An Adaptive Spatial Resolution Method Based on the ST-ResNet Model for Hourly Property Crime Prediction
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Property Crime Data
2.2. Weather Data
3. Methodology
3.1. ST-ResNet Model
3.2. Accuracy Evaluation
4. Results
4.1. Data Analysis
4.2. Data Aggregation
4.3. ST-ResNet Model for Crime Prediction in Suzhou
4.4. Selection of the Optimal Spatial Resolution
4.5. Evaluation of the Prediction Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
3 × 3 | 5 × 5 | 7 × 7 | |
---|---|---|---|
2.4 km | 8.553 | 8.590 | 9.047 |
4.8 km | 8.607 | 10.807 | 10.819 |
9.6 km | 11.422 | 11.504 | 78.614 |
16 | 32 | 64 | 128 | |
---|---|---|---|---|
2.4 km | 8.670 | 8.639 | 8.553 | 8.604 |
4.8 km | 8.883 | 8.760 | 8.607 | 8.659 |
9.6 km | 11.386 | 11.258 | 11.222 | 11.331 |
References
- Rummens, A.; Hardyns, W. The effect of spatiotemporal resolution on predictive policing model performance. Int. J. Forecast. 2021, 37, 125–133. [Google Scholar] [CrossRef]
- Hardyns, W.; Rummens, A. Predictive Policing as a New Tool for Law Enforcement? Recent Developments and Challenges. Eur. J. Crim. Policy Res. 2018, 24, 201–218. [Google Scholar] [CrossRef]
- Liu, L.; Ji, J.; Song, G.; Song, G.; Liao, W.; Yu, H.; Liu, W. Hotspot Prediction of Public Property Crime based on Spatial Differentiation of Crime and Built Environment. J. Geo-Inf. Sci. 2019, 21, 1655–1668. [Google Scholar] [CrossRef]
- Chen, X.; Cho, Y.; Jang, S.Y. Crime prediction using Twitter sentiment and weather. In Proceedings of the 2015 Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 24 April 2015. [Google Scholar] [CrossRef]
- Aghababaei, S.; Makrehchi, M. Mining social media content for crime prediction. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Omaha, NE, USA, 13–16 October 2016. [Google Scholar] [CrossRef]
- Chainey, S.; Tompson, L.; Uhlig, S. The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Mohler, G.; Porter, M.D. Rotational grid, PAI-maximizing crime forecasts. Stat. Anal. Data Min. 2018, 11, 227–236. [Google Scholar] [CrossRef]
- Jefferis, E. A multi-method exploration of crime hot spots. In Proceedings of the Annual Meeting of the Academy of Criminal Justice Sciences, Albuquerque, NM, USA, 10–14 March 1998; pp. 10–14. [Google Scholar]
- Adams-Fuller, T. Historical homicide hot spots: The case of three cities. Ph.D. Thesis, Howard University, Washington, DC, USA, 2001. Available online: https://bit.ly/2Rw7NKc (accessed on 5 May 2021).
- Sampson, R.J.; Groves, W.B. Community structure and crime: Testing social-disorganization theory. Am. J. Sociol. 1989, 94, 774–802. Available online: https://www.journals.uchicago.edu/doi/abs/10.1086/229068 (accessed on 5 May 2021). [CrossRef] [Green Version]
- Mohler, G.O.; Short, M.B.; Brantingham, P.J.; Schoenberg, F.P.; Tita, G.E. Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 2011, 106, 100–108. [Google Scholar] [CrossRef]
- Mohler, G. Marked point process hotspot maps for homicide and gun crime prediction in Chicago. Int. J. Forecast. 2014, 30, 491–497. [Google Scholar] [CrossRef]
- Gorr, W.; Olligschlaeger, A. Crime Hot Spot Forecasting: Modeling and Comparative Evaluation Summary; National Criminal Justice Reference Service(NCJRS): Rockville, MD, USA, 2002. Available online: https://www.ojp.gov/pdffiles1/nij/grants/195168.pdf (accessed on 5 May 2021).
- Cornish, D.B.; Clarke, R.V. Understanding crime displacement: An application of rational choice theory. Criminology 1987, 25, 933–948. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Brantingham, P.L. Environmental Criminology; Sage Publications: Beverly Hills, CA, USA, 1981; Available online: http://books.google.com/books?id=ITDTAAAAIAAJ (accessed on 5 May 2021).
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Putra, I.G.B.; Kuo, P.F.; Chen, H.H. Spatial analysis of the air pollution effect on domestic violence and robbery in New South Wales. In Proceedings of the 40th Asian Conference on Remote Sensing: Progress of Remote Sensing Technology for Smart Future, ACRS 2019, Daejeon, Korea, 14–18 October 2019; Available online: http://www.scopus.com/inward/record.url?scp=85085666037&partnerID=8YFLogxK (accessed on 5 May 2021).
- Ristea, A.; Kounadi, O.; Leitner, M. Geosocial Media Data as Predictors in a GWR Application to Forecast Crime Hotspots (Short Paper). In Proceedings of the 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 28–31 August 2018. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bowers, K.J. The burglary as clue to the future: The beginnings of prospective hot-spotting. Eur. J. Criminol. 2004, 1, 237–255. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bowers, K.J. The stability of space-time clusters of burglary. Br. J. Criminol. 2004, 44, 55–65. [Google Scholar] [CrossRef]
- Hunt, J.M.; Acton, S.T. Do crime HOT Spots Move? Exploring the Effects of the Modifiable Areal Unit Problem and Modifiable Temporal Unit Problem on Crime Hot Spot Stability. Ph.D. Thesis, American University, Washington, DC, USA, 2016. [Google Scholar]
- Piza, E.L.; Carter, J.G. Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Q. 2018, 35, 842–870. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, D.; Zhang, D.; Brantingham, P.J.; Bertozzi, A.L. Deep Learning for Real Time Crime Forecasting. arXiv 2017, arXiv:1707.03340. [Google Scholar]
- Kang, H.; Kang, H. Prediction of crime occurrence from multi-modal data using deep learning. PLoS ONE 2017, 12, e176244. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, N.; Nicolis, O.; Peralta, B.; Mateu, J. Spatio-temporal prediction of Baltimore crime events using CLSTM neural networks. IEEE Access 2020, 8, 209101–209112. [Google Scholar] [CrossRef]
- Stec, A.; Klabjan, D. Forecasting Crime with Deep Learning. arXiv 2018, arXiv:1806.01486. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Available online: https://ojs.aaai.org/index.php/AAAI/article/view/10735 (accessed on 5 May 2021).
- Wang, B.; Yin, P.; Bertozzi, A.L.; Brantingham, P.J.; Osher, S.J.; Xin, J. Deep learning for real-time crime forecasting and its ternarization. Chin. Ann. Math. Ser. B 2019, 40, 949–966. [Google Scholar] [CrossRef] [Green Version]
- Uittenbogaard, A.; Ceccato, V. Space-time Clusters of Crime in Stockholm, Sweden. Rev. Eur. Stud. 2012, 4. [Google Scholar] [CrossRef]
- Brantingham, P.J.; Dyreson, D.A.; Brantingham, P.L. Crime Seen Through a Cone of Resolution. Am. Behav. Sci. 2016, 20, 261–273. [Google Scholar] [CrossRef]
- Haberman, C.P.; Ratcliffe, J.H. The predictive policing challenges of near repeat armed street robberies. Polic. A J. Policy Pract. 2012, 6, 151–166. [Google Scholar] [CrossRef]
- Bowers, K.J.; Johnson, S.D. Domestic Burglary Repeats and Space-Time Clusters: The Dimensions of Risk. Eur. J. Criminol. 2005, 2, 67–92. [Google Scholar] [CrossRef]
- Block, S.; Fujita, S. Patterns of near repeat temporary and permanent motor vehicle thefts. Crime Prev. Community Saf. 2013, 15, 151–167. [Google Scholar] [CrossRef]
- Knox, E.G.; Bartlett, M.S. The detection of space-time interactions. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1964, 13, 25–30. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X. Analysis of burglary hot spots and near-repeat victimization in a large Chinese city. ISPRS Int. J. Geo-Inf. 2017, 6, 148. [Google Scholar] [CrossRef] [Green Version]
- Bowers, K.J.; Johnson, S.D.; Pease, K. Prospective hot-spotting: The future of crime mapping? Br. J. Criminol. 2004, 44, 641–658. [Google Scholar] [CrossRef]
- Johnson, S.D.; Birks, D.J.; McLaughlin, L.; Bowers, K.J.; Pease, K. Prospective Crime Mapping in Operational Context: Final Report; Home Office: London, UK, 2007; Available online: https://bit.ly/3tkAmHV (accessed on 5 May 2021).
- Oberwittler, D.; Wikström, P.O.H. Why small is better: Advancing the study of the role of behavioral contexts in crime causation. In Putting Crime in Its Place: Units of Analysis in Geographic Criminology; Weisburd, D., Bernasco, W., Bruinsma, G., Eds.; Springer: New York, NY, USA, 2009; pp. 33–60. [Google Scholar] [CrossRef]
- Weisburd, D.; Groff, E.R.; Yang, S. The Criminology of Place: Street Segments and Our Understanding of the CRIME problem; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Sherman, L.W.; Gartin, P.R.; Buerger, M.E. Hot Spots of Predatory Crime: Routine Activities and the Criminology of Place. Criminology (Beverly Hills) 1989, 27, 27–56. [Google Scholar] [CrossRef]
- Openshaw, S.; Taylor, P.J. A million or so correlation coefficients: Three experiments on the modifiable areal unit problem. In Statistical Applicaions in the Spatial Sciences; Wrigley, N., Ed.; Pion: London, UK, 1979; pp. 127–144. [Google Scholar]
- Gerell, M. Smallest is Better? The Spatial Distribution of Arson and the Modifiable Areal Unit Problem. J. Quant. Criminol. 2017, 33, 293–318. [Google Scholar] [CrossRef]
- Malleson, N.; Steenbeek, W.; Andresen, M.A. Identifying the appropriate spatial resolution for the analysis of crime patterns. PLoS ONE 2019, 14, e218324. [Google Scholar] [CrossRef]
- Ramos, R.G.; Silva, B.F.A.; Clarke, K.C.; Prates, M. Too Fine to be Good? Issues of Granularity, Uniformity and Error in Spatial Crime Analysis. J. Quant. Criminol. 2020. [Google Scholar] [CrossRef]
- Rui, L.I. The Historical Evolution of Trespass to Property Crime with frequently-0ccurring and the Countermeasures of Investigation and Prevention in 1995–2010. J. Chin. People’s Public Secur. Univ. (Soc. Sci. Ed.) 2012, 28, 117–124. [Google Scholar]
- Meijer, A.; Wessels, M. Predictive Policing: Review of Benefits and Drawbacks. Int. J. Public Adm. 2019, 42, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Liu, L.; Lan, M.; Wang, Z.; Zhou, H.; Yu, H. A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery. Int. J. Geogr. Inf. Sci. IJGIS 2020, 34, 1740–1764. [Google Scholar] [CrossRef]
- Benson, B.L.; Kim, I.; Rasmussen, D.W.; Zhehlke, T.W. Is property crime caused by drug use or by drug enforcement policy? Appl. Econ. 1992, 24, 679–692. [Google Scholar] [CrossRef]
- Sjoquist, D.L. Property crime and economic behavior: Some empirical results. Am. Econ. Rev. 1973, 63, 439–446. [Google Scholar]
- Trujillo, J.C.; Howley, P. The Effect of Weather on Crime in a Torrid Urban Zone. Environ. Behav. 2021, 53, 69–90. [Google Scholar] [CrossRef]
- Perry, J.D.; Simpson, M.E. Violent Crimes in a City:Environmental Determinants. Environ. Behav. 1987, 19, 77–90. [Google Scholar] [CrossRef]
- Cohn, E.G. Weather and Violent Crime. Environ. Behav. 2016, 22, 280–294. [Google Scholar] [CrossRef]
- Cohn, E.G.; Rotton, J. Weather, seasonal trends and property crimes in Minneapolis, 1987–1988. A moderator-variable time-series analysis of routine activities. J. Environ. Psychol. 2000, 20, 257–272. [Google Scholar] [CrossRef]
- Greenhouse Data. Available online: http://data.sheshiyuanyi.com/ (accessed on 8 March 2021).
- De Cola, L.; Montagne, N. The pyramid system for multiscale raster analysis. Comput. Geosci-Uk 1993, 19, 1393–1404. [Google Scholar] [CrossRef]
- Phil Yang, C.; Wong, D.W.; Yang, R.; Kafatos, M.; Li, Q. Performance-improving techniques in web-based GIS. Int. J. Geogr. Inf. Sci. 2005, 19, 319–342. [Google Scholar] [CrossRef]
- Quinn, S.; Gahegan, M. A Predictive Model for Frequently Viewed Tiles in a Web Map. T Gis. 2010, 14, 193–216. [Google Scholar] [CrossRef]
- Cort, J.; Willmott, K.M. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval. ECIR. Lecture Notes in Computer Science; Losada, D.E., Fernández-Luna, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408. [Google Scholar] [CrossRef]
- Ratcliffe, J.H.; Rengert, G.F. Near-repeat patterns in Philadelphia shootings. Secur. J. 2008, 21, 58–76. [Google Scholar] [CrossRef]
- Analyzing Cyclical Data with FFT. Available online: https://ww2.mathworks.cn/help/matlab/math/using-fft.html?lang=en (accessed on 8 March 2021).
- Spearman, C. Demonstration of formulae for true measurement of correlation. Am. J. Psychol. 1907, 18, 161–169. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J. Hydrol. 2013, 476, 97–111. [Google Scholar] [CrossRef]
- Liao, R.; Wen, H.; Wu, J.; Song, H.; Pan, F.; Dong, L. The Rayleigh fading channel prediction via deep learning. Wirel. Commun. Mob. Comput. 2018. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, H.; Han, Y.; Cheng, T.; Zhang, Y.; Chen, G. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes. Int. J. Geogr. Inf. Sci. 2020, 34, 802–823. [Google Scholar] [CrossRef]
0–7 Days | 8–14 Days | 15–21 Days | 22–28 Days | 29–35 Days | More Than 35 Days | |
---|---|---|---|---|---|---|
Same | 2.235 ** | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 |
1–300 m | 1.047 * | 0.951 | 0.933 | 1.144 | 1.000 | 0.988 |
301–600 m | 1.002 | 0.996 | 1.002 | 1.002 | 1.000 | 1.000 |
601–900 m | 0.981 | 1.017 | 1.013 * | 1.019 | 1.000 | 1.001 |
901–1200 m | 1.005 | 0.988 | 1.006 | 1.007 | 0.998 | 1.002 * |
1201–1500 m | 1.003 | 1.021 | 0.970 | 0.932 | 0.997 | 1.000 |
1501–1800 m | 1.013 * | 0.996 | 0.980 | 0.967 | 0.956 | 0.999 |
More than 1800 m | 1.011 * | 1.001 | 1.034 | 1.021 | 0.987 | 0.994 |
Time Interval | No Mutation | Mutation | No-Mutation Percentage |
---|---|---|---|
1 h | 11204 | 4876 | 70.02% |
2 h | 9738 | 6702 | 58.32% |
3 h | 8709 | 7371 | 54.17% |
Average Temperature | Highest Temperature | Lowest Temperature | Crime Number | |
---|---|---|---|---|
Average temperature | - | 0.987 ** | 0.988 ** | 0.539 ** |
Highest temperature | - | 0.957 ** | 0.556 ** | |
Lowest temperature | - | 0.512 ** | ||
Crime number | - |
Level of Layer | Spatial Resolution | Rows | Columns |
---|---|---|---|
12th | 9.6 km | 8 | 9 |
13th | 4.8 km | 15 | 16 |
14th | 2.4 km | 28 | 32 |
15th | 1.2 km | 55 | 63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, J.; Wang, Z.; Yin, H. An Adaptive Spatial Resolution Method Based on the ST-ResNet Model for Hourly Property Crime Prediction. ISPRS Int. J. Geo-Inf. 2021, 10, 314. https://doi.org/10.3390/ijgi10050314
Zhang H, Zhang J, Wang Z, Yin H. An Adaptive Spatial Resolution Method Based on the ST-ResNet Model for Hourly Property Crime Prediction. ISPRS International Journal of Geo-Information. 2021; 10(5):314. https://doi.org/10.3390/ijgi10050314
Chicago/Turabian StyleZhang, Hong, Jie Zhang, Zengli Wang, and Hao Yin. 2021. "An Adaptive Spatial Resolution Method Based on the ST-ResNet Model for Hourly Property Crime Prediction" ISPRS International Journal of Geo-Information 10, no. 5: 314. https://doi.org/10.3390/ijgi10050314
APA StyleZhang, H., Zhang, J., Wang, Z., & Yin, H. (2021). An Adaptive Spatial Resolution Method Based on the ST-ResNet Model for Hourly Property Crime Prediction. ISPRS International Journal of Geo-Information, 10(5), 314. https://doi.org/10.3390/ijgi10050314