Land Use Changes and Ecosystem Services: The Case Study of the Abruzzo Region Coastal Strip
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Q = water discarge [m3/s];
- i = rain average intensity [m/s];
- A = catchment area [m2];
- φ = runoff coefficient [-]
- Urban (111–112–131–132–140);
- Infrastructure (121–122–123–124);
- Agriculture (code 211–212–221–222–231–232–233).
4. Results
5. Discussion
- simplified carbon cycle,
- static inventory: each hectare is equal to the other,
- carbon sequestration is not counted in areas where there has been no change in land use over time,
- economic evaluation assumes a linear trend in carbon sequestration versus time,
- the detail and quality of the output data depend on the input data of the LULC classes and the accuracy of the values of the carbon pools.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Values of the Runoff Coefficient | ||
Code | Description | Runoff Coefficient φ |
11110 | Continuous urban fabric (IMD ≥ 80%) | 0.9 |
11120 | Dense urban fabric (IMD ≥ 30–80%) | 0.525 |
11200 | Industrial, commercial, public and military units | 0.8 |
12100 | Road networks and associated land | 0.95 |
12200 | Railways and associated land | 0.9 |
12300 | Port areas and associated land | 1 |
12400 | Airports and associated land | 0.8 |
13100 | Mineral extraction | 1 |
13200 | Dump sites | 1 |
13300 | Construction sites | 0.6 |
13400 | Land without current use | 0.7 |
14000 | Green urban, sports and leisure facilities | 0.375 |
21000 | Arable land (annual crops) | 0.7 |
22000 | Permanent crops | 0.6 |
22100 | Vineyards, fruit trees and berry plantations | 0.7 |
23200 | Complex and mixed cultivation patterns | 0.6 |
31000 | Broadleaved forest | 0.2 |
32000 | Coniferous forest | 0.2 |
33000 | Mixed forest | 0.2 |
41000 | Managed grassland | 0.4 |
42000 | Natural & semi-natural grassland | 0.4 |
51000 | Heathland and moorland | 0.6 |
52000 | Alpine scrub land | 0.6 |
53000 | Sclerophyllous scrubs | 0.6 |
61000 | Sparsely vegetated areas | 0.7 |
62000 | Beaches, dunes, river banks | 0.7 |
63000 | Bare rocks, burnt areas, glaciers and perpetual snow | 0.7 |
Values of the Carbon Pools for Model of Carbon Storage and Sequestration | |||||
Code | Description | C_above | C_below | C_soil | C_dead |
111 | Urban fabric | 0 | 0 | 0 | 0 |
112 | Industrial, commercial, public and military units | 0 | 0 | 0 | 0 |
121 | Road networks and associated land | 10 | 5 | 15 | 0 |
122 | Railways and associated land | 0 | 0 | 0 | 0 |
123 | Port areas and associated land | 0 | 0 | 0 | 0 |
124 | Airports and associated land | 0 | 0 | 0 | 0 |
131 | Mineral extraction sites | 0 | 0 | 0 | 0 |
132 | Dump sites | 0 | 0 | 0 | 0 |
140 | Green urban, sports and leisure facilities | 20 | 12.5 | 30 | 9.6 |
211 | Arable irrigated and non-irrigated land | 5 | 0 | 53.1 | 0 |
212 | Greenhouses | 0 | 0 | 0 | 0 |
221 | Vineyards, fruit trees and berry plantations | 8.3 | 5.6 | 0 | 0 |
222 | Olive groves | 9.1 | 2.6 | 0 | 0 |
231 | Annual crops associated with permanent crops | 5 | 0 | 53.1 | 0 |
232 | Complex cultivation patterns | 5 | 0 | 53.1 | 0 |
233 | Land principally occupied by agriculture with significant areas of natural vegetation | 5 | 0 | 53.1 | 0 |
311 | Natural & semi-natural broadleaved forest | 73 | 48 | 92 | 18.37 |
312 | Highly artificial broadleaved plantations | 73 | 48 | 92 | 18.37 |
321 | Natural & semi-natural coniferous forest | 37.57 | 16.1 | 109 | 33.01 |
331 | Natural & semi-natural mixed forest | 62.5 | 41 | 85 | 23.61 |
340 | Transitional woodland and scrub | 3.05 | 0 | 66.9 | 0 |
350 | Lines of trees and scrub | 3.05 | 0 | 66.9 | 0 |
410 | Managed grassland | 20 | 12.5 | 48 | 8 |
421 | Semi-natural grassland | 16 | 8 | 58 | 8 |
422 | Alpine and sub-alpine natural grassland | 16 | 8 | 58 | 8 |
530 | Sclerophyllous scrubs | 20 | 10 | 101 | 15 |
611 | Sparse vegetation on sands | 10 | 5 | 5 | 2 |
612 | Sparse vegetation on rocks | 10 | 5 | 5 | 2 |
621 | Beaches | 0 | 0 | 0 | 0 |
622 | Dunes | 0 | 0 | 0 | 0 |
631 | Bare rocks, outcrops, cliffs | 0 | 0 | 0 | 0 |
632 | Burnt areas (except burnt forest) | 0 | 0 | 0 | 0 |
711 | Inland marshes | 0 | 0 | 0 | 0 |
721 | Salt marshes | 0 | 0 | 0 | 0 |
811 | Natural & semi-natural water courses | 0 | 0 | 0 | 0 |
812 | Highly modified water courses and canals | 0 | 0 | 0 | 0 |
821 | Natural lakes | 0 | 0 | 0 | 0 |
822 | Reservoirs | 0 | 0 | 0 | 0 |
823 | Aquaculture ponds | 0 | 0 | 0 | 0 |
824 | Standing water bodies of extractive industrial sites | 0 | 0 | 0 | 0 |
832 | Marine inlets and fjords | 0 | 0 | 0 | 0 |
842 | Coastal waters | 0 | 0 | 0 | 0 |
Threat Table for Model of Habitat Quality | |||
THREAT | MAX_DIST | WEIGHT | DECAY |
Infrastructure | 1 | 0.65 | linear |
Urban | 0.4 | 0.8 | linear |
Agriculture | 0.3 | 0.4 | exponential |
Threat Table for Model of Habitat Quality | |||||
Code | Description | HABITAT | Infrastructure | Urban | Agriculture |
111 | Urban fabric | 0 | 0 | 0 | 0.1 |
112 | Industrial, commercial, public and military units | 0 | 0 | 0 | 0.1 |
121 | Road networks and associated land | 0.1 | 0 | 0 | 0 |
122 | Railways and associated land | 0.1 | 0 | 0 | 0 |
123 | Port areas and associated land | 0.1 | 0 | 0 | 0 |
124 | Airports and associated land | 0.1 | 0 | 0 | 0 |
131 | Mineral extraction sites | 0.2 | 0.45 | 0.4 | 0.1 |
132 | Dump sites | 0.1 | 0.45 | 0.4 | 0 |
140 | Green urban, sports and leisure facilities | 0.3 | 0.4 | 0.3 | 0.3 |
211 | Arable irrigated and non-irrigated land | 0.4 | 0.45 | 0.55 | 0 |
212 | Greenhouses | 0.5 | 0.6 | 0.52 | 0 |
221 | Vineyards, fruit trees and berry plantations | 0.5 | 0.45 | 0.4 | 0 |
222 | Olive groves | 0.5 | 0.45 | 0.4 | 0 |
231 | Annual crops associated with permanent crops | 0.35 | 0.6 | 0.7 | 0 |
232 | Complex cultivation patterns | 0.45 | 0.65 | 0.75 | 0.1 |
233 | Land principally occupied by agriculture with significant areas of natural vegetation | 0.65 | 0.7 | 0.8 | 0.2 |
311 | Natural & semi-natural broadleaved forest | 1 | 0.8 | 0.9 | 0.7 |
312 | Highly artificial broadleaved plantations | 1 | 0.8 | 0.9 | 0.7 |
321 | Natural & semi-natural coniferous forest | 1 | 0.8 | 0.9 | 0.8 |
331 | Natural & semi-natural mixed forest | 1 | 0.8 | 0.9 | 0.8 |
340 | Transitional woodland and scrub | 1 | 0.8 | 0.9 | 0.8 |
350 | Lines of trees and scrub | 0.5 | 0.8 | 0.9 | 0.8 |
410 | Managed grassland | 0.3 | 0.5 | 0.55 | 0.4 |
421 | Semi-natural grassland | 0.5 | 0.5 | 0.55 | 0.5 |
422 | Alpine and sub-alpine natural grassland | 0.8 | 0.5 | 0.55 | 0.6 |
530 | Sclerophyllous scrubs | 0.6 | 0.35 | 0.5 | 0.4 |
611 | Sparse vegetation on sands | 0.4 | 0.35 | 0.58 | 0.4 |
612 | Sparse vegetation on rocks | 0.4 | 0.35 | 0.58 | 0.4 |
621 | Beaches | 0.9 | 0.25 | 0.5 | 0.3 |
622 | Dunes | 0.8 | 0.25 | 0.5 | 0.3 |
631 | Bare rocks, outcrops, cliffs | 0.3 | 0.35 | 0.58 | 0.4 |
632 | Burnt areas (except burnt forest) | 0.1 | 0.1 | 0.1 | 0.6 |
711 | Inland marshes | 1 | 0.8 | 0.9 | 0.4 |
721 | Salt marshes | 0.5 | 0.6 | 0.5 | 0.4 |
811 | Natural & semi-natural water courses | 0.9 | 0.88 | 0.7 | 0.5 |
812 | Highly modified water courses and canals | 0.9 | 0.88 | 0.7 | 0.5 |
821 | Natural lakes | 0.9 | 0.88 | 0.7 | 0.5 |
822 | Reservoirs | 0.9 | 0.88 | 0.7 | 0.5 |
823 | Aquaculture ponds | 1 | 0.88 | 0.7 | 0.5 |
824 | Standing water bodies of extractive industrial sites | 0.2 | 0.6 | 0.5 | 0.5 |
832 | Marine inlets and fjords | 1 | 0.88 | 0.7 | 0.5 |
842 | Coastal waters | 1 | 0.6 | 0.5 | 0.5 |
Accessibility to Threats | |
Description | Access |
Natura 2000 sites | 0 |
EUAP sites | 0.2 |
References
- Luisetti, T.; Turner, R.K.; Jickells, T.; Andrews, J.; Elliott, M.; Schaafsma, M.; Beaumont, N.; Malcolm, S.; Burdon, D.; Adams, C.; et al. Coastal Zone Ecosystem Services: From science to values and decision making; a case study. Sci. Total Environ. 2014, 493, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Nicholls Robert, J.; Lowe Jason, A. Benefits of mitigation of climate change for coastal areas. Glob. Environ. Chang. 2004, 14, 229–244. [Google Scholar] [CrossRef]
- Salvati, L.; Ferrara, C.; Ranalli, F. Changes at the fringe: Soil quality and environmental vulnerability during intense urban expansion. Eurasian Soil Sc. 2014, 47, 1069–1075. [Google Scholar] [CrossRef]
- Rodella, I.; Madau, F.; Mazzanti, M.; Corbau, C.; Carboni, D.; Simeoni, U.; Parente, L. Carrying capacity as tool for beach economic value assessment (case studies of Italian beaches). Ocean Coast. Manag. 2020, 189, 105–130. [Google Scholar] [CrossRef]
- Sun, D.; Yang, H.; Guan, D.; Yang, M.; Wu, J.; Yuan, F.; Zhang, Y. The effects of land use change on soil infiltration capacity in China: A meta-analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Markovič, G.; Zeleňáková, M.; Káposztásová, D.; Hudáková, G. Rainwater infiltration in the urban areas. WIT Trans. Ecol. Environ. 2014, 181, 313–320. [Google Scholar]
- Hutyra, L.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Assennato, F.; Braca, G.; Calzolari, C.; Capriolo, A.; di Leginio, M.; Giandon, P.; Marchetti, M.; Marino, D.; Mascolo, R.; Morri, E.; et al. Mappatura e valutazione dell’impatto del consumo di suolo sui servizi ecosistemici: Proposte metodologiche per il Rapporto sul consumo di suolo. Annex. Soil Consum. Territ. Dyn. Ecosyst. Serv. 2018, 1–44. [Google Scholar]
- Tagliapietra, D.; Magni, P.; Basset, A.; Viaroli, P. Ecosistemi costieri di transizione: Trasformazioni recenti, pressioni antropiche dirette e possibili impatti del cambiamento climatico. Biol. Ambient. 2014, 28, 101–111. [Google Scholar]
- Arcidiacono, A.; Di Simine, D.; Oliva, F.; Ronchi, S.; Salata, S.; Centro di Ricerca sui Consumi di Suolo. La Dimensione Europea del Consumo di Suolo e le Politiche Nazionali; Centro di Ricerca sui Consumi di Suolo: Milan, Italy, 2017; pp. 149–154. ISBN 978-88-7603-159-5. [Google Scholar]
- Unione Europea. Piano D’azione dell’UE Sulla Biodiversità: Valutazione. 2010. Available online: https://ec.europa.eu/environment/nature/info/pubs/docs/2010_bap_it.pdf (accessed on 27 August 2022).
- Te Chow, V.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 1988. [Google Scholar]
- Ferro, V. La Sistemazione dei Bacini Idrografici-Seconda Edizione; McGraw-Hill: New York, NY, USA, 2006; Volume 1. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Vogl, A.L. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Canaveira, P.; Manso, S.; Pellis, G.; Perugini, L.; De Angelis, P.; Neves, R.; Chiti, T. Biomass Data on Cropland and Grassland in the Mediterranean Region; Final Report for Action A4 of Project MediNet; Project MediNet; 2018; Available online: http://www.lifemedinet.com/ (accessed on 27 August 2022).
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Scorza, F.; Pilogallo, A.; Saganeiti, L.; Murgante, B.; Pontrandolfi, P. Comparing the territorial performances of renewable energy sources’ plants with an integrated ecosystem services loss assessment: A case study from the Basilicata region (Italy). Sustain. Cities Soc. 2020, 56, 102082. [Google Scholar] [CrossRef]
- Salata, S.; Ronchi, S.; Arcidiacono, A.; Ghirardelli, F. Mapping habitat quality in the Lombardy Region, Italy. One Ecosyst. 2017, 2, e11402. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Munafò, M. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Report SNPA 32/22: Rome, Italy, 2022. [Google Scholar]
- Romano, B.; Zullo, F.; Fiorini, L.; Ciabò, S.; Marucci, A. Sprinkling: An approach to describe urbanization dynamics in Italy. Sustainability 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Romano, B.; Zullo, F. Half a century of urbanisation in Southern European lowlands a study on the Po Valley (Northern Italy). J. Urban Res. Pract. 2015, 9, 109–130. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Tamburini, G.; Fiorini, L.; Fiordigigli, V. Il riassetto del suolo urbano italiano: Questione di “sprinkling”? Territorio 2015, 74, 146–153. [Google Scholar] [CrossRef]
- Lopes, N.D.R.; Li, T.; Qian, D.; Matomela, N.; Sá, R.M. Factors influencing coastal land cover change and corresponding impact on habitat quality in the North-western Coastline of Guinea-Bissau (NC-GB). Ocean Coast. Manag. 2022, 224, 106181. [Google Scholar] [CrossRef]
- Chung, M.G.; Kang, H.; Choi, S.U. Assessment of coastal ecosystem services for conservation strategies in South Korea. PLoS ONE 2015, 10, e0133856. [Google Scholar] [CrossRef] [Green Version]
- Arcidiacono, A.; Ronchi, S.; Salata, S. Valutazione delle dinamiche evolutive dei servizi ecosistemici nelle aree costiere pugliesi. Reticula 2015, 10, 58–65. [Google Scholar]
- Montaldi, C.; Fischione, P.; Pasquali, D.; Zullo, F. Land use analysis and coastal structures: Adriatic coast as a case study. In Proceedings of the 9th International Symposium Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques, Livorno, Italy, 14–16 June 2022. [Google Scholar]
- Zullo, F.; Montaldi, C.; Cattani, C.; Romano, B. Ecological connectivity efficiency: A study for Maiella National Park and Abruzzo, Lazio and Molise National Park. Available online: https://repositorio.upct.es/handle/10317/10364 (accessed on 28 August 2022).
- Fiorini, L.; Zullo, F.; Marucci, A.; Di Dato, C.; Romano, B. Planning Tool Mosaic (PTM): A Platform for Italy, a country without a Strategic Framework. Land 2021, 10, 279. [Google Scholar] [CrossRef]
φ | CSS | HQ | |
---|---|---|---|
φ | 1 | −0.48 | −0.21 |
CSS | −0.48 | 1 | 0.53 |
HQ | −0.21 | 0.53 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zullo, F.; Montaldi, C.; Di Pietro, G.; Cattani, C. Land Use Changes and Ecosystem Services: The Case Study of the Abruzzo Region Coastal Strip. ISPRS Int. J. Geo-Inf. 2022, 11, 588. https://doi.org/10.3390/ijgi11120588
Zullo F, Montaldi C, Di Pietro G, Cattani C. Land Use Changes and Ecosystem Services: The Case Study of the Abruzzo Region Coastal Strip. ISPRS International Journal of Geo-Information. 2022; 11(12):588. https://doi.org/10.3390/ijgi11120588
Chicago/Turabian StyleZullo, Francesco, Cristina Montaldi, Gianni Di Pietro, and Chiara Cattani. 2022. "Land Use Changes and Ecosystem Services: The Case Study of the Abruzzo Region Coastal Strip" ISPRS International Journal of Geo-Information 11, no. 12: 588. https://doi.org/10.3390/ijgi11120588
APA StyleZullo, F., Montaldi, C., Di Pietro, G., & Cattani, C. (2022). Land Use Changes and Ecosystem Services: The Case Study of the Abruzzo Region Coastal Strip. ISPRS International Journal of Geo-Information, 11(12), 588. https://doi.org/10.3390/ijgi11120588