.V.; Craig, A.T. Introduction to Mathematical Statistic; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Ott, L. An Introduction to Statistical Methods and Data Analysis, 4th ed.; California’ Duxbury Press: Belmont, CA, USA, 1992; p. 1051. [Google Scholar]
- ESRI. Near (Analysis). Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/analysis/near.htm (accessed on 26 July 2022).
- Osaki, M.; Tsuji, N. Tropical Peatland Ecosystems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Osaki, M.; Nursyamsi, D.; Noor, M.; Wahyunto; Segah, H. Peatland in Indonesia. In Tropical Peatland Ecosystems; Springer: Tokyo, Japan, 2016; pp. 49–58. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildl. Fire 2001, 10, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sari, I.L.; Weston, C.J.; Newnham, G.J.; Volkova, L. Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia. Remote Sens. 2021, 13, 1446. [Google Scholar] [CrossRef]
- Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Evaluation of spectral indices for assessing fire severity in Australian temperate forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Fisher, D.; Wooster, M.J. Shortwave IR Adaption of the Mid-Infrared Radiance Method of Fire Radiative Power (FRP) Retrieval for Assessing Industrial Gas Flaring Output. Remote Sens. 2018, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Tao, M.; Zhang, M.; Chen, L.; Wang, L.; Wang, Y.; He, X.; Wei, L.; Mei, X.; Wang, J. Application Potential of Satellite Thermal Anomaly Products in Updating Industrial Emission Inventory of China. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Kong, X.; Wang, X.; Jia, M.; Li, Q. Estimating the Carbon Emissions of Remotely Sensed Energy-Intensive Industries Using VIIRS Thermal Anomaly-Derived Industrial Heat Sources and Auxiliary Data. Remote Sens. 2022, 14, 2901. [Google Scholar] [CrossRef]
- Campus, A.; Laiolo, M.; Massimetti, F.; Coppola, D. The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring. Sensors 2022, 22, 1713. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Modica, G. Short-term temporal and spatial analysis for post-fire vegetation regrowth characterization and mapping in a Mediterranean ecosystem using optical and SAR image time-series. Geocarto Int. 2022. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Modica, G. A workflow based on Sentinel-1 SAR data and open-source algorithms for unsupervised burned area detection in Mediterranean ecosystems. GIScience Remote Sens. 2021, 58, 516–541. [Google Scholar] [CrossRef]
- Setyowati, H.A.; Dwinugroho, M.P.; Novelya, N.M.; Wisnuwardhani, E. ESDM One Map Indonesia : Exploring The Energy and Mineral Resources. In Proceedings of the Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018. [Google Scholar]
Band | Spectral Range (µm) | Primary Use |
---|---|---|
I1 | 0.60–0.68 | Cloud and water mapping |
I2 | 0.846–0.885 | Cloud and water mapping |
I3 | 1.58–1.64 | Water mapping |
I4 | 3.55–3.93 | Fire detection |
I5 | 10.5–12.4 | Fire detection and cloud mapping |
M13 | 3.973–4.128 | FRP retrieval |
Thermal Anomaly | Number of Data | FRP (MW) | Confidence Level | Mean of Fire Size (km2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean * | Median | Min | Max | stdev | Low | High | Nominal | |||
Type-0 | 1,691,990 | 8.76 a | 4.83 | 0.100 | 991.830 | 16.51 | 6% | 4% | 90% | 0.2168 |
Type-1 | 21,893 | 8.58 a | 3.48 | 0.110 | 528.840 | 20.50 | 3% | 5% | 93% | 0.2175 |
Type-2 | 24,288 | 5.82 b | 1.91 | 0.120 | 185.810 | 11.11 | 2% | 2% | 96% | 0.2311 |
Type-3 | 43,849 | 7.13 c | 4.70 | 0.180 | 381.770 | 10.60 | 8% | 3% | 94% | 0.2105 |
Regional Islands | Type-1 for Volcano | Type-2 for Road and Settlement | Type-3 for Water Bodies and Coastlines | ||||
---|---|---|---|---|---|---|---|
# Data | Median | # Data | Median (road) | Median (settlement) | # Data | Median | |
Bali and West Nusa Tenggara | 4364 | 363 | - | - | - | 2925 | 354 |
East Nusa Tenggara | 348 | 233 | - | - | - | 5027 | 348 |
Kalimantan | - | - | 4352 | 218 | 2233 | 9992 | 435 |
Sumatra | 2315 | 380 | 4243 | 122 | 3436 | 11,870 | 463 |
Sulawesi | 3858 | 411 | 10,763 | 145 | 715 | 2820 | 380 |
Papua | - | - | 545 | 169 | 195 | 4376 | 450 |
Java | 6501 | 349 | 4214 | 36 | 0 | 3629 | 194 |
Maluku | 4507 | 393 | 79 | 3055 | 9815 | 4125 | 356 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofan, P.; Yulianto, F.; Sakti, A.D. Characteristics of False-Positive Active Fires for Biomass Burning Monitoring in Indonesia from VIIRS Data and Local Geo-Features. ISPRS Int. J. Geo-Inf. 2022, 11, 601. https://doi.org/10.3390/ijgi11120601
Sofan P, Yulianto F, Sakti AD. Characteristics of False-Positive Active Fires for Biomass Burning Monitoring in Indonesia from VIIRS Data and Local Geo-Features. ISPRS International Journal of Geo-Information. 2022; 11(12):601. https://doi.org/10.3390/ijgi11120601
Chicago/Turabian StyleSofan, Parwati, Fajar Yulianto, and Anjar Dimara Sakti. 2022. "Characteristics of False-Positive Active Fires for Biomass Burning Monitoring in Indonesia from VIIRS Data and Local Geo-Features" ISPRS International Journal of Geo-Information 11, no. 12: 601. https://doi.org/10.3390/ijgi11120601
APA StyleSofan, P., Yulianto, F., & Sakti, A. D. (2022). Characteristics of False-Positive Active Fires for Biomass Burning Monitoring in Indonesia from VIIRS Data and Local Geo-Features. ISPRS International Journal of Geo-Information, 11(12), 601. https://doi.org/10.3390/ijgi11120601