Exploring the Connection between Urban 3D Form and Building Energy Performance and the Influencing Mechanism
Abstract
:1. Introduction
2. Methods
2.1. BECCE Calculation and Data Collection
2.1.1. BECCE Calculation
2.1.2. Socioeconomic Condition, Building Features, and Macroclimate Data
2.1.3. Buildings Footprint Data
2.2. Calculating BECCE-f
2.2.1. Basic Principle
2.2.2. PLSR
2.3. 2D and 3D Compactness
2.4. Gray Relationship Analysis
3. Results and Discussion
3.1. BECCE of PBOC Buildings
3.2. Description of Nontarget Factors
3.3. PLSR Models and BECCE-f
3.4. Urban 2D and 3D Compactness
3.4.1. Compactness Characteristics
3.4.2. NCI and NVCI of the 5 Zones
3.5. Connection between BECCE-f and Urban Compactness
4. Impact Mechanism of 3D Compactness on BECCE-f
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BECCE | building energy consumption CO2 emission |
3D | three-dimensional |
2D | two-dimensional |
BECCE-f | BECCE driven by urban form |
PBOC | People’s Bank of China |
NCI | normalized compactness index |
NVCI | normalized vertical compactness index |
EE | education expenditure |
PW | per-capita wage |
FA | floor area |
EU | energy users |
CDD | cooling degree day |
HDD | heating degree day |
HSWW | hot summer/warm winter zone |
HSCW | hot summer/cold winter zone |
ML | mild zone |
CL | cold zone |
SC | severe cold zone |
PLSR | Partial least square regression |
GCD | gray correlation degree |
References
- Ye, H.; Wang, K.; Zhao, X.; Chen, F.; Li, X.; Pan, L. Relationship between construction characteristics and carbon emissions from urban household operational energy usage. Energy Build. 2011, 43, 147–152. [Google Scholar] [CrossRef]
- China Association of Building Energy Efficiency. Research Report on Building Energy Consumption in China; China Association of Building Energy Efficiency: Xiamen, China, 2020. [Google Scholar]
- Tsinghua University. Annual Report on Chinese Building Energy Efficiency; China Architecture & Building Press: Beijing, China, 2020. [Google Scholar]
- Ye, H.; Ren, Q.; Hu, X.; Lin, T.; Xu, L.; Xu, L.; Li, X.; Zhang, G.; Shi, L.; Pan, B. Low-carbon behavior approaches for reducing direct carbon emissions: Household energy use in a coastal city. J. Clean. Prod. 2017, 141, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Huo, T.; Cao, R.; Du, H.; Zhang, J.; Cai, W.; Liu, B. Nonlinear influence of urbanization on China’s urban residential building carbon emissions: New evidence from panel threshold model. Sci. Total Environ. 2021, 772, 145058. [Google Scholar] [CrossRef]
- Liu, P.; Lin, B.; Zhou, H.; Wu, X.; Little, J. CO2 emissions from urban buildings at the city scale: System dynamic projections and potential mitigation policies. Appl. Energy 2020, 277, 115546. [Google Scholar] [CrossRef]
- Shareef, S. The impact of urban morphology and building’s height diversity on energy consumption at urban scale. The case study of Dubai. Build. Environ. 2021, 194, 107675. [Google Scholar] [CrossRef]
- Lau, S.; Yang, F.; Tai, J.; Wu, X.; Wang, J. The Study of Summer-time Heat Island, Built Form and Fabric in a Densely Built Urban Environment- Compact Chinese cities: Hong Kong, Guangzhou. Int. J. Sustain. Dev. 2011, 14, 30–48. [Google Scholar] [CrossRef]
- Peng, L.; Jiang, Z.; Yang, X.; He, Y.; Xu, T.; Chen, S. Cooling effects of block-scale facade greening and their relationship with urban form. Build. Environ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- Shahrestani, M.; Yao, R.; Luo, Z.; Turkbeyler, E.; Davies, H. A field study of urban microclimates in London. Renew. Energy 2015, 73, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Sobstyl, J.M.; Emig, T.; Qomi, M.J.A.; Ulm, F.J.; Pellenq, J.M. Role of city texture in urban heat islands at nighttime. Phys. Rev. Lett. 2018, 120, 108701. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Hu, X.; Ren, Q.; Lin, T.; Li, X.; Zhang, G.; Shi, L. Effect of urban micro-climatic regulation ability on public building energy usage carbon emission. Energy Build. 2017, 154, 553–559. [Google Scholar] [CrossRef]
- Ye, H.; Yan, H.; Hu, X.; Wang, D. Urban form optimization for low carbon building construction. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Shi, Y.; Ren, C.; Zheng, Y.; Ng, E. Mapping the urban microclimatic spatial distribution in a sub-tropical high-density urban environment. Archit. Sci. Rev. 2015, 59, 370–384. [Google Scholar] [CrossRef]
- Allen-Dumas, M.; Rose, A.; New, J.; Omitaomu, O.; Yuan, J.; Branstetter, M.; Sylvester, L.; Seals, M.; Carvalhaes, T.; Adams, M.; et al. Impacts of the morphology of new neighborhoods on microclimate and building energy. Renew. Sustain. Energy Rev. 2020, 133, 110030. [Google Scholar] [CrossRef]
- Bat, A.; Romani, Z.; Bozonnet, E.; Draoui, A. Thermal impact of street canyon microclimate on building energy needs using TRNSYS: A case study of the city of tangier in morocco. Case Stud. Therm. Eng. 2021, 24, 100834. [Google Scholar] [CrossRef]
- Cardinali, M.; Pisello, A.L.; Piselli, C.; Pigliautile, I.; Cotana, F. Microclimate mitigation for enhancing energy and environmental performance of near zero energy settlements in Italy. Sustain. Cities Soc. 2020, 53, 101964. [Google Scholar] [CrossRef]
- Couch, C.; Dennemann, A. Urban regeneration and sustainable development in Britain. Cities 2000, 17, 137–147. [Google Scholar] [CrossRef]
- Marker, B. Foundations of the sustainable compact city. Glob. Built Environ. Rev. 2005, 4, 19–23. [Google Scholar]
- Angel, S.; Franco, S.; Liu, Y.; Blei, A. The shape compactness of urban footprints. Prog. Plan. 2020, 139, 100429. [Google Scholar] [CrossRef]
- Kaza, N. Urban form and transportation energy consumption. Energy Policy 2020, 136, 111049. [Google Scholar] [CrossRef]
- Lee, J.; Lim, S. The selection of compact city policy instruments and their effects on energy consumption and greenhouse gas emissions in the transportation sector: The case of south Korea. Sustain. Cities Soc. 2018, 37, 116–124. [Google Scholar] [CrossRef]
- Matsuhashi, K.; Ariga, T. Estimation of passenger car CO2 emissions with urban population density scenarios for low carbon transportation in japan. IATSS Res. 2016, 39, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.; Li, C. Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies. Renew. Sustain. Energy Rev. 2021, 139, 110662. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on U.S. residential energy use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Liu, X.; Sweeney, J. Modelling the impact of urban form on household energy demand and related co_2 emissions in the greater Dublin region. Energy Policy 2012, 46, 359–369. [Google Scholar] [CrossRef]
- Trepci, E.; Maghelal, P.; Azar., E. Effect of densification and compactness on urban building energy consumption: Case of a Transit-Oriented Development in Dallas, TX. Sustain. Cities Soc. 2020, 56, 101987. [Google Scholar] [CrossRef]
- Ye, H.; He, X.Y.; Song, Y.; Li, X.; Zhang, G.; Lin, T.; Xiao, L. A sustainable urban form: The challenges of compactness from the viewpoint of energy consumption and carbon emission. Energy Build. 2015, 93, 90–98. [Google Scholar] [CrossRef]
- Ahmadian, E.; Sodagar, B.; Bingham, C.; Elnokaly, A.; Mills, G. Effect of urban built form and density on building energy performance in temperate climates. Energy Build. 2021, 236, 110762. [Google Scholar] [CrossRef]
- Mangan, S.; Oral, G.; Kocagil, I.; Sozen, I. The impact of urban form on building energy and cost efficiency in temperate-humid zones. J. Build. Eng. 2020, 33, 101626. [Google Scholar] [CrossRef]
- Oh, M.; Jang, K.M.; Kim, Y. Empirical analysis of building energy consumption and urban form in a large city: A case of Seoul, South Korea. Energy Build. 2021, 245, 111046. [Google Scholar] [CrossRef]
- Ye, H.; Ren, Q.; Shi, L.; Song, J.; Hu, X.; Li, X.; Zhang, G.; Lin, T.; Xue, X. The role of climate, construction quality, microclimate, and socio-economic conditions on carbon emissions from office buildings in china. J. Clean. Prod. 2018, 171 Pt 2, 911–916. [Google Scholar] [CrossRef]
- Ye, H.; Ren, Q.; Hu, X.; Lin, T.; Li, S.; Zhang, G.; Li, X. Modeling energy-related CO2 emissions from office buildings using general regression neural network. Resour. Conserv. Recycl. 2018, 129, 168–174. [Google Scholar] [CrossRef]
- Ye, H.; Qiu, Q.; Zhang, G.; Lin, T.; Li, X. Effects of natural environment on urban household energy usage carbon emissions. Energy Build. 2013, 65, 113–118. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, R.; Glaeser, E.L.; Kahn, M.E. The greenness of china: Household carbon dioxide emissions and urban development. J. Econ. Geogr. 2010, 11, 761–792. [Google Scholar] [CrossRef] [Green Version]
- Hu, X. The Effects of Urban Compact Form on the Carbon Emissions from Residential Building Energy Consumption. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Liu, Z.; Wang, S.; Liu, J.; Liu, F.; Fu, X. Analysis of factors affecting CO2 emissions by civil buildings in china’s urban areas. Int. J. Energy Sci. 2015, 3, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Xue, Y.; Zhai, Z. Methods to Compare the Effects of Human Behavior Patterns in Different Climate Zones on Energy Consumption in Residential Buildings. Build. Energy Environ. 2020, 225, 4–10+15. (In Chinese) [Google Scholar]
- Yang, X.; Zhao, L. Impacts of Urban Microclimate on Building Energy Performance: A Review of Research Methods. Build. Sci. 2015, 31, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Technol. 2015, 8, 31–40. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Li, G.; Ning, Y. Forecasting the transport energy demand based on PLSR method in China. Energy 2009, 34, 1396–1400. [Google Scholar] [CrossRef]
- Thinh, N.X.; Arlt, G.; Heber, B.; Hennersdorf, J.; Lehmann, I. Evaluation of urban land-use structures with a view to sustainable development. Environ. Impact Assess. Rev. 2002, 22, 475–492. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Shi, L.; Tang, L. Study on the compactness assessment model of urban spatial form. Acta Ecol. Sin. 2011, 21, 37–42. (In Chinese) [Google Scholar]
- Hu, X.; Yan, H.; Wang, D.; Zhao, Z.; Zhang, G.; Lin, T.; Ye, H. A Promotional Construction Approach for an Urban Three-Dimensional Compactness Model—Law-of-Gravitation-Based. Sustainability 2020, 12, 6777. [Google Scholar] [CrossRef]
- Ye, H.; Hu, X.; Yan, H.; Zhang, G. A Kind of Standardized Urban Spatial Shape Compactedness Measurement Method and System. CN109977600A, 5 July 2019. (In Chinese). [Google Scholar]
- Tan, X.; Deng, J. Grey relational analysis: A new method of multi factor statistical analysis. Stat. Res. 1995, 12, 46–48. (In Chinese) [Google Scholar]
- Duan, H.; Chen, S.; Liu, Y.; Zhang, S.; Wang, X.; Wang, S.; Song, J. Characteristics of regional energy consumption of China’s construction industry from the perspective of life cycle. China Popul. Resour. Environ. 2020, 30, 57–65. (In Chinese) [Google Scholar]
- Li, H.; Qiu, P.; Wu, T. The regional disparity of per-capita CO2 emissions in China’s building sector: An analysis of macroeconomic drivers and policy implications. Energy Build. 2021, 244, 111011. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Li, L. Temporal and spatial changes of building energy consumption in China’s province and analysis of its influencing factors. Math. Pract. Theory 2020, 50, 76–87. (In Chinese) [Google Scholar]
- Stevens, V.; Kotol, M.; Grunau, B.; Craven, C. The effect of thermal mass on annual heat load and thermal comfort in cold climate construction. J. Cold Reg. Eng. 2016, 30, 04015002. [Google Scholar] [CrossRef]
- Du, K.; Yu, Y.; Wei, C. Climatic impact on china’s residential electricity consumption: Does the income level matter? China Econ. Rev. 2020, 63, 101520. [Google Scholar] [CrossRef]
- Namazkhan, M.; Albers, C.; Steg, L. A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors and household behavior. Renew. Sustain. Energy Rev. 2019, 119, 109542. [Google Scholar] [CrossRef]
- Zhou, S.; Teng, F. Estimation of urban residential electricity demand in china using household survey data. Energy Policy 2013, 61, 394–402. [Google Scholar] [CrossRef]
- Tang, Y.; Song, Y.; Xie, J. Urban compactness changes in China from 2000 to 2010. Ecol. Sci. 2016, 3, 134–139. (In Chinese) [Google Scholar] [CrossRef]
- Jia, Y.; Tang, L.; Gui, L. Study on the formulation and application of the urban spatial form dispersion index (NDIS). Acta Ecol. Sin. 2018, 38, 7269–7275. (In Chinese) [Google Scholar]
- Wang, F.; Wen, A. A study of correlationship between the three-dimensional urban and urban thermal environment—A case study on JinPu district. Territ. Nat. Resour. Study 2016, 4, 70–72. (In Chinese) [Google Scholar]
- Kondo, A.; Ueno, M.; Kaga, A.; Yamaguchi, K. The influence of urban canopy configuration on urban albedo. Bound. Layer Meteorol. 2001, 100, 225–242. [Google Scholar] [CrossRef]
- Aida, M. Urban albedo as a function of the urban structure—A model experiment. Bound. Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Ignatius, M.; Hien, W.N.; Jusuf, S.K. Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustain. Cities Soc. 2015, 19, 121–135. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S.Y. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Peng, F.; Wong, M.; Ho, H.; Nichol, J.; Chan, P. Reconstruction of historical datasets for analyzing spatiotemporal influence of built environment on urban microclimates across a compact city. Build. Environ. 2017, 123, 649–660. [Google Scholar] [CrossRef]
- Stromann-Andersen, J.; Sattrup, P.A. The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy Build. 2011, 43, 2011–2020. [Google Scholar] [CrossRef]
- Shang, C. Simulating the Impact of Urban Morphology on Energy Demand—A Case Study of Yuehai Eco-city, Yinchuan. Archit. Cult. 2018, 12, 166–168. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Haaland, C.; Bosch, C.K.V.D. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Cheng, V.; Steemers, K.; Montavon, M.; Compagnon, R. Urban Form, Density and Solar Potential. In Proceedings of the PLEA2006—The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006. [Google Scholar]
- Li, C.; Song, Y.; Kaza, N.; Burghardt, R. Explaining spatial variations in residential energy usage intensity in Chicago: The role of urban form and geomorphometry. J. Plan. Educ. Res. 2019. [Google Scholar] [CrossRef]
- Martins, T.; Adolphe, L.; Bonhomme, M. Building energy demand based on urban morphology analysis. Appl. Mech. Mater. 2007, 10–12, 737–741. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Chen, Y. Evaluation of spatially heterogeneous driving forces of the urban heat environment based on a regression tree model. Sustain. Cities Soc. 2020, 54, 101960. [Google Scholar] [CrossRef]
- Jonghoon, P.; Jun-Hyun, K.; Bruce, D.; Kun, L.D. The role of green roofs on microclimate mitigation effect to local climates in summer. Int. J. Environ. Res. 2018, 12, 671–679. [Google Scholar] [CrossRef]
- Sun, C.; Lin, T.; Zhao, Q.; Li, X.; Ye, H.; Zhang, G.; Liu, X.; Zhao, Y. Spatial pattern of urban green spaces in a long-term compact urbanization process—A case study in China. Ecol. Indic. 2017, 96, 111–119. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
Zones | PLSR Model | Adjusted-R2 |
---|---|---|
SC | BECCE = −0.44 + 0.12EE − 0.47PW + 0.58FA + 0.40EU − 0.02CDD + 0.41HDD | 0.59 |
CL | BECCE = −13.18 + 0.11EE + 0.70PW + 0.47FA + 0.46EU − 0.10CDD + 0.56HDD | 0.64 |
ML | BECCE = −9.01 + 0.07EE + 0.66PW + 0.47FA + 0.19EU − 0.13CDD + 0.20HDD | 0.40 |
HSCW | BECCE = −15.31 + 0.05EE + 0.78PW + 0.44FA + 0.54EU + 0.18CDD + 0.61HDD | 0.73 |
HSWW | BECCE = −15.15 + 0.12EE + 1.25PW + 0.34FA + 0.50EU + 0.08CDD − 0.04HDD | 0.77 |
Zones | SC | CL | ML | HSCW | HSWW |
---|---|---|---|---|---|
BECCE-f (tCO2) | 765.1485 | 670.2507 | 240.5659 | 504.9595 | 355.4024 |
Zone | NCI | NVCI | BECCE-f |
---|---|---|---|
SC | 0.3900 | 0.2370 | 765.1485 |
CL | 0.3656 | 0.1624 | 670.2507 |
ML | 0.4009 | 0.1367 | 240.5659 |
HSCW | 0.3773 | 0.1616 | 504.9595 |
HSWW | 0.3891 | 0.2096 | 355.4024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, G.; Lin, T.; Hu, X.; Zhao, Z.; Shi, L. Exploring the Connection between Urban 3D Form and Building Energy Performance and the Influencing Mechanism. ISPRS Int. J. Geo-Inf. 2021, 10, 709. https://doi.org/10.3390/ijgi10100709
Wang D, Zhang G, Lin T, Hu X, Zhao Z, Shi L. Exploring the Connection between Urban 3D Form and Building Energy Performance and the Influencing Mechanism. ISPRS International Journal of Geo-Information. 2021; 10(10):709. https://doi.org/10.3390/ijgi10100709
Chicago/Turabian StyleWang, Deng, Guoqin Zhang, Tao Lin, Xinyue Hu, Zhuoqun Zhao, and Longyu Shi. 2021. "Exploring the Connection between Urban 3D Form and Building Energy Performance and the Influencing Mechanism" ISPRS International Journal of Geo-Information 10, no. 10: 709. https://doi.org/10.3390/ijgi10100709
APA StyleWang, D., Zhang, G., Lin, T., Hu, X., Zhao, Z., & Shi, L. (2021). Exploring the Connection between Urban 3D Form and Building Energy Performance and the Influencing Mechanism. ISPRS International Journal of Geo-Information, 10(10), 709. https://doi.org/10.3390/ijgi10100709