Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility in Urban Chronotopes Context
Abstract
:1. Introduction
2. Literature Review
2.1. Rhythms and Its Relevant Analysis
2.2. Travel Behavior of Shared Bicycle
2.3. Cyclist Speeds
3. Methods
3.1. Study Area and Data Description
3.2. Cycling Speed Calculation Model from Origin Station to Destination Station
3.3. Polyrhythm Analysis Methods for Public Bicycle Mobility
3.3.1. Cycling Rhythm Calculation Based on Docking Station
3.3.2. Cycling Rhythm Calculation Based on Path Segment
3.3.3. Spatiotemporal Rhythm Analysis Model
4. Results
4.1. Descriptive Statistics of Cycling Rhythm Volatility
4.2. Cycling Rhythms Based on Source-Sink Comparison
4.3. Cycling Rhythms Based on the Asymmetry of Paths
4.4. Cycling Rhythms Based on Heterogeneity of Space-Time Cubes
4.5. Cycling Rhythms Focus on Spatiotemporal Patterns
5. Discussion
5.1. Selection of Representative Data for Rhythm Analysis
5.2. Causes of Cycling Rhythm Differences
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Xiao, W.; Zhang, D.; Ji, Q. Low-carbon transformation of cities: Understanding the demand for dockless bike sharing in China. Energy Policy 2021, 159, 112631. [Google Scholar] [CrossRef]
- Nielsen, T.A.S.; Skov-Petersen, H. Bikeability—Urban structures supporting cycling. Effects of local, Urban and regional scale urban form factors on cycling from home and workplace locations in Denmark. J. Transp. Geogr. 2018, 69, 36–44. [Google Scholar] [CrossRef]
- Osman, R.; Mulíček, O. Urban chronopolis: Ensemble of rhythmized dislocated places. Geoforum 2017, 85, 46–57. [Google Scholar] [CrossRef]
- Hesse, M. Cities and flows: Re-asserting a relationship as fundamental as it is delicate. J. Transp. Geogr. 2013, 29, 33–42. [Google Scholar] [CrossRef]
- Watanabe, H.; Chikaraishi, M.; Maruyama, T. How different are daily fluctuations and weekly rhythms in time-use behavior across urban settings? A case in two Japanese cities. Travel Behav. Soc. 2021, 22, 146–154. [Google Scholar] [CrossRef]
- Gao, J.; Kamphuis, C.B.M.; Helbich, M.; Ettema, D. What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends. J. Transp. Geogr. 2020, 88, 102860. [Google Scholar] [CrossRef]
- Hall, C.M.; Ram, Y. Walk score and its potential contribution to the study of active transport and walkability: A critical and systematic review. Transp. Res. Part D Transp. Environ. 2018, 61, 310–324. [Google Scholar] [CrossRef]
- Golakiyaa, H.D.; Ritvik Chauhanb, A.D. Mapping Pedestrian-Vehicle Behavior at Urban Undesignated Mid-Block Crossings under Mixed Traffic Environment—A Trajectory-Based Approach. Transp. Res. Procedia 2020, 48, 1263–1277. [Google Scholar] [CrossRef]
- Clarry, A.; Faghih Imani, A.; Miller, E.J. Where we ride faster? Examining cycling speed using smartphone GPS data. Sustain. Cities Soc. 2019, 49, 101594. [Google Scholar] [CrossRef]
- Dictionary, C. Conception of Rhythm. Available online: https://baike.baidu.com/item/%E8%8A%82%E5%A5%8F/3795?fr=aladdin (accessed on 25 December 2013).
- Lefebvre, H. The Production of Space; Blackwell Publishers: Oxford, UK, 1991. [Google Scholar]
- Lefebvre, H. Rhythmanalysis: Space, Time and Everyday Life; Continium: London, UK, 2004. [Google Scholar]
- Antchak, V. City rhythms and events. Ann. Tour. Res. 2018, 68, 52–54. [Google Scholar] [CrossRef]
- Volo, S. Urban rhythms and travel behaviour: Spatial and temporal phenomena of daily travel. Ann. Tour. Res. 2011, 38, 723–725. [Google Scholar] [CrossRef]
- Schleinitz, K.; Petzoldt, T.; Gehlert, T. Risk compensation? The relationship between helmet use and cycling speed under naturalistic conditions. J. Saf. Res. 2018, 67, 165–171. [Google Scholar] [CrossRef]
- Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J. Clocks for the city: Circadian differences between forest and city songbirds. Proc. R. Soc. B-Biol. Sci. 2013, 280, 20130593. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.A.; Yip, N.-M. Rhythm of endurance and contestation: Everyday practices of roaming vendors in Hanoi. Geoforum 2020, 117, 259–267. [Google Scholar] [CrossRef]
- Mulíček, O.; Osman, R. Rhythm of urban retail landscapes: Shopping hours and the urban chronotopes. Morav. Geogr. Rep. 2018, 26, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Wey, D.; Bohn, A.; Menna-Barreto, L. Daily rhythms of native Brazilians in summer and winter. Physiol. Behav. 2012, 105, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Johansen, P.H.; Fisker, J.K.; Thuesen, A.A. ‘We live in nature all the time’: Spatial justice, outdoor recreation, and the refrains of rural rhythm. Geoforum 2021, 120, 132–141. [Google Scholar] [CrossRef]
- Flemsæter, F.; Stokowski, P.; Frisvoll, S. The rhythms of canal tourism: Synchronizing the host-visitor interface. J. Rural Stud. 2020, 78, 199–210. [Google Scholar] [CrossRef]
- Rantala, O.; Valtonen, A. A rhythmanalysis of touristic sleep in nature. Ann. Tour. Res. 2014, 47, 18–30. [Google Scholar] [CrossRef]
- Ambühl, L.; Loder, A.; Leclercq, L.; Menendez, M. Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year. Transp. Res. Part C Emerg. Technol. 2021, 126, 103065. [Google Scholar] [CrossRef]
- Csáji, B.C.; Browet, A.; Traag, V.A.; Delvenne, J.-C.; Huens, E.; Van Dooren, P.; Blondel, V.D. Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Its Appl. 2013, 392, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R.; Aasa, A.; Silm, S.; Tiru, M. Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transp. Res. Part C Emerg. Technol. 2010, 18, 45–54. [Google Scholar] [CrossRef]
- Ma, T.; Pei, T.; Song, C.; Liu, Y.; Du, Y.; Liao, X. Understanding geographical patterns of a city’s diurnal rhythm from aggregate data of location-aware services. Trans. GIS 2018, 23, 104–117. [Google Scholar] [CrossRef]
- Liu, K.; Murayama, Y.; Ichinose, T. A multi-view of the daily urban rhythms of human mobility in the Tokyo metropolitan area. J. Transp. Geogr. 2021, 91, 102985. [Google Scholar] [CrossRef]
- Barbour, N.; Zhang, Y.; Mannering, F. A statistical analysis of bike sharing usage and its potential as an auto-trip substitute. J. Transp. Health 2019, 12, 253–262. [Google Scholar] [CrossRef]
- Böcker, L.; Anderson, E.; Uteng, T.P.; Throndsen, T. Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway. Transp. Res. Part A Policy Pract. 2020, 138, 389–401. [Google Scholar] [CrossRef]
- Qian, X.; Jaller, M. Bikesharing, equity, and disadvantaged communities: A case study in Chicago. Transp. Res. Part A Policy Pract. 2020, 140, 354–371. [Google Scholar] [CrossRef]
- Wang, J.; Lindsey, G. Neighborhood socio-demographic characteristics and bike share member patterns of use. J. Transp. Geogr. 2019, 79, 102475. [Google Scholar] [CrossRef]
- Fishman, E.; Washington, S.; Haworth, N.; Mazzei, A. Barriers to bikesharing: An analysis from Melbourne and Brisbane. J. Transp. Geogr. 2014, 41, 325–337. [Google Scholar] [CrossRef]
- Orvin, M.M.; Fatmi, M.R. Why individuals choose dockless bike sharing services? Travel Behav. Soc. 2021, 22, 199–206. [Google Scholar] [CrossRef]
- Ayachi, F.S.; Dorey, J.; Guastavino, C. Identifying factors of bicycle comfort: An online survey with enthusiast cyclists. Appl. Ergon. 2015, 46 Pt A, 124–136. [Google Scholar] [CrossRef]
- Dozza, M.; Werneke, J. Introducing naturalistic cycling data: What factors influence bicyclists’ safety in the real world? Transp. Res. Part F Traffic Psychol. Behav. 2014, 24, 83–91. [Google Scholar] [CrossRef]
- Fyhri, A.; Sundfør, H.B.; Weber, C.; Phillips, R.O. Risk compensation theory and bicycle helmets—Results from an experiment of cycling speed and short-term effects of habituation. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 329–338. [Google Scholar] [CrossRef]
- Boufous, S.; Hatfield, J.; Grzebieta, R. The impact of environmental factors on cycling speed on shared paths. Accid. Anal. Prev. 2018, 110, 171–176. [Google Scholar] [CrossRef]
- Schleinitz, K.; Petzoldt, T.; Franke-Bartholdt, L.; Krems, J.; Gehlert, T. The German Naturalistic Cycling Study—Comparing cycling speed of riders of different e-bikes and conventional bicycles. Saf. Sci. 2017, 92, 290–297. [Google Scholar] [CrossRef]
- Schleinitz, K.; Petzoldt, T.; Krems, J.F.; Gehlert, T. The influence of speed, cyclists’ age, pedaling frequency, and observer age on observers’ time to arrival judgments of approaching bicycles and e-bikes. Accid. Anal. Prev. 2016, 92, 113–121. [Google Scholar] [CrossRef]
- Petzoldt, T.; Schleinitz, K.; Krems, J.F.; Gehlert, T. Drivers’ gap acceptance in front of approaching bicycles—Effects of bicycle speed and bicycle type. Saf. Sci. 2017, 92, 283–289. [Google Scholar] [CrossRef]
- Bendik Manum, P.A.T.N.; Jorge, G. Improving GIS-based models for bicycling speed estimations. Transp. Res. Procedia 2018, 42, 85–99. [Google Scholar] [CrossRef]
- Khan, S.I.; Singh, B. Interval distribution for exclusive, mixed-use bicycle paths. Transp. Res. Rec. 2001, 1776, 229–236. [Google Scholar] [CrossRef]
- Joo, S.; Oh, C.; Jeong, E.; Lee, G. Categorizing bicycling environments using GPS-based public bicycle speed data. Transp. Res. Part C Emerg. Technol. 2015, 56, 239–250. [Google Scholar] [CrossRef]
- Jensen, P.; Rouquier, J.-B.; Ovtracht, N.; Robardet, C. Characterizing the speed and paths of shared bicycle use in Lyon. Transp. Res. Part D Transp. Environ. 2010, 15, 522–524. [Google Scholar] [CrossRef] [Green Version]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G.; Alibakhshi, S. ELSA: Entropy-based local indicator of spatial association. Spat. Stat. 2019, 29, 66–88. [Google Scholar] [CrossRef]
- Montero, P.; Vilar, J.A. Tsclust: An R Package for Time Series Clustering. J. Stat. Softw. 2014, 62, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Feng, Y.; Tong, X.; Li, P.; Zhou, Y.; Wu, P.; Wang, C. Reducing spatial autocorrelation in the dynamic simulation of urban growth using eigenvector spatial filtering. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102434. [Google Scholar] [CrossRef]
- Chen, L.J.; Pel, A.J.; Chen, X.; Sparing, D.; Hansen, I.A. Determinants of Bicycle Transfer Demand at Metro Stations: Analysis of Stations in Nanjing, China. Transp. Res. Rec. 2012, 2276, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, H.; Wang, H.; Wu, P. Understanding Plum Rain’s Effects on Urban Public Bicycle Unavailability Considering Both Place Semantics and Riding Distance. ISPRS Int. J. Geo-Inf. 2021, 10, 695. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden. Transp. Policy 2015, 41, 147–158. [Google Scholar] [CrossRef]
- Eriksson, J.; Forsman, A.; Niska, A.; Gustafsson, S.; Sorensen, G. An analysis of cyclists’ speed at combined pedestrian and cycle paths. Traffic Inj. Prev. 2019, 20, 56–61. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Jiang, S. Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility in Urban Chronotopes Context. ISPRS Int. J. Geo-Inf. 2022, 11, 6. https://doi.org/10.3390/ijgi11010006
Chen L, Jiang S. Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility in Urban Chronotopes Context. ISPRS International Journal of Geo-Information. 2022; 11(1):6. https://doi.org/10.3390/ijgi11010006
Chicago/Turabian StyleChen, Lijun, and Shangjing Jiang. 2022. "Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility in Urban Chronotopes Context" ISPRS International Journal of Geo-Information 11, no. 1: 6. https://doi.org/10.3390/ijgi11010006
APA StyleChen, L., & Jiang, S. (2022). Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility in Urban Chronotopes Context. ISPRS International Journal of Geo-Information, 11(1), 6. https://doi.org/10.3390/ijgi11010006