Ecological Associations between Obesity Prevalence and Neighborhood Determinants Using Spatial Machine Learning in Chicago, Illinois, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analytical Approaches
Aspatial Random Forest
2.3. Geographical Random Forest
3. Results
Aspatial Random Forest and GRF Results
4. Discussion
4.1. Poverty
4.2. Crime
4.3. Unemployment
4.4. Eviction Rate
4.5. Other Factors
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). 2021. Available online: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity (accessed on 11 January 2022).
- U.S. Center for Disease Control and Prevention (CDC). Adult Obesity Facts. 2021. Available online: https://www.cdc.gov/obsity/data/adult.html#:~:text=From%201999%20%E2%80%932000%20through%202017,and%20certain%20types%20of%20cancer (accessed on 12 December 2021).
- Smith, J.D.; Fu, E.; Kobayashi, M.A. Prevention and Management of Childhood Obesity and Its Psychological and Health Comorbidities. Annu. Rev. Clin. Psychol. 2020, 16, 351–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Physical Inactivity: A Global Public Health Problem. 2018. Available online: http://www.who.int/dietphysicalactivity/factsheet_inactivity/en/ (accessed on 11 January 2022).
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2021, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Hou, W.; Arcan, C. Obesity Trends and Associations with Types of Physical Activity and Sedentary Behavior in US Adults: National Health and Nutrition Examination Survey, 2007–2016. Obesity 2021, 29, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Adlakha, D.; Brownson, R.C.; Hipp, J.A. Built environment correlates of overweight and obesity among adults in Chennai, India. Cities Health 2021, 5, 289–297. [Google Scholar] [CrossRef]
- An, R.; Shen, J.; Yang, Q.; Yang, Y. Impact of built environment on physical activity and obesity among children and adolescents in China: A narrative systematic review. J. Sport Health Sci. 2019, 8, 153–169. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, M.; Wang, F. Multilevel built environment features and individual odds of overweight and obesity in Utah. Appl. Geogr. 2015, 60, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Lenhart, C.M.; Wiemken, A.; Hanlon, A.; Perkett, M.; Patterson, F. Perceived neighborhood safety related to physical activity but not recreational screen-based sedentary behavior in adolescents. BMC Public Health 2017, 17, 722. [Google Scholar] [CrossRef]
- Unger, E.; Diez-Roux, A.V.; Lloyd-Jones, D.M.; Mujahid, M.S.; Nettleton, J.A.; Bertoni, A.; Badon, S.E.; Ning, H.; Allen, N.B. Association of Neighborhood Characteristics With Cardiovascular Health in the Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Qual. Outcomes 2014, 7, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Engelke, P. Multiple Impacts of the Built Environment on Public Health: Walkable Places and the Exposure to Air Pollution. Int. Reg. Sci. Rev. 2005, 28, 193–216. [Google Scholar] [CrossRef]
- Rodgers, J.; Briesacher, B.A.; Wallace, R.B.; Kawachi, I.; Baum, C.F.; Kim, D. County-level housing affordability in relation to risk factors for cardiovascular disease among middle-aged adults: The National Longitudinal Survey of Youths 1979. Health Place 2019, 59, 102194. [Google Scholar] [CrossRef]
- Almardood, M.A.; Maghelal, P. Enhancing the use of transit in arid regions: Case of Abu Dhabi. Int. J. Sustain. Transp. 2019, 14, 375–388. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J. Association between Family Structure and Physical Activity of Chinese Adolescents. BioMed Res. Int. 2016, 2016, 4278682. [Google Scholar] [CrossRef] [Green Version]
- Wang, N. Downsizing: How Micro Apartments are the Step Toward Better Affordable Housing in New York 2014. Available online: https://bit.ly/2RBCWJo (accessed on 10 December 2020).
- Xiao, Y.; Miao, S.; Zhang, Y.; Xie, B.; Wu, W. Exploring the associations between neighborhood greenness and level of physical activity of older adults in shanghai. J. Transp. Health 2022, 24, 101312. [Google Scholar] [CrossRef]
- Peng, B.; Erdogan, S.; Nasri, A.N.; Zou, Z. Towards a health-conscious transportation planning: A framework for estimating health impacts of active transportation at local level. J. Transp. Health 2021, 22, 101231. [Google Scholar] [CrossRef]
- Passi-Solar, Á.; Margozzini, P.; Cortinez-O’Ryan, A.; Muñoz, J.C.; Mindell, J.S. Nutritional and metabolic benefits associated with active and public transport: Results from the Chilean National Health Survey, ENS 2016–2017. J. Transp. Health 2020, 17, 100819. [Google Scholar] [CrossRef]
- Feng, X.; Astell-Burt, T. Can green space quantity and quality help prevent postpartum weight gain? A longitudinal study. J. Epidemiol. Community Health 2019, 73, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Andersen, L.; Riiser, A.; Rutter, H.; Goenka, S.; Nordengen, S.; Solbraa, A.K. Trends in cycling and cycle related injuries and a calculation of prevented morbidity and mortality. J. Transp. Health 2018, 9, 217–225. [Google Scholar] [CrossRef]
- Ghimire, R.; Ferreira, S.; Green, G.T.; Poudyal, N.C.; Cordell, H.K.; Thapa, J.R. Green Space and Adult Obesity in the United States. Ecol. Econ. 2017, 136, 201–212. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, J.; McClure, S. Distribution of the environmental and socioeconomic risk factors on COVID-19 death rate across continental USA: A spatial nonlinear analysis. Environ. Sci. Pollut. Res. 2020, 28, 6587–6599. [Google Scholar] [CrossRef]
- Frank, L.D.; Adhikari, B.; White, K.R.; Dummer, T.; Sandhu, J.; Demlow, E.; Hu, Y.; Hong, A.; Bosch, M.V.D. Chronic disease and where you live: Built and natural environment relationships with physical activity, obesity, and diabetes. Environ. Int. 2022, 158, 106959. [Google Scholar] [CrossRef]
- Hu, M.D.; Lawrence, K.G.; Bodkin, M.R.; Kwok, R.K.; Engel, L.S.; Sandler, D.P. Neighborhood Deprivation, Obesity, and Diabetes in Residents of the US Gulf Coast. Am. J. Epidemiol. 2021, 190, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Xu, Y. An ecological study on the spatially varying association between adult obesity rates and altitude in the United States: Using geographically weighted regression. Int. J. Environ. Health Res. 2022, 32, 1030–1042. [Google Scholar] [CrossRef] [PubMed]
- Oshan, T.M.; Smith, J.; Fotheringham, A.S. Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. Int. J. Health Geogr. 2020, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Heo, J.; Jayaraman, R.; Dawson, S. Proximity to parks and natural areas as an environmental determinant to spatial disparities in obesity prevalence. Appl. Geogr. 2019, 112, 102074. [Google Scholar] [CrossRef]
- Wende, D. Spatial risk adjustment between health insurances: Using GWR in risk adjustment models to conserve incentives for service optimisation and reduce MAUP. Eur. J. Health Econ. 2019, 20, 1079–1091. [Google Scholar] [CrossRef]
- Yu, Q.; Scribner, R.A.; Leonardi, C.; Zhang, L.; Park, C.; Chen, L.; Simonsen, N.R. Exploring racial disparity in obesity: A mediation analysis considering geo-coded environmental factors. Spat. Spatio-Temporal Epidemiol. 2017, 21, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Slack, T.; Myers, C.A.; Martin, C.K.; Heymsfield, S.B. The geographic concentration of us adult obesity prevalence and associated social, economic, and environmental factors. Obesity 2013, 22, 868–874. [Google Scholar] [CrossRef]
- Ferdowsy, F.; Alam Rahi, K.S.; Jabiullah, M.I.; Habib, M.T. A machine learning approach for obesity risk prediction. Curr. Res. Behav. Sci. 2021, 2, 100053. [Google Scholar] [CrossRef]
- Ghosh, D.; Guha, R. What are we ‘tweeting’ about obesity? Mapping tweets with topic modeling and Geographic Information System. Cartogr. Geogr. Inf. Sci. 2013, 40, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Gailey, S.; McElroy, S.; Benmarhnia, T.; Bruckner, T.A. Green mobility and obesity risk: A longitudinal analysis in California. Health Place 2021, 68, 102503. [Google Scholar] [CrossRef]
- Jia, P.; Xue, H.; Yin, L.; Stein, A.; Wang, M.; Wang, Y. Spatial Technologies in Obesity Research: Current Applications and Future Promise. Trends Endocrinol. Metab. 2019, 30, 211–223. [Google Scholar] [CrossRef]
- Jia, P.; Cheng, X.; Xue, H.; Wang, Y. Applications of geographic information systems (GIS) data and methods in obesity-related research. Obes. Rev. 2017, 18, 400–411. [Google Scholar] [CrossRef]
- Mtambo, O.P.L.; Debusho, L.K. Analysis of childhood overweight and obesity in Namibia using spatio-temporal quantile interval models. J. Health Popul. Nutr. 2021, 40, 51. [Google Scholar] [CrossRef]
- Chalkias, C.; Papadopoulos, A.G.; Kalogeropoulos, K.; Tambalis, K.; Psarra, G.; Sidossis, L. Geographical heterogeneity of the relationship between childhood obesity and socio-environmental status: Empirical evidence from Athens, Greece. Appl. Geogr. 2012, 37, 34–43. [Google Scholar] [CrossRef]
- Sallis, J.F.; Floyd, M.F.; Rodríguez, D.A.; Saelens, B.E. Role of Built Environments in Physical Activity, Obesity, and Cardiovascular Disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
- Xue, H.; Slivka, L.; Igusa, T.; Huang, T.T.; Wang, Y. Applications of systems modelling in obesity research. Obes. Rev. 2018, 19, 1293–1308. [Google Scholar] [CrossRef]
- Lu, B.; Harris, P.; Charlton, M.; Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spat. Inf. Sci. 2014, 17, 85–101. [Google Scholar] [CrossRef]
- Quiñones, S.; Goyal, A.; Ahmed, Z.U. Geographically weighted machine learning model for untangling spatial heterogeneity of type 2 diabetes mellitus (T2D) prevalence in the USA. Sci. Rep. 2021, 11, 6955. [Google Scholar] [CrossRef]
- El-Rahman, S.A.; Alluhaidan, A.S.; AlRashed, R.A.; AlZunaytan, D.N. Chronic diseases monitoring and diagnosis system based on features selection and machine learning predictive models. Soft Comput. 2022, 26, 6175–6199. [Google Scholar] [CrossRef]
- Grekousis, G.; Feng, Z.; Marakakis, I.; Lu, Y.; Wang, R. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health Place 2022, 74, 102744. [Google Scholar] [CrossRef]
- Thakur, D.; Biswas, S. An Integration of feature extraction and Guided Regularized Random Forest feature selection for Smartphone based Human Activity Recognition. J. Netw. Comput. Appl. 2022, 204, 103417. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Kalogirou, S. A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of Geographical Random Forests. ISPRS Int. J. Geo-Inf. 2022, 11, 471. [Google Scholar] [CrossRef]
- U.S. Center for Disease Control and Prevention (CDC). Overweight and Obesity. 2021. Available online: https://www.cdc.gov/obesity/data/index.html (accessed on 10 December 2021).
- U.S. American Community Survey (ACS). TIGER/Line with Selected Demographic and Economic Data. 2019. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-data.html (accessed on 9 March 2022).
- Selçuk, I.; Köktaş, A.M.; Toygar, A. Socioeconomic factors affecting the probability of obesity: Evidence from a nationwide survey in Turkey. Qual. Quant. 2022, 1–17. [Google Scholar] [CrossRef]
- Hughes, A.; Kumari, M. Unemployment, underweight, and obesity: Findings from Understanding Society (UKHLS). Prev. Med. 2017, 97, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Chicago Health Atlas (CHA). Available online: https://chicagohealthatlas.org/ (accessed on 10 December 2021).
- Google Earth Engine, Landsat 8 Collection 1 Tier 1 Annual NDVI Composite. Available online: https://explorer.earthengine.google.com/#detail/LANDSAT%2FLC08%2FC01%2FT1_ANNUAL_NDV (accessed on 20 December 2021).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Divvy System Data. Available online: https://ride.divvybikes.com/system-data (accessed on 15 December 2021).
- U.S. Chicago Police Department. Available online: https://www.chicago.gov/city/en/depts/cpd.html (accessed on 15 January 2022).
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Breiman, L. Random forests Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Georganos, S.; Grippa, T.; Gadiaga, A.N.; Linard, C.; Lennert, M.; VanHuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2021, 36, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. The Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kalogirou, S.; Georganos, S. Spatial Machine Learning. R Package. Available online: https://cran.r-project.org/web/packages/SpatialML/SpatialML.pdf (accessed on 10 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 June 2021).
- Stanley, K.C.; Harrigan, P.B.; Serrano, E.L.; Kraak, V.I. A systematic scoping review of the literacy literature to develop a digital food and nutrition literacy model for low-income adults to make healthy choices in the online food retail ecosystem to reduce obesity risk. Obes. Rev. 2022, 23, e13414. [Google Scholar] [CrossRef]
- Kwarteng, J.L.; Schulz, A.J.; Mentz, G.B.; Israel, B.A.; Perkins, D.W. Independent Effects of Neighborhood Poverty and Psychosocial Stress on Obesity Over Time. J. Urban Health Bull. N. Y. Acad. Med. 2017, 94, 791–802. [Google Scholar] [CrossRef]
- Duraccio, K.M.; Krietsch, K.N.; Chardon, M.L.; Van Dyk, T.R.; Beebe, D.W. Poor sleep and adolescent obesity risk: A narrative review of potential mechanisms. Adolesc. Health Med. Ther. 2019, 10, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.; Wong, C.A.; Perrin, E.; Page, S.; Sibley, L.; Skinner, A. Association of Physical Activity with Income, Race/Ethnicity, and Sex Among Adolescents and Young Adults in the United States: Findings from the National Health and Nutrition Examination Survey, 2007–2016. JAMA Pediatr. 2018, 172, 732–740. [Google Scholar] [CrossRef]
- Huang, Y.; Sparks, P.J. Longitudinal exposure to neighborhood poverty and obesity risk in emerging adulthood. Soc. Sci. Res. 2022, 102796. [Google Scholar] [CrossRef]
- Feuillet, T.; Valette, J.; Charreire, H.; Kesse-Guyot, E.; Julia, C.; Vernez-Moudon, A.; Hercberg, S.; Touvier, M.; Oppert, J. Influence of the urban context on the relationship between neighbourhood deprivation and obesity. Soc. Sci. Med. 2020, 265, 113537. [Google Scholar] [CrossRef]
- Lacoe, J.; Bostic, R.W.; Acolin, A. Crime and private investment in urban neighborhoods. J. Urban Econ. 2018, 108, 154–169. [Google Scholar] [CrossRef]
- Park, Y.; Garcia, M. Pedestrian safety perception and urban street settings. Int. J. Sustain. Transp. 2020, 14, 860–871. [Google Scholar] [CrossRef]
- Ruhm, C.J. Healthy living in hard times. J. Health Econ. 2005, 24, 341–363. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.M.; Huang, W.; Lleras-Muney, A. When does education matter? The protective effect of education for cohorts graduating in bad times. Soc. Sci. Med. 2015, 127, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, P.; Gallo, W.T.; Ayyagari, P.; Fletcher, J.M.; Sindelar, J.L. The effect of job loss on overweight and drinking. J. Health Econ. 2011, 30, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.L.; Shah, C.P.; Svoboda, T.J. The impact of unemployment on health: A review of the evidence. J. Public Health Policy 1997, 18, 275–301, reprinted in Can. Med. Assoc. J. 1995, 153, 529–540. [Google Scholar] [CrossRef]
- Hazekamp, C.; Yousuf, S.; Khare, M.; MacDowell, M. Unhealthy behaviours in urban Illinois communities affected by eviction: A descriptive analysis. Health Soc. Care Community 2021, 29, 867–875. [Google Scholar] [CrossRef]
- Preston, G.; Reina, V.J. Sheltered from Eviction? A Framework for Understanding the Relationship between Subsidized Housing Programs and Eviction. Hous. Policy Debate 2021, 31, 785–817. [Google Scholar] [CrossRef]
- Lotfata, A.; Tomal, M. Exploring Housing Determinants of Obesity Prevalence Using Multiscale Geographically Weighted Regression in Chicago, Illinois. Prof. Geogr. 2022, 1–10. [Google Scholar] [CrossRef]
- Chambers, E.C.; Fuster, D. Housing as an obesity-mediating environment. Int. J. Public Health 2012, 57, 453–454. [Google Scholar] [CrossRef] [Green Version]
- Chicago Eviction. 2022. Available online: https://eviction.lcbh.org/reports/eviction-unemployment-covid-19 (accessed on 15 April 2022).
- Lachowycz, K.; Jones, A.P. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, e183–e189. [Google Scholar] [CrossRef]
- Hohl, A.; Lotfata, A. Modeling spatiotemporal associations of obesity prevalence with biking, housing cost and green spaces in Chicago, IL, USA, 2015–2017. J. Transp. Health 2022, 26, 101412. [Google Scholar] [CrossRef]
- He, Q.; Li, J. The roles of built environment and social disadvantage on the geography of property crime. Cities 2021, 121, 103471. [Google Scholar] [CrossRef]
- Huang, H. Food Environment Inequalities and Moderating Effects of Obesity on Their Relationships with COVID-19 in Chicago. Sustainability 2022, 14, 6498. [Google Scholar] [CrossRef]
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Cofie, L.E.; Cuevas, A.G. Length of Residency in the United States and Obesity Across Race/Ethnicity. J. Immigr. Minor. Health 2022, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Sanjeevi, N.; Freeland-Graves, J.H. Low diet quality is associated with adverse levels of metabolic health markers and clustering of risk factors in adults with type 2 diabetes. J. Hum. Nutr. Diet. 2022. [Google Scholar] [CrossRef]
- Helbich, M.; Browning, M.H.M.; Kwan, M.-P. Time to address the spatiotemporal uncertainties in COVID-19 research: Concerns and challenges. Sci. Total Environ. 2021, 764, 142866. [Google Scholar] [CrossRef]
Dataset | Source | Data Nature |
---|---|---|
Estimates of obesity prevalence per census tract | Centers for Disease Control | Ratio (percentage) |
Census tract polygon geometries | United States Census Bureau | TIGER/Line Shapefiles |
Crime ratio | Chicago Police Department | Ratio |
Poverty | Chicago Health Atlas | Ratio (percentage) |
Unemployment | Chicago Health Atlas | Ratio (percentage) |
Eviction rate | Chicago Health Atlas | Ratio (percentage) |
Biking | Divvy Bike share system | Ratio |
Green space | Google Earth Engine | Index |
Severe rent | Chicago Health Atlas | Ratio (percentage) |
Vacant housing | Chicago Health Atlas | Ratio (percentage) |
Random Forest | Geographical Random Forest | ||||||
---|---|---|---|---|---|---|---|
Rank | Variable | Global Feature Importance (MSE) | Variable | Local Feature Importance (MSE) | Std. Dev. | ||
Min. | Max. | Mean | |||||
1 | Crime ratio | 19.480 | Poverty | −5.948 | 63.174 | 4.842 | 7.561 |
2 | Poverty | 17.169 | Crime ratio | −2.702 | 83.830 | 4.236 | 8.772 |
3 | Unemployment | 13.408 | Unemployment | −2.808 | 100.967 | 3.265 | 10.735 |
4 | Eviction rate | 10.981 | Eviction rate | −4.412 | 48.119 | 2.238 | 5.076 |
5 | Biking | 8.443 | Vacant housing | −6.4041 | 22.261 | 1.046 | 2.493 |
6 | Green space | 2.841 | Green space | −3.849 | 24.330 | 1.007 | 2.719 |
7 | Severe rent | 1.574 | Severe rent | −5.697 | 12.340 | 0.593 | 1.492 |
8 | Vacant housing | 1.048 | Biking | −1.561 | 44.731 | 0.488 | 2.460 |
R2 (out-of-bag) | 0.867 | 0.904 | |||||
MSE (out-of-bag) | 10.401 | 7.466 | |||||
RMSE (out-of-bag) | 2.786 | 2.658 | |||||
MAE (out-of-bag) | 2.016 | 1.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotfata, A.; Georganos, S.; Kalogirou, S.; Helbich, M. Ecological Associations between Obesity Prevalence and Neighborhood Determinants Using Spatial Machine Learning in Chicago, Illinois, USA. ISPRS Int. J. Geo-Inf. 2022, 11, 550. https://doi.org/10.3390/ijgi11110550
Lotfata A, Georganos S, Kalogirou S, Helbich M. Ecological Associations between Obesity Prevalence and Neighborhood Determinants Using Spatial Machine Learning in Chicago, Illinois, USA. ISPRS International Journal of Geo-Information. 2022; 11(11):550. https://doi.org/10.3390/ijgi11110550
Chicago/Turabian StyleLotfata, Aynaz, Stefanos Georganos, Stamatis Kalogirou, and Marco Helbich. 2022. "Ecological Associations between Obesity Prevalence and Neighborhood Determinants Using Spatial Machine Learning in Chicago, Illinois, USA" ISPRS International Journal of Geo-Information 11, no. 11: 550. https://doi.org/10.3390/ijgi11110550
APA StyleLotfata, A., Georganos, S., Kalogirou, S., & Helbich, M. (2022). Ecological Associations between Obesity Prevalence and Neighborhood Determinants Using Spatial Machine Learning in Chicago, Illinois, USA. ISPRS International Journal of Geo-Information, 11(11), 550. https://doi.org/10.3390/ijgi11110550