Influence of Relief Degree of Land Surface on Street Network Complexity in China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of Study Area
2.2. Data
3. Methodology
3.1. RDLS
3.2. Street Network Complexity Metrics
3.2.1. Grain and Connectedness
3.2.2. Circuity
3.2.3. Street Network Orientation Entropy
4. Results
4.1. Spatial Distribution Characteristics of RDLS
4.2. Graduation Statistics of RDLS
4.3. Correlation Analysis of RDLS and Street Network Complexity
- (1)
- RDLS exhibits the strongest correlation with street network circuity, with a correlation coefficient of 0.612. This result illustrates that, when RDLS is greater, the urban street network is more circuitous, and the additional travel costs for urban citizens are higher.
- (2)
- The correlation between RDLS and average street length is 0.493, indicating that, the flatter the topography, the shorter the average street network length. The average street length is largely determined by the proportions of dead ends, three-way intersections, and four-way intersections. The correlation between RDLS and dead-end proportion is 0.444, demonstrating that more dead-end nodes exist in places with greater topographic relief. This finding is probably caused by topographic relief affecting the extension and construction of roads and leading to dead-end nodes. Three-way intersection proportion exhibits an insignificant correlation with RDLS. By contrast, four-way-intersection proportion demonstrates a larger and negative correlation with RDLS (−0.499). Increasing one branch from three-way intersection to four-way intersection enhances the effect of topography; that is, regions with large RDLS are unsuitable for the construction of four-way intersections.
- (3)
- The correlation between RDLS and street network orientation entropy is 0.331, exhibiting a certain correlation. That is, when RDLS is greater, the street network is more predisposed to being distributed in different directions.
5. Discussion
6. Conclusions
- (1)
- On the basis of the spatial distribution characteristics of topographic relief at the municipal level in China, we determined that the spatial distribution of topographic relief was non-uniform, and the east–west direction exhibited a pattern of “high in the west and low in the east”. This finding is generally consistent with the three steps of China’s terrain. It is also similar to the results obtained by Feng et al. [36,45].
- (2)
- The dividing lines of the three terrain steps were used as the boundary for classifying the metrics of municipal street networks in China. The street network complexity presented the following order: first step > second step > third step. This result indicated that, the more undulating the topography, the higher the complexity of a street network.
- (3)
- RDLS was significantly correlated with street network complexity metrics, including street network orientation entropy, average street length, average circuity, average streets per node, dead-end proportion, and four-way intersection proportion. Among these metrics, RDLS was positively correlated with street network orientation entropy, average street length, average circuity, and the dead-end proportion. Meanwhile, it was negatively correlated with average streets per node and the four-way intersection proportion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Beijing | 3.26 | 329 | 1.09 | 2.97 | 0.14 | 0.61 | 0.23 | 355 | 3.4 |
Tianjin | 3.49 | 371 | 1.05 | 3 | 0.16 | 0.52 | 0.31 | 19 | 0.25 |
Shijiazhuang | 2.75 | 328 | 1.06 | 2.93 | 0.17 | 0.56 | 0.27 | 270 | 2.56 |
Cangzhou | 3.1 | 320 | 1.04 | 2.87 | 0.16 | 0.64 | 0.2 | 10 | 0.1 |
Hengshui | 2.98 | 370 | 1.04 | 2.86 | 0.16 | 0.67 | 0.17 | 22 | 0.16 |
Handan | 2.86 | 396 | 1.04 | 2.88 | 0.16 | 0.65 | 0.19 | 239 | 1.73 |
Xingtai | 2.82 | 367 | 1.05 | 2.93 | 0.15 | 0.61 | 0.23 | 168 | 1.47 |
Baoding | 3.02 | 543 | 1.07 | 2.92 | 0.15 | 0.61 | 0.23 | 341 | 2.59 |
Zhangjiakou | 3.46 | 767 | 1.11 | 2.74 | 0.21 | 0.62 | 0.16 | 1254 | 4.34 |
Chengde | 3.57 | 1027 | 1.15 | 2.5 | 0.28 | 0.64 | 0.07 | 936 | 4.72 |
Tangshan | 3.31 | 636 | 1.06 | 2.8 | 0.21 | 0.56 | 0.22 | 57 | 0.46 |
Qinhuangdao | 3.47 | 627 | 1.1 | 2.85 | 0.18 | 0.6 | 0.21 | 214 | 2.03 |
Langfang | 3.12 | 459 | 1.04 | 2.9 | 0.19 | 0.54 | 0.27 | 11 | 0.41 |
Shenyang | 3.52 | 576 | 1.06 | 3.1 | 0.11 | 0.58 | 0.29 | 56 | 0.54 |
Huludao | 3.55 | 908 | 1.12 | 2.94 | 0.16 | 0.58 | 0.25 | 235 | 1.82 |
Chaoyang | 3.56 | 1839 | 1.11 | 2.92 | 0.16 | 0.60 | 0.23 | 462 | 2.09 |
Fuxin | 3.52 | 1418 | 1.10 | 2.91 | 0.15 | 0.63 | 0.21 | 200 | 0.98 |
Jinzhou | 3.36 | 1195 | 1.09 | 2.98 | 0.14 | 0.58 | 0.26 | 81 | 0.87 |
Panjin | 3.41 | 983 | 1.06 | 3.16 | 0.12 | 0.48 | 0.38 | 9 | 0.02 |
Fushun | 3.46 | 1117 | 1.15 | 2.86 | 0.16 | 0.66 | 0.17 | 409 | 2.85 |
Yingkou | 3.42 | 879 | 1.08 | 3.03 | 0.15 | 0.51 | 0.33 | 167 | 1.33 |
Dalian | 3.55 | 602 | 1.11 | 2.95 | 0.14 | 0.64 | 0.21 | 79 | 0.97 |
Dandong | 3.56 | 1353 | 1.19 | 2.78 | 0.20 | 0.63 | 0.17 | 255 | 2.14 |
Benxi | 3.56 | 1063 | 1.23 | 2.97 | 0.13 | 0.64 | 0.22 | 469 | 2.72 |
Liaoyang | 3.48 | 892 | 1.10 | 2.87 | 0.19 | 0.57 | 0.24 | 154 | 1.44 |
Anshan | 3.46 | 1043 | 1.11 | 2.97 | 0.16 | 0.56 | 0.28 | 166 | 1.30 |
Tieling | 3.55 | 984 | 1.10 | 2.73 | 0.22 | 0.60 | 0.17 | 182 | 1.17 |
Changchun | 3.49 | 465 | 1.06 | 2.99 | 0.15 | 0.56 | 0.28 | 197 | 0.75 |
Jilin | 3.49 | 322 | 1.09 | 2.46 | 0.33 | 0.55 | 0.12 | 383 | 2.12 |
Baishan | 3.56 | 1369 | 1.27 | 2.68 | 0.24 | 0.59 | 0.16 | 831 | 4.21 |
Yanbian | 3.53 | 621 | 1.16 | 2.74 | 0.23 | 0.58 | 0.19 | 658 | 4.56 |
Tonghua | 3.56 | 1106 | 1.15 | 2.69 | 0.23 | 0.60 | 0.16 | 527 | 2.84 |
Liaoyuan | 3.55 | 1140 | 1.10 | 2.79 | 0.20 | 0.61 | 0.18 | 364 | 1.20 |
Siping | 3.48 | 679 | 1.06 | 2.61 | 0.27 | 0.56 | 0.16 | 192 | 0.72 |
Songyuan | 3.47 | 1104 | 1.06 | 2.82 | 0.18 | 0.65 | 0.17 | 153 | 0.38 |
Baicheng | 3.37 | 698 | 1.06 | 2.74 | 0.22 | 0.61 | 0.17 | 155 | 0.54 |
Harbin | 3.50 | 607 | 1.10 | 2.84 | 0.20 | 0.56 | 0.23 | 241 | 2.05 |
Mudanjiang | 3.53 | 454 | 1.15 | 2.75 | 0.24 | 0.55 | 0.22 | 528 | 2.75 |
Jixi | 3.54 | 382 | 1.10 | 2.68 | 0.25 | 0.58 | 0.17 | 166 | 0.97 |
Qitaihe | 3.51 | 496 | 1.08 | 3.02 | 0.13 | 0.60 | 0.25 | 270 | 1.17 |
Shuangyashan | 3.38 | 648 | 1.09 | 2.84 | 0.20 | 0.57 | 0.23 | 149 | 1.02 |
Jiamusi | 3.14 | 349 | 1.08 | 2.80 | 0.20 | 0.60 | 0.20 | 95 | 0.73 |
Suihua | 3.36 | 863 | 1.07 | 2.76 | 0.21 | 0.61 | 0.18 | 196 | 0.78 |
Yichun | 3.53 | 930 | 1.13 | 2.73 | 0.24 | 0.55 | 0.21 | 404 | 2.15 |
Hegang | 3.35 | 912 | 1.08 | 2.88 | 0.18 | 0.57 | 0.25 | 200 | 1.24 |
Daqing | 3.48 | 859 | 1.06 | 2.99 | 0.14 | 0.58 | 0.27 | 132 | 0.25 |
Qiqihar | 3.42 | 781 | 1.07 | 2.83 | 0.20 | 0.58 | 0.22 | 198 | 0.65 |
Daxinganling | 3.32 | 1420 | 1.18 | 2.87 | 0.20 | 0.53 | 0.27 | 571 | 6.20 |
Heihe | 3.39 | 764 | 1.11 | 2.80 | 0.22 | 0.55 | 0.23 | 364 | 0.96 |
Huhhot | 3.30 | 577 | 1.08 | 2.82 | 0.20 | 0.59 | 0.21 | 1369 | 3.11 |
Baotou | 3.31 | 418 | 1.06 | 2.78 | 0.21 | 0.60 | 0.19 | 1396 | 2.68 |
Bayannur | 3.40 | 906 | 1.07 | 2.75 | 0.21 | 0.63 | 0.16 | 1275 | 2.57 |
Eerduosi | 3.53 | 887 | 1.06 | 3.12 | 0.13 | 0.48 | 0.38 | 1296 | 1.94 |
Wuhai | 3.18 | 591 | 1.07 | 3.06 | 0.13 | 0.51 | 0.34 | 1319 | 2.82 |
Alxa | 3.09 | 1190 | 1.07 | 2.74 | 0.21 | 0.62 | 0.17 | 1263 | 3.83 |
Ulanqab | 3.43 | 676 | 1.08 | 2.79 | 0.19 | 0.63 | 0.18 | 1406 | 2.87 |
Xilingol | 3.44 | 1704 | 1.09 | 2.79 | 0.22 | 0.55 | 0.23 | 1104 | 1.96 |
Chifeng | 3.51 | 665 | 1.10 | 2.79 | 0.20 | 0.64 | 0.16 | 868 | 2.75 |
Tongliao | 3.23 | 604 | 1.07 | 2.84 | 0.19 | 0.58 | 0.22 | 334 | 1.25 |
Hinggan | 3.51 | 1030 | 1.09 | 2.76 | 0.23 | 0.54 | 0.22 | 589 | 2.59 |
Hulunbuir | 3.49 | 1130 | 1.12 | 2.79 | 0.21 | 0.58 | 0.21 | 697 | 2.34 |
Taiyuan | 3.32 | 434 | 1.11 | 3.01 | 0.13 | 0.60 | 0.26 | 1262 | 4.44 |
Lvliang | 3.46 | 813 | 1.14 | 2.67 | 0.25 | 0.60 | 0.15 | 1225 | 5.16 |
Jinzhong | 3.44 | 666 | 1.11 | 2.75 | 0.22 | 0.61 | 0.17 | 1176 | 4.42 |
Yangquan | 3.53 | 781 | 1.13 | 2.65 | 0.25 | 0.59 | 0.15 | 1033 | 3.75 |
Xinzhou | 3.52 | 839 | 1.14 | 2.61 | 0.26 | 0.61 | 0.13 | 1399 | 5.42 |
Shuozhou | 3.31 | 735 | 1.08 | 2.78 | 0.21 | 0.58 | 0.20 | 1350 | 3.16 |
Datong | 3.37 | 721 | 1.10 | 2.76 | 0.22 | 0.58 | 0.19 | 1302 | 3.62 |
Linfen | 3.52 | 993 | 1.17 | 2.64 | 0.25 | 0.59 | 0.15 | 992 | 4.56 |
Changzhi | 3.45 | 619 | 1.11 | 2.75 | 0.23 | 0.55 | 0.21 | 1161 | 4.43 |
Jincheng | 3.51 | 737 | 1.17 | 2.75 | 0.22 | 0.59 | 0.18 | 987 | 4.51 |
Yuncheng | 3.46 | 864 | 1.12 | 2.78 | 0.22 | 0.55 | 0.22 | 609 | 3.10 |
Zhengzhou | 3.12 | 387 | 1.05 | 3.14 | 0.12 | 0.49 | 0.38 | 236 | 1.67 |
Kaifeng | 3.02 | 458 | 1.04 | 2.91 | 0.17 | 0.59 | 0.24 | 69 | 0.14 |
Shangqiu | 3.13 | 984 | 1.03 | 3.00 | 0.17 | 0.48 | 0.33 | 48 | 0.19 |
Sanmenxia | 3.51 | 1033 | 1.18 | 2.92 | 0.18 | 0.52 | 0.28 | 881 | 3.73 |
Luoyang | 3.43 | 637 | 1.12 | 2.97 | 0.15 | 0.57 | 0.26 | 649 | 3.78 |
Jiyuan | 2.84 | 579 | 1.11 | 3.17 | 0.12 | 0.47 | 0.40 | 415 | 2.90 |
Jiaozuo | 3.02 | 307 | 1.04 | 2.90 | 0.19 | 0.53 | 0.28 | 180 | 1.52 |
Xinxiang | 3.11 | 308 | 1.04 | 2.89 | 0.18 | 0.56 | 0.26 | 155 | 1.50 |
Hebi | 2.95 | 248 | 1.05 | 2.88 | 0.20 | 0.51 | 0.28 | 154 | 1.17 |
Anyang | 3.01 | 342 | 1.06 | 2.86 | 0.17 | 0.62 | 0.20 | 218 | 1.67 |
Puyang | 3.00 | 387 | 1.03 | 2.93 | 0.15 | 0.61 | 0.23 | 50 | 0.13 |
Pingdingshan | 3.30 | 639 | 1.07 | 3.01 | 0.13 | 0.61 | 0.25 | 253 | 2.71 |
Xuchang | 3.12 | 798 | 1.05 | 3.04 | 0.16 | 0.48 | 0.35 | 129 | 1.01 |
Luohe | 2.94 | 660 | 1.04 | 3.06 | 0.15 | 0.49 | 0.35 | 63 | 0.12 |
Zhoukou | 3.05 | 938 | 1.04 | 2.91 | 0.19 | 0.50 | 0.29 | 47 | 0.23 |
Zhumadian | 3.07 | 1132 | 1.05 | 2.94 | 0.17 | 0.54 | 0.28 | 93 | 0.91 |
Xinyang | 3.38 | 935 | 1.06 | 2.81 | 0.20 | 0.57 | 0.22 | 118 | 1.53 |
Nanyang | 3.43 | 1150 | 1.09 | 2.95 | 0.18 | 0.52 | 0.29 | 307 | 2.95 |
Jinan | 3.28 | 449 | 1.09 | 3.04 | 0.13 | 0.56 | 0.29 | 162 | 1.19 |
Liaocheng | 2.98 | 620 | 1.03 | 3.08 | 0.15 | 0.47 | 0.37 | 37 | 0.23 |
Dezhou | 3.09 | 739 | 1.04 | 3.13 | 0.14 | 0.44 | 0.41 | 21 | 0.18 |
Binzhou | 2.98 | 582 | 1.03 | 3.13 | 0.16 | 0.38 | 0.46 | 16 | 0.24 |
Dongying | 2.96 | 719 | 1.03 | 3.20 | 0.12 | 0.43 | 0.43 | 11 | 0.21 |
Zibo | 3.05 | 643 | 1.06 | 3.13 | 0.13 | 0.46 | 0.39 | 218 | 1.63 |
Weifang | 2.85 | 454 | 1.04 | 3.12 | 0.15 | 0.44 | 0.41 | 108 | 0.98 |
Yantai | 3.30 | 664 | 1.06 | 3.06 | 0.15 | 0.49 | 0.35 | 105 | 0.86 |
Weihai | 3.35 | 501 | 1.06 | 3.05 | 0.14 | 0.51 | 0.33 | 62 | 0.84 |
Qingdao | 3.20 | 298 | 1.04 | 2.96 | 0.18 | 0.50 | 0.31 | 53 | 0.82 |
Rizhao | 3.24 | 636 | 1.06 | 3.13 | 0.14 | 0.46 | 0.38 | 137 | 0.84 |
Linyi | 3.14 | 455 | 1.05 | 2.94 | 0.18 | 0.53 | 0.27 | 155 | 1.38 |
Taian | 3.31 | 601 | 1.07 | 2.91 | 0.18 | 0.55 | 0.27 | 158 | 1.57 |
Jining | 3.00 | 621 | 1.04 | 3.13 | 0.14 | 0.44 | 0.41 | 63 | 0.60 |
Zaozhuang | 3.02 | 376 | 1.05 | 3.02 | 0.15 | 0.54 | 0.30 | 94 | 0.73 |
Heze | 2.98 | 782 | 1.04 | 3.01 | 0.15 | 0.54 | 0.31 | 52 | 0.20 |
Nanjing | 3.55 | 408 | 1.07 | 3.06 | 0.13 | 0.55 | 0.30 | 27 | 0.53 |
Zhenjiang | 3.48 | 419 | 1.05 | 2.96 | 0.16 | 0.57 | 0.26 | 29 | 0.40 |
Changzhou | 3.37 | 381 | 1.05 | 3.10 | 0.12 | 0.53 | 0.33 | 21 | 0.28 |
Wuxi | 3.47 | 311 | 1.05 | 3.08 | 0.13 | 0.52 | 0.33 | 21 | 0.16 |
Suzhou | 3.46 | 398 | 1.06 | 3.11 | 0.12 | 0.53 | 0.34 | 11 | 0.06 |
Nantong | 3.40 | 465 | 1.04 | 3.01 | 0.17 | 0.49 | 0.33 | 9 | 0.02 |
Taizhou | 3.41 | 385 | 1.05 | 2.74 | 0.24 | 0.53 | 0.22 | 10 | 0.02 |
Yangzhou | 3.33 | 434 | 1.04 | 2.70 | 0.26 | 0.53 | 0.21 | 9 | 0.13 |
Suqian | 3.21 | 707 | 1.04 | 3.01 | 0.17 | 0.47 | 0.35 | 10 | 0.15 |
Huaian | 3.35 | 723 | 1.04 | 3.00 | 0.17 | 0.49 | 0.33 | 12 | 0.24 |
Yancheng | 3.44 | 710 | 1.04 | 2.92 | 0.20 | 0.46 | 0.33 | 9 | 0.02 |
Lianyungang | 3.37 | 616 | 1.05 | 3.00 | 0.18 | 0.48 | 0.33 | 20 | 0.25 |
Xuzhou | 3.28 | 725 | 1.04 | 3.00 | 0.16 | 0.52 | 0.31 | 29 | 0.41 |
Hefei | 3.44 | 446 | 1.06 | 3.09 | 0.14 | 0.50 | 0.35 | 37 | 0.55 |
Huainan | 3.42 | 599 | 1.06 | 2.75 | 0.23 | 0.56 | 0.21 | 23 | 0.16 |
Luan | 3.47 | 786 | 1.11 | 2.95 | 0.17 | 0.52 | 0.30 | 212 | 2.20 |
Fuyang | 3.25 | 551 | 1.05 | 2.93 | 0.17 | 0.57 | 0.25 | 33 | 0.22 |
Bozhou | 3.03 | 785 | 1.04 | 3.01 | 0.15 | 0.54 | 0.31 | 28 | 0.14 |
Huaibei | 3.03 | 605 | 1.04 | 2.95 | 0.20 | 0.45 | 0.34 | 24 | 0.28 |
Suzhou | 3.13 | 819 | 1.04 | 3.12 | 0.14 | 0.44 | 0.40 | 27 | 0.33 |
Bengbu | 3.30 | 656 | 1.05 | 3.09 | 0.14 | 0.48 | 0.36 | 15 | 0.39 |
Chuzhou | 3.44 | 808 | 1.07 | 2.93 | 0.19 | 0.49 | 0.31 | 44 | 0.71 |
Maanshan | 3.43 | 522 | 1.09 | 2.85 | 0.19 | 0.58 | 0.22 | 22 | 0.61 |
Wuhu | 3.46 | 627 | 1.07 | 2.99 | 0.14 | 0.57 | 0.28 | 30 | 0.76 |
Tongling | 3.58 | 972 | 1.07 | 2.97 | 0.15 | 0.57 | 0.27 | 43 | 0.76 |
Anqing | 3.57 | 895 | 1.13 | 2.95 | 0.17 | 0.54 | 0.28 | 216 | 2.52 |
Chizhou | 3.52 | 1189 | 1.13 | 2.86 | 0.19 | 0.56 | 0.24 | 182 | 3.05 |
Huangshan | 3.57 | 966 | 1.27 | 2.56 | 0.28 | 0.60 | 0.12 | 381 | 3.75 |
Xuancheng | 3.53 | 963 | 1.12 | 2.84 | 0.20 | 0.54 | 0.25 | 206 | 2.21 |
Shanghai | 3.49 | 339 | 1.04 | 3.02 | 0.15 | 0.52 | 0.31 | 9 | 2.21 |
Hangzhou | 3.52 | 419 | 1.14 | 2.90 | 0.18 | 0.55 | 0.26 | 286 | 3.04 |
Huzhou | 3.46 | 600 | 1.09 | 2.98 | 0.17 | 0.52 | 0.31 | 120 | 1.53 |
Jiaxing | 3.36 | 508 | 1.05 | 3.07 | 0.15 | 0.48 | 0.36 | 9 | 0.03 |
Shaoxing | 3.53 | 555 | 1.12 | 2.89 | 0.19 | 0.54 | 0.26 | 187 | 2.52 |
Ningbo | 3.54 | 395 | 1.10 | 3.03 | 0.15 | 0.51 | 0.33 | 146 | 1.32 |
Zhoushan | 3.56 | 418 | 1.10 | 3.00 | 0.15 | 0.55 | 0.29 | 57 | 0.59 |
Taizhou | 3.54 | 565 | 1.13 | 2.93 | 0.17 | 0.56 | 0.27 | 257 | 2.32 |
Quzhou | 3.57 | 513 | 1.15 | 2.69 | 0.25 | 0.56 | 0.18 | 338 | 2.69 |
Jinhua | 3.54 | 403 | 1.11 | 2.96 | 0.17 | 0.54 | 0.28 | 300 | 2.66 |
Lishui | 3.58 | 1005 | 1.37 | 2.68 | 0.24 | 0.59 | 0.16 | 628 | 4.22 |
Wenzhou | 3.58 | 479 | 1.16 | 2.91 | 0.19 | 0.53 | 0.27 | 368 | 2.96 |
Nanchang | 3.51 | 457 | 1.09 | 2.97 | 0.14 | 0.60 | 0.24 | 34 | 0.72 |
Jiujiang | 3.53 | 831 | 1.10 | 2.89 | 0.17 | 0.58 | 0.23 | 215 | 2.80 |
Jingdezhen | 3.57 | 680 | 1.13 | 2.49 | 0.31 | 0.58 | 0.10 | 142 | 2.92 |
Shangrao | 3.58 | 665 | 1.17 | 2.47 | 0.32 | 0.57 | 0.11 | 206 | 3.45 |
Yingtan | 3.49 | 497 | 1.10 | 2.77 | 0.22 | 0.57 | 0.20 | 165 | 2.58 |
Fuzhou | 3.57 | 1070 | 1.12 | 2.78 | 0.21 | 0.60 | 0.18 | 226 | 2.97 |
Xinyu | 3.36 | 1074 | 1.10 | 2.95 | 0.17 | 0.53 | 0.29 | 122 | 1.41 |
Yichun | 3.56 | 1146 | 1.14 | 2.88 | 0.18 | 0.57 | 0.24 | 222 | 2.70 |
Pingxiang | 3.57 | 990 | 1.14 | 2.88 | 0.17 | 0.61 | 0.21 | 332 | 3.33 |
Jian | 3.54 | 1134 | 1.14 | 2.80 | 0.21 | 0.57 | 0.22 | 251 | 3.28 |
Ganzhou | 3.55 | 631 | 1.15 | 2.81 | 0.20 | 0.58 | 0.21 | 365 | 3.72 |
Fuzhou | 3.56 | 483 | 1.19 | 2.93 | 0.15 | 0.61 | 0.23 | 365 | 2.74 |
Ningde | 3.56 | 1067 | 1.38 | 2.74 | 0.21 | 0.62 | 0.16 | 575 | 3.47 |
Sanming | 3.58 | 1106 | 1.25 | 2.73 | 0.19 | 0.68 | 0.12 | 557 | 3.99 |
Putian | 3.57 | 744 | 1.16 | 2.89 | 0.18 | 0.58 | 0.24 | 348 | 2.87 |
Nanping | 3.45 | 722 | 1.24 | 2.36 | 0.09 | 0.32 | 0.06 | 500 | 4.50 |
Quanzhou | 3.56 | 380 | 1.14 | 2.56 | 0.11 | 0.37 | 0.14 | 443 | 3.37 |
Xiamen | 3.55 | 271 | 1.09 | 3.04 | 0.11 | 0.63 | 0.25 | 195 | 1.70 |
Zhangzhou | 3.57 | 419 | 1.13 | 2.77 | 0.19 | 0.65 | 0.16 | 306 | 2.67 |
Longyan | 3.57 | 1084 | 1.25 | 2.76 | 0.19 | 0.67 | 0.13 | 584 | 3.88 |
Taipei | 3.45 | 127 | 1.08 | 3.11 | 0.11 | 0.56 | 0.31 | 78 | 1.16 |
New Taipei | 3.58 | 224 | 1.20 | 2.84 | 0.19 | 0.59 | 0.21 | 384 | 4.00 |
Taoyuan | 3.57 | 187 | 1.09 | 2.84 | 0.20 | 0.57 | 0.22 | 400 | 3.03 |
Taichung | 3.51 | 163 | 1.10 | 2.93 | 0.18 | 0.55 | 0.27 | 1004 | 6.80 |
Tainan | 3.49 | 323 | 1.09 | 3.26 | 0.07 | 0.53 | 0.38 | 80 | 1.14 |
Kaohsiung | 3.54 | 146 | 1.08 | 3.07 | 0.12 | 0.56 | 0.30 | 776 | 6.71 |
Keelung | 3.55 | 149 | 1.14 | 2.84 | 0.19 | 0.57 | 0.21 | 126 | 1.32 |
Hsinchu | 3.53 | 200 | 1.16 | 2.81 | 0.21 | 0.57 | 0.21 | 792 | 7.40 |
Chiayi | 3.50 | 310 | 1.18 | 2.84 | 0.18 | 0.62 | 0.19 | 537 | 4.57 |
Miaoli County | 3.55 | 308 | 1.16 | 2.96 | 0.15 | 0.59 | 0.24 | 676 | 5.78 |
Changhua County | 3.51 | 244 | 1.05 | 2.94 | 0.17 | 0.57 | 0.25 | 35 | 0.29 |
Yunlin County | 3.50 | 290 | 1.06 | 2.94 | 0.16 | 0.60 | 0.24 | 72 | 1.05 |
Nantou County | 3.56 | 341 | 1.30 | 2.81 | 0.19 | 0.61 | 0.19 | 1250 | 8.19 |
Yilan County | 3.55 | 206 | 1.08 | 2.94 | 0.16 | 0.59 | 0.24 | 919 | 7.33 |
Taitung County | 3.57 | 255 | 1.19 | 2.81 | 0.21 | 0.58 | 0.21 | 1070 | 7.73 |
Hualien County | 3.43 | 223 | 1.12 | 2.95 | 0.16 | 0.56 | 0.27 | 1389 | 8.39 |
Pingtung County | 3.52 | 236 | 1.08 | 2.85 | 0.18 | 0.60 | 0.21 | 387 | 3.92 |
Kinmen County | 3.48 | 218 | 1.07 | 2.77 | 0.19 | 0.65 | 0.15 | 21 | 0.13 |
Lianjiang County | 3.49 | ||||||||
Penghu County | 3.49 | ||||||||
Guangzhou | 3.54 | 264 | 1.09 | 2.93 | 0.14 | 0.66 | 0.19 | 113 | 1.55 |
Dongguan | 3.58 | 291 | 1.06 | 2.99 | 0.14 | 0.60 | 0.25 | 42 | 0.65 |
Shenzhen | 3.53 | 209 | 1.08 | 3.00 | 0.12 | 0.64 | 0.23 | 79 | 1.13 |
Huizhou | 3.56 | 579 | 1.13 | 2.79 | 0.19 | 0.62 | 0.17 | 165 | 1.87 |
Shanwei | 3.56 | 548 | 1.10 | 2.71 | 0.23 | 0.59 | 0.17 | 145 | 1.61 |
Shantou | 3.57 | 378 | 1.08 | 2.85 | 0.18 | 0.60 | 0.21 | 49 | 0.48 |
Jieyang | 3.54 | 626 | 1.09 | 2.82 | 0.21 | 0.56 | 0.23 | 157 | 1.64 |
Chaozhou | 3.58 | 340 | 1.12 | 2.70 | 0.22 | 0.64 | 0.14 | 220 | 2.33 |
Meizhou | 3.58 | 1074 | 1.19 | 2.80 | 0.18 | 0.67 | 0.15 | 299 | 3.01 |
Heyuan | 3.57 | 1167 | 1.21 | 2.71 | 0.21 | 0.65 | 0.13 | 294 | 2.72 |
Shaoguan | 3.58 | 1076 | 1.21 | 2.73 | 0.20 | 0.66 | 0.13 | 416 | 3.69 |
Qingyuan | 3.55 | 575 | 1.16 | 2.85 | 0.19 | 0.60 | 0.21 | 348 | 3.30 |
Foshan | 3.52 | 240 | 1.07 | 2.92 | 0.14 | 0.66 | 0.19 | 31 | 0.58 |
Zhaoqing | 3.57 | 652 | 1.16 | 2.81 | 0.19 | 0.61 | 0.19 | 223 | 3.20 |
Zhongshan | 3.55 | 216 | 1.07 | 2.91 | 0.14 | 0.66 | 0.19 | 27 | 0.40 |
Zhuhai | 3.52 | 273 | 1.09 | 3.01 | 0.11 | 0.65 | 0.23 | 38 | 0.54 |
Jiangmen | 3.57 | 364 | 1.11 | 2.86 | 0.16 | 0.64 | 0.18 | 89 | 1.56 |
Yunfu | 3.57 | 635 | 1.17 | 2.91 | 0.16 | 0.62 | 0.22 | 215 | 2.52 |
Yangjiang | 3.54 | 544 | 1.10 | 2.91 | 0.17 | 0.58 | 0.25 | 157 | 2.06 |
Maoming | 3.53 | 707 | 1.13 | 2.79 | 0.17 | 0.69 | 0.13 | 194 | 2.66 |
Zhenjiang | 3.55 | 682 | 1.11 | 2.90 | 0.15 | 0.67 | 0.18 | 37 | 0.37 |
Haikou | 3.54 | 361 | 1.09 | 2.82 | 0.19 | 0.61 | 0.19 | 46 | 0.18 |
Wenchang | 3.54 | 677 | 1.11 | 2.50 | 0.32 | 0.54 | 0.14 | 33 | 0.33 |
Qionghai | 3.55 | 738 | 1.15 | 2.74 | 0.21 | 0.64 | 0.14 | 84 | 1.50 |
Wanning | 3.52 | 712 | 1.11 | 2.82 | 0.19 | 0.61 | 0.19 | 112 | 1.19 |
Lingshui County | 3.56 | 456 | 1.12 | 2.75 | 0.21 | 0.59 | 0.18 | 69 | 0.78 |
Sanya | 3.55 | 369 | 1.12 | 2.81 | 0.19 | 0.63 | 0.17 | 154 | 1.41 |
Dongfang City | 3.50 | 877 | 1.14 | 2.62 | 0.26 | 0.58 | 0.15 | 202 | 1.83 |
Changjiang County | 3.48 | 743 | 1.13 | 2.83 | 0.17 | 0.66 | 0.17 | 276 | 2.57 |
Ledong County | 3.56 | 850 | 1.13 | 2.60 | 0.28 | 0.56 | 0.16 | 211 | 1.70 |
Danzhou | 3.55 | 673 | 1.10 | 2.67 | 0.26 | 0.56 | 0.18 | 113 | 1.27 |
Lingao County | 3.56 | 884 | 1.08 | 2.59 | 0.28 | 0.56 | 0.15 | 77 | 0.41 |
Chengmai County | 3.55 | 645 | 1.13 | 2.63 | 0.25 | 0.60 | 0.14 | 86 | 0.64 |
Tunchang County | 3.50 | 608 | 1.16 | 2.68 | 0.23 | 0.61 | 0.15 | 183 | 1.20 |
Baisha County | 3.51 | 1292 | 1.32 | 2.51 | 0.31 | 0.58 | 0.11 | 492 | 3.67 |
Qiongzhong County | 3.56 | 1156 | 1.27 | 2.40 | 0.33 | 0.61 | 0.06 | 442 | 3.54 |
Dingan County | 3.56 | 789 | 1.14 | 2.59 | 0.25 | 0.63 | 0.63 | 95 | 0.53 |
Baoting County | 3.54 | 1034 | 1.22 | 2.47 | 0.3 | 0.63 | 0.07 | 316 | 2.46 |
Wuzhishan | 3.56 | 1357 | 1.33 | 2.47 | 0.3 | 0.64 | 0.06 | 619 | 3.7 |
Sansha | 2.53 | 255 | 1.04 | 3.02 | 0.05 | 0.83 | 0.12 | 0 | 0.00 |
Hong Kong | 3.58 | 157 | 1.13 | 2.86 | 0.14 | 0.68 | 0.16 | 121 | 1.37 |
Macau | 3.55 | 93 | 1.09 | 3.01 | 0.08 | 0.73 | 0.17 | 10 | 0.07 |
Nanning | 3.54 | 818 | 1.10 | 2.88 | 0.18 | 0.57 | 0.24 | 195 | 3.04 |
Laibin | 3.54 | 1145 | 1.16 | 2.65 | 0.23 | 0.64 | 0.12 | 282 | 3.05 |
Guigang | 3.54 | 1031 | 1.11 | 2.71 | 0.24 | 0.58 | 0.18 | 159 | 2.42 |
Liuzhou | 3.50 | 675 | 1.13 | 2.90 | 0.17 | 0.58 | 0.23 | 347 | 3.65 |
Hechi | 3.58 | 1361 | 1.30 | 2.45 | 0.31 | 0.62 | 0.07 | 549 | 3.56 |
Baise | 3.56 | 954 | 1.30 | 2.65 | 0.25 | 0.58 | 0.16 | 750 | 4.66 |
Chongzuo | 3.56 | 1319 | 1.19 | 2.60 | 0.27 | 0.60 | 0.13 | 307 | 2.53 |
Fangchenggang | 3.53 | 472 | 1.15 | 2.64 | 0.26 | 0.58 | 0.16 | 254 | 2.52 |
Qinzhou | 3.52 | 786 | 1.12 | 2.71 | 0.23 | 0.58 | 0.18 | 103 | 1.49 |
Beihai | 3.50 | 673 | 1.08 | 2.96 | 0.16 | 0.54 | 0.29 | 28 | 0.30 |
Wuzhou | 3.55 | 863 | 1.18 | 2.79 | 0.20 | 0.61 | 0.19 | 222 | 2.77 |
Yulin | 3.57 | 932 | 1.12 | 2.75 | 0.23 | 0.56 | 0.20 | 183 | 2.34 |
Hezhou | 3.55 | 1572 | 1.17 | 2.70 | 0.21 | 0.66 | 0.12 | 380 | 3.62 |
Guilin | 3.57 | 852 | 1.18 | 2.61 | 0.26 | 0.59 | 0.14 | 521 | 4.11 |
Changsha | 3.43 | 386 | 1.09 | 2.97 | 0.15 | 0.57 | 0.27 | 164 | 2.32 |
Zhuzhou | 3.57 | 692 | 1.13 | 2.65 | 0.24 | 0.61 | 0.14 | 303 | 3.47 |
Xiangtan | 3.52 | 622 | 1.10 | 2.85 | 0.20 | 0.57 | 0.23 | 116 | 1.06 |
Hengyang | 3.52 | 790 | 1.14 | 2.73 | 0.21 | 0.64 | 0.14 | 163 | 2.02 |
Binzhou | 3.56 | 930 | 1.20 | 2.62 | 0.25 | 0.62 | 0.12 | 496 | 3.89 |
Yongzhou | 3.53 | 1054 | 1.13 | 2.69 | 0.23 | 0.61 | 0.15 | 430 | 3.52 |
Shaoyang | 3.56 | 1006 | 1.18 | 2.71 | 0.24 | 0.58 | 0.18 | 557 | 3.63 |
Huaihua | 3.57 | 1345 | 1.24 | 2.60 | 0.27 | 0.58 | 0.14 | 430 | 3.74 |
Loudi | 3.54 | 889 | 1.20 | 2.64 | 0.24 | 0.61 | 0.13 | 359 | 2.88 |
Xiangxi | 3.57 | 1816 | 1.27 | 2.53 | 0.28 | 0.63 | 0.09 | 550 | 3.66 |
Zhangjiajie | 3.56 | 1383 | 1.32 | 2.61 | 0.26 | 0.60 | 0.13 | 546 | 3.95 |
Changde | 3.52 | 828 | 1.13 | 2.74 | 0.23 | 0.56 | 0.20 | 196 | 3.07 |
Yiyang | 3.51 | 611 | 1.10 | 2.77 | 0.22 | 0.57 | 0.20 | 212 | 2.94 |
Yueyang | 3.50 | 714 | 1.11 | 2.71 | 0.23 | 0.61 | 0.15 | 131 | 1.82 |
Wuhan | 3.54 | 356 | 1.07 | 2.91 | 0.16 | 0.61 | 0.21 | 37 | 0.77 |
Qianjiang | 3.39 | 762 | 1.06 | 2.78 | 0.21 | 0.56 | 0.21 | 28 | 0.19 |
Xiantao | 3.43 | 811 | 1.06 | 2.84 | 0.22 | 0.51 | 0.27 | 26 | 0.08 |
Tianmen | 3.48 | 1055 | 1.05 | 2.77 | 0.25 | 0.48 | 0.26 | 32 | 0.17 |
Shennongjia | 3.54 | 2057 | 1.65 | 2.44 | 0.31 | 0.62 | 0.07 | 1702 | 6.84 |
Enshi | 3.57 | 1764 | 1.42 | 2.63 | 0.25 | 0.63 | 0.12 | 1077 | 6.54 |
Yichang | 3.58 | 1013 | 1.28 | 2.74 | 0.22 | 0.60 | 0.17 | 675 | 4.96 |
Jinzhou | 3.50 | 984 | 1.07 | 2.79 | 0.22 | 0.55 | 0.22 | 43 | 0.73 |
Xianning | 3.57 | 1124 | 1.10 | 2.83 | 0.18 | 0.63 | 0.19 | 184 | 2.28 |
Ezhou | 3.33 | 584 | 1.09 | 2.65 | 0.27 | 0.54 | 0.18 | 32 | 0.42 |
Huangshi | 3.46 | 871 | 1.08 | 2.89 | 0.18 | 0.57 | 0.24 | 110 | 1.35 |
Huanggang | 3.58 | 927 | 1.11 | 2.84 | 0.19 | 0.58 | 0.22 | 163 | 2.45 |
Xiaogan | 3.48 | 796 | 1.08 | 2.76 | 0.22 | 0.56 | 0.20 | 73 | 0.82 |
Jingmen | 3.47 | 779 | 1.09 | 2.71 | 0.26 | 0.51 | 0.23 | 119 | 1.43 |
Suizhou | 3.55 | 1072 | 1.09 | 2.76 | 0.22 | 0.57 | 0.2 | 183 | 1.46 |
Xiangyang | 3.47 | 628 | 1.11 | 2.81 | 0.21 | 0.55 | 0.23 | 358 | 3.08 |
Shiyan | 3.57 | 1357 | 1.31 | 2.58 | 0.27 | 0.59 | 0.12 | 749 | 5.76 |
Chongqing | 3.56 | 724 | 1.28 | 2.82 | 0.19 | 0.61 | 0.19 | 723 | 5.48 |
Guiyang | 3.56 | 583 | 1.17 | 2.91 | 0.15 | 0.63 | 0.21 | 1185 | 3.29 |
Anshun | 3.58 | 961 | 1.18 | 2.79 | 0.20 | 0.59 | 0.19 | 1207 | 3.94 |
Bijie | 3.58 | 1220 | 1.28 | 2.57 | 0.26 | 0.62 | 0.10 | 1689 | 6.13 |
Liupanshui | 3.58 | 1197 | 1.35 | 2.73 | 0.20 | 0.65 | 0.14 | 1724 | 5.88 |
Zunyi | 3.58 | 888 | 1.26 | 2.70 | 0.23 | 0.61 | 0.15 | 982 | 4.63 |
Tongren | 3.57 | 1467 | 1.28 | 2.60 | 0.25 | 0.63 | 0.11 | 750 | 5.13 |
Qiandongnan | 3.58 | 1626 | 1.32 | 2.64 | 0.25 | 0.60 | 0.13 | 766 | 4.65 |
Qiannan | 3.57 | 1296 | 1.22 | 2.69 | 0.23 | 0.62 | 0.14 | 996 | 4.09 |
Qianxinan | 3.58 | 1051 | 1.30 | 2.67 | 0.23 | 0.64 | 0.12 | 1149 | 4.82 |
Kunming | 3.57 | 597 | 1.25 | 2.89 | 0.16 | 0.61 | 0.21 | 2099 | 8.43 |
Zhaotong | 3.57 | 779 | 1.43 | 2.32 | 0.21 | 0.42 | 0.05 | 1708 | 8.90 |
Qujing | 3.57 | 1024 | 1.23 | 2.73 | 0.22 | 0.59 | 0.18 | 2012 | 7.75 |
Wenshan | 3.56 | 881 | 1.32 | 2.77 | 0.21 | 0.60 | 0.19 | 1369 | 6.72 |
Honghe | 3.58 | 1194 | 1.44 | 2.61 | 0.27 | 0.60 | 0.13 | 1493 | 7.00 |
Yuxi | 3.56 | 842 | 1.35 | 2.75 | 0.22 | 0.60 | 0.18 | 1662 | 6.77 |
Xishuangbanna | 3.57 | 755 | 1.30 | 2.61 | 0.26 | 0.62 | 0.12 | 1110 | 4.82 |
Puer | 3.57 | 1336 | 1.52 | 2.54 | 0.28 | 0.61 | 0.10 | 1456 | 7.27 |
Baoshan | 3.56 | 958 | 1.38 | 2.79 | 0.21 | 0.59 | 0.20 | 1829 | 7.82 |
Lincang | 3.57 | 955 | 1.50 | 2.51 | 0.30 | 0.59 | 0.10 | 1620 | 7.62 |
Dehong | 3.57 | 513 | 1.25 | 2.67 | 0.24 | 0.60 | 0.15 | 1421 | 6.89 |
Nujiang | 3.47 | 2558 | 1.48 | 2.38 | 0.34 | 0.61 | 0.05 | 2747 | 13.15 |
Diqing | 3.56 | 1920 | 1.48 | 2.54 | 0.27 | 0.64 | 0.08 | 3448 | 11.44 |
Lijiang | 3.43 | 741 | 1.42 | 2.70 | 0.23 | 0.62 | 0.15 | 2603 | 11.21 |
Dali | 3.50 | 663 | 1.31 | 2.69 | 0.23 | 0.62 | 0.15 | 2253 | 8.74 |
Chuxiong | 3.58 | 967 | 1.49 | 2.37 | 0.13 | 0.34 | 0.07 | 1928 | 7.70 |
Chengdu | 3.57 | 372 | 1.09 | 2.99 | 0.14 | 0.58 | 0.27 | 818 | 10.08 |
Meishan | 3.51 | 560 | 1.12 | 2.82 | 0.19 | 0.60 | 0.20 | 686 | 5.26 |
Leshan | 3.57 | 919 | 1.23 | 2.75 | 0.20 | 0.64 | 0.15 | 1081 | 14.56 |
Yaan | 3.58 | 1051 | 1.29 | 2.54 | 0.28 | 0.60 | 0.11 | 2083 | 11.73 |
Liangshan | 3.58 | 972 | 1.46 | 2.25 | 0.26 | 0.40 | 0.05 | 2633 | 12.62 |
Panzhihua | 3.58 | 941 | 1.40 | 2.57 | 0.25 | 0.68 | 0.06 | 1864 | 7.87 |
Luzhou | 3.58 | 779 | 1.25 | 2.87 | 0.17 | 0.59 | 0.22 | 704 | 3.41 |
Yibin | 3.57 | 954 | 1.24 | 2.78 | 0.21 | 0.57 | 0.21 | 586 | 4.09 |
Neijiang | 3.51 | 695 | 1.15 | 3.11 | 0.11 | 0.55 | 0.33 | 406 | 1.47 |
Zigong | 3.55 | 604 | 1.13 | 2.89 | 0.16 | 0.61 | 0.21 | 371 | 1.47 |
Ziyang | 3.58 | 780 | 1.17 | 2.72 | 0.22 | 0.60 | 0.17 | 407 | 1.43 |
Suining | 3.56 | 715 | 1.16 | 2.83 | 0.19 | 0.58 | 0.22 | 359 | 1.07 |
Nanchong | 3.57 | 721 | 1.21 | 2.70 | 0.23 | 0.59 | 0.16 | 407 | 1.43 |
Guangan | 3.56 | 790 | 1.18 | 2.66 | 0.25 | 0.58 | 0.16 | 410 | 2.64 |
Dazhou | 3.57 | 723 | 1.24 | 2.51 | 0.29 | 0.61 | 0.10 | 677 | 4.53 |
Bazhong | 3.58 | 1084 | 1.39 | 2.53 | 0.28 | 0.63 | 0.09 | 795 | 4.95 |
Guangyuan | 3.56 | 1411 | 1.36 | 2.67 | 0.23 | 0.63 | 0.13 | 903 | 4.25 |
Mianyang | 3.57 | 706 | 1.19 | 2.81 | 0.21 | 0.56 | 0.22 | 1229 | 9.36 |
Ngawa | 3.57 | 1307 | 1.31 | 2.46 | 0.30 | 0.64 | 0.06 | 3632 | 13.54 |
Garze | 3.57 | 2298 | 1.37 | 2.32 | 0.36 | 0.60 | 0.04 | 4195 | 16.35 |
Deyang | 3.53 | 670 | 1.08 | 2.99 | 0.16 | 0.51 | 0.31 | 792 | 9.44 |
Lhasa | 3.48 | 847 | 1.14 | 2.69 | 0.24 | 0.56 | 0.18 | 4818 | 11.27 |
Chamdo | 3.57 | 4498 | 1.42 | 2.36 | 0.34 | 0.61 | 0.05 | 4451 | 14.60 |
Nyingchi | 3.56 | 2126 | 1.26 | 2.60 | 0.25 | 0.65 | 0.09 | 3655 | 21.27 |
Shannan | 3.54 | 2205 | 1.33 | 2.49 | 0.29 | 0.62 | 0.08 | 3648 | 17.43 |
Nagqu | 3.55 | 6882 | 1.23 | 2.45 | 0.32 | 0.60 | 0.08 | 4973 | 10.65 |
Rikaze | 3.56 | 1930 | 1.24 | 2.51 | 0.30 | 0.10 | 0.00 | 4990 | 17.71 |
Ngari | 3.58 | 2100 | 1.29 | 2.12 | 0.06 | 0.14 | 0.02 | 5038 | 12.76 |
Xining | 3.56 | 552 | 1.11 | 2.74 | 0.22 | 0.59 | 0.18 | 3101 | 7.72 |
Haidong | 3.55 | 1127 | 1.23 | 2.67 | 0.24 | 0.61 | 0.14 | 2786 | 8.06 |
Haibei | 3.54 | 1415 | 1.14 | 2.56 | 0.29 | 0.58 | 0.13 | 3667 | 7.85 |
Haixi | 3.42 | 2444 | 1.11 | 2.70 | 0.23 | 0.61 | 0.16 | 3788 | 9.44 |
Hainan | 3.57 | 1947 | 1.22 | 2.53 | 0.29 | 0.58 | 0.12 | 3526 | 8.13 |
Huangnan | 3.55 | 1725 | 1.23 | 2.45 | 0.31 | 0.61 | 0.07 | 3642 | 8.75 |
Golog | 3.56 | 3825 | 1.21 | 2.48 | 0.29 | 0.62 | 0.07 | 4334 | 9.89 |
Yushu | 3.56 | 950 | 1.24 | 2.38 | 0.13 | 0.37 | 0.07 | 4699 | 10.79 |
Lanzhou | 3.52 | 479 | 1.15 | 2.73 | 0.24 | 0.56 | 0.19 | 2081 | 5.80 |
Linxia | 3.56 | 625 | 1.21 | 2.58 | 0.26 | 0.63 | 0.10 | 2261 | 7.28 |
Gannan | 3.52 | 1232 | 1.25 | 2.62 | 0.27 | 0.57 | 0.16 | 3363 | 11.02 |
Dingxi | 3.57 | 1001 | 1.24 | 2.54 | 0.28 | 0.61 | 0.10 | 2279 | 6.77 |
Longnan | 3.58 | 1415 | 1.33 | 2.49 | 0.30 | 0.61 | 0.09 | 1783 | 8.74 |
Tianshui | 3.55 | 782 | 1.28 | 2.54 | 0.28 | 0.63 | 0.09 | 1725 | 5.83 |
Qingyang | 3.53 | 1201 | 1.23 | 2.63 | 0.25 | 0.61 | 0.13 | 1423 | 3.56 |
Pingliang | 3.56 | 932 | 1.23 | 2.65 | 0.23 | 0.65 | 0.11 | 1548 | 4.70 |
Baiyin | 3.54 | 947 | 1.19 | 2.64 | 0.25 | 0.62 | 0.13 | 1861 | 4.96 |
Wuwei | 3.52 | 1091 | 1.10 | 2.56 | 0.30 | 0.54 | 0.16 | 1912 | 6.12 |
Jinchang | 3.51 | 774 | 1.05 | 2.64 | 0.26 | 0.56 | 0.17 | 1954 | 4.64 |
Zhangye | 3.50 | 834 | 1.07 | 2.53 | 0.32 | 0.52 | 0.16 | 2649 | 9.00 |
Jiayuguan | 3.16 | 475 | 1.06 | 2.93 | 0.16 | 0.56 | 0.26 | 1874 | 4.13 |
Jiuquan | 3.39 | 1467 | 1.08 | 2.70 | 0.25 | 0.55 | 0.20 | 1947 | 6.58 |
Xian | 3.08 | 378 | 1.07 | 2.98 | 0.17 | 0.51 | 0.31 | 1041 | 6.08 |
Xianyang | 3.31 | 657 | 1.10 | 2.83 | 0.20 | 0.56 | 0.23 | 891 | 3.03 |
Baoji | 3.45 | 766 | 1.19 | 2.74 | 0.23 | 0.58 | 0.19 | 1363 | 7.08 |
Hanzhong | 3.50 | 982 | 1.23 | 2.69 | 0.23 | 0.61 | 0.15 | 1128 | 5.95 |
Ankang | 3.57 | 2027 | 1.40 | 2.50 | 0.28 | 0.64 | 0.07 | 1047 | 7.74 |
Weinan | 3.26 | 928 | 1.11 | 2.87 | 0.19 | 0.55 | 0.25 | 674 | 3.49 |
Shangluo | 3.56 | 1463 | 1.32 | 2.56 | 0.27 | 0.61 | 0.09 | 1085 | 5.72 |
Tongchuan | 3.55 | 1057 | 1.21 | 2.59 | 0.24 | 0.61 | 0.11 | 1131 | 3.17 |
Yanan | 3.57 | 1428 | 1.22 | 2.54 | 0.25 | 0.62 | 0.09 | 1251 | 3.74 |
Yulin | 3.54 | 1276 | 1.15 | 2.71 | 0.22 | 0.61 | 0.16 | 1226 | 3.01 |
Yinchuan | 3.30 | 641 | 1.04 | 3.09 | 0.13 | 0.51 | 0.35 | 1279 | 3.34 |
Shizuishan | 3.46 | 903 | 1.04 | 3.02 | 0.15 | 0.53 | 0.31 | 1278 | 3.56 |
Wuzhong | 3.46 | 557 | 1.07 | 2.84 | 0.20 | 0.56 | 0.24 | 1482 | 2.99 |
Zhongwei | 3.48 | 1108 | 1.10 | 2.73 | 0.24 | 0.55 | 0.21 | 1651 | 3.94 |
Guyuan | 3.56 | 1022 | 1.23 | 2.68 | 0.23 | 0.62 | 0.14 | 1888 | 4.51 |
Urumqi | 3.54 | 433 | 1.07 | 2.79 | 0.21 | 0.57 | 0.21 | 1570 | 6.84 |
Tulufan | 3.50 | 1348 | 1.07 | 2.72 | 0.24 | 0.55 | 0.20 | 1010 | 5.48 |
Hami | 3.53 | 1389 | 1.08 | 2.73 | 0.22 | 0.59 | 0.18 | 1196 | 5.66 |
Bayingolin | 3.44 | 1068 | 1.09 | 2.79 | 0.21 | 0.57 | 0.21 | 2198 | 9.32 |
Tiemenguan | 3.04 | 360 | 1.03 | 2.84 | 0.21 | 0.52 | 0.26 | 904 | 1.03 |
Hotan | 3.39 | 1090 | 1.06 | 2.89 | 0.21 | 0.48 | 0.31 | 2778 | 10.14 |
Kunyu | 2.48 | 342 | 1 | 3.1 | 0.17 | 0.38 | 0.45 | 1380 | 2.88 |
Kashgar | 3.52 | 945 | 1.06 | 2.82 | 0.23 | 0.48 | 0.28 | 2521 | 11.02 |
Kumul | 2.99 | 886 | 1.08 | 3 | 0.14 | 0.58 | 0.27 | 1101 | 1.34 |
Kizilsu | 3.53 | 1530 | 1.12 | 2.69 | 0.25 | 0.56 | 0.19 | 3125 | 14.03 |
Aksu | 3.54 | 1283 | 1.06 | 2.76 | 0.23 | 0.54 | 0.23 | 1519 | 6.97 |
Aral | 3.22 | 1353 | 1.05 | 2.76 | 0.23 | 0.55 | 0.21 | 1011 | 1.06 |
Ili | 3.42 | 586 | 1.09 | 2.82 | 0.22 | 0.52 | 0.25 | 2016 | 10.92 |
Kokdala | 2.71 | 305 | 1.02 | 3.16 | 0.17 | 0.33 | 0.5 | 593 | 0.69 |
Shuanghe | 3.17 | 726 | 1.06 | 2.73 | 0.19 | 0.69 | 0.12 | 369 | 0.65 |
Bortala | 3.29 | 1197 | 1.11 | 2.81 | 0.21 | 0.57 | 0.22 | 1423 | 6.22 |
Tacheng | 3.47 | 896 | 1.07 | 2.65 | 0.28 | 0.52 | 0.20 | 1092 | 5.71 |
Karamay | 3.47 | 952 | 1.05 | 2.97 | 0.17 | 0.53 | 0.30 | 295 | 0.37 |
Huyanghe | 3.21 | 942 | 1.06 | 2.79 | 0.23 | 0.52 | 0.25 | 317 | 0.38 |
Shihezi | 2.93 | 512 | 1.05 | 3.05 | 0.12 | 0.58 | 0.29 | 569 | 1.14 |
Changji | 3.3 | 685 | 1.08 | 2.97 | 0.19 | 0.47 | 0.34 | 1057 | 5.36 |
Wujiaqu | 2.91 | 1025 | 1.06 | 2.81 | 0.24 | 0.46 | 0.3 | 449 | 0.57 |
Altay | 3.49 | 1125 | 1.12 | 2.55 | 0.31 | 0.51 | 0.17 | 1175 | 4.88 |
Beitun | 3.21 | 585 | 1.05 | 2.81 | 0.23 | 0.48 | 0.28 | 544 | 0.58 |
References
- Naess, P. Urban planning and sustainable development. Eur. Plan. Stud. 2001, 9, 503–524. [Google Scholar] [CrossRef]
- Oliveira, V.; Pinho, P. Evaluation in Urban Planning: Advances and Prospects. J. Plan. Lit. 2010, 24, 343–361. [Google Scholar] [CrossRef]
- LOBsang, T.; Zhen, F.; Zhang, S. Can Urban Street Network Characteristics Indicate Economic Development Level? Evidence from Chinese Cities. ISPRS Int. J. Geo-Inf. 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Porta, S.; Romice, O.; Maxwell, J.A.; Russell, P.; Baird, D. Alterations in scale: Patterns of change in main street networks across time and space. Urban Stud. 2014, 51, 3383–3400. [Google Scholar] [CrossRef] [Green Version]
- Rui, Y.; Ban, Y.; Wang, J.; Haas, J. Exploring the patterns and evolution of self-organized urban street networks through modeling. Eur. Phys. J. B 2013, 86, 74. [Google Scholar] [CrossRef]
- Serra, M.; Gil, J.; Pinho, P. Towards an understanding of morphogenesis in metropolitan street-networks. Environ. Plan. B Urban Anal. City Sci. 2016, 44, 272–293. [Google Scholar] [CrossRef]
- Viero, D.P.; Roder, G.; Matticchio, B.; Defina, A.; Tarolli, P. Floods, landscape modifications and population dynamics in anthropogenic coastal lowlands: The Polesine (Northern Italy) case study. Sci. Total. Environ. 2019, 651, 1435–1450. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, M.; Wang, C.; Deng, K.; Jiang, L.; Xu, Y. Urban road DEM construction based on geometric and semantic characteristics. Earth Sci. Inform. 2020, 13, 1369–1382. [Google Scholar] [CrossRef]
- Pillsbury, R. Urban Street Patterns And Topography: A Pennsylvania Case Study. Prof. Geogr. 1970, 22, 21–25. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, L.; Chen, X. Classification and expression of urban topographic features for DEM construction. J. Geo-Inf. Sci. 2017, 19, 317–325. [Google Scholar]
- Osama, A.; Sayed, T. Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety. Accid. Anal. Prev. 2017, 107, 117–125. [Google Scholar] [CrossRef]
- Daniels, R.; Mulley, C. Planning public transport networks—The neglected influence of topography. J. Publ. Transp. 2012, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Szajowski, K.J.; Włodarczyk, K. A measure of the importance of roads based on topography and traffic intensity. Math. Game Theory Appl. 2021, 13, 28–58. [Google Scholar] [CrossRef]
- Zhang, K.G.; Meng, H.L.; Ba, M.T.; Sun, Y.M. Correlation Analysis of the Population and Land Use Distribution with the Relief Degree of Land Surface in Henan Province. DEStech Trans. Eng. Technol. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jin, C.; Lu, M.; Lu, Y. Assessing the suitability of regional human settlements environment from a different preferences perspective: A case study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Peng, W.; Zhou, J. Development of Land Resources in Transitional Zones Based on Ecological Security Pattern: A Case Study in China. Nat. Resour. Res. 2018, 28, 43–60. [Google Scholar] [CrossRef]
- Pachauri, A.K.; Gupta, P.V.; Chander, R. Landslide zoning in a part of the Garhwal Himalayas. Environ. Earth Sci. 1998, 36, 325–334. [Google Scholar] [CrossRef]
- Raab, G.; Egli, M.; Norton, K.; Dahms, D.; Brandová, D.; Christl, M.; Scarciglia, F. Climate and relief-induced controls on the temporal variability of denudation rates in a granitic upland. Earth Surf. Process. Landf. 2019, 44, 2570–2586. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Zhu, L.; Cui, Y.; He, S.; Ren, H. Topographical relief characteristics and its impact on population and economy: A case study of the mountainous area in western Henan, China. J. Geogr. Sci. 2019, 29, 598–612. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B. A topological pattern of urban street networks: Universality and peculiarity. Phys. A Stat. Mech. Appl. 2007, 384, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, G.; Stransky, V. Cities and highway networks in Europe. J. Transp. Geogr. 1996, 4, 107–121. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Is the Boston subway a small-world network? Phys. A Stat. Mech. Appl. 2002, 314, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Paolo, M.A.; Kiril, S.; Michael, B.; Hidalgo, C.A. Limited urban growth: London’s street network dynamics since the 18th century. PLoS ONE 2013, 8, e69469. [Google Scholar]
- Schrenk, M.; Popovich, V.V.; Zeile, P.; Elisei, P.; Meziani, R. Visibility Analysis of the Capital District in the 2030 Master Plan of Abu Dhabi. 2012. Available online: https://programm.corp.at/cdrom2012/papers2012/CORP2012_163.pdf (accessed on 13 October 2021).
- Boeing, G. OSMnx: A Python package to work with graph-theoretic OpenStreetMap street networks. J. Open Source Softw. 2017, 2, 215. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.; Gil, J.; Kropf, K.; Tomko, M.; Figueiredo, L. Street Network Studies: From Networks to Models and their Representations. Netw. Spat. Econ. 2018, 18, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.; Zhao, P.; Sohail, M.T. The morphology and circuity of walkable, bikeable, and drivable street networks in Phnom Penh, Cambodia. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 169–185. [Google Scholar] [CrossRef]
- Boeing, G. Urban spatial order: Street network orientation, configuration, and entropy. Appl. Netw. Sci. 2019, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Yen, Y.; Bailey, E.; Sohail, M.T. Analysis of Urban Drivable and Walkable Street Networks of the ASEAN Smart Cities Network. ISPRS Int. J. Geo-Inf. 2019, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 590–608. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Lin, H.; Bao, J. Spatial autoregressive analysis of nationwide street network patterns with global open data. Environ. Plan. B Urban Anal. City Sci. 2021, 1–18. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Y. Effect of terrain relief on the transport cost on road of biomass raw materials: Energy conservation study of 9 cities and counties in China. J. Environ. Manag. 2020, 274, 111212. [Google Scholar] [CrossRef]
- Reina, G.; Leanza, A.; Messina, A. On the vibration analysis of off-road vehicles: Influence of terrain deformation and irregularity. J. Vib. Control. 2018, 24, 5418–5436. [Google Scholar] [CrossRef]
- Lin, J.; Ban, Y. Comparative Analysis on Topological Structures of Urban Street Networks. ISPRS Int. J. Geo-Inf. 2017, 6, 295. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Tang, Y.; Yang, Y.; Zhang, D. Relief degree of land surface and its influence on population distribution in China. J. Geogr. Sci. 2008, 18, 237–246. [Google Scholar] [CrossRef]
- Omer, I.; Goldblatt, R. Spatial patterns of retail activity and street network structure in new and traditional Israeli cities. Urban Geogr. 2015, 37, 629–649. [Google Scholar] [CrossRef]
- Vigiak, O.; Van Loon, E.; Sterk, G.; Van Loon, E.E. Modelling spatial scales of water erosion in the West Usambara Mountains of Tanzania. Geomorphology 2006, 76, 26–42. [Google Scholar] [CrossRef]
- Ma, D.; Guo, R.; Zheng, Y.; Zhao, Z.; He, F.; Zhu, W. Understanding Chinese Urban Form: The Universal Fractal Pattern of Street Networks over 298 Cities. ISPRS Int. J. Geo-Inf. 2020, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Mohajeri, N. Effects of landscape constraints on street patterns in cities: Examples from Khorramabad, Iran. Appl. Geogr. 2012, 34, 10–20. [Google Scholar] [CrossRef]
- Mohajeri, N.; Gudmundsson, A. The Evolution and Complexity of Urban Street Networks. Geogr. Anal. 2014, 46, 345–367. [Google Scholar] [CrossRef]
- Mohajeri, N.; Gudmundsson, A. Street networks in relation to landforms: Implications for fast-growing cities. J. Geogr. Sci. 2014, 24, 363–381. [Google Scholar] [CrossRef]
- Tan, M.; Guy, M.R.; Li, X. Urban spatial development and land use in Beijing: Implications from London’s experiences. J. Geogr. Sci. 2011, 21, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, J.; Zhang, Z.; Li, C.; Wang, K. How to perceive the impacts of land supply on urban management efficiency: Evidence from China’s 315 cities. Habitat Int. 2020, 98, 102145. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, D.; Yang, Y. Relief degree of land surface in China at county level based on GIS and its correlation between population density and economic development. Jilin Univ. J. Soci. Sci. Ed. 2011, 51, 146–151. [Google Scholar]
Ho | LS | C | DS | PDE | P3W | P4W | ALT | RDLS | |
---|---|---|---|---|---|---|---|---|---|
Beijing | 3.26 | 329 | 1.09 | 2.97 | 0.14 | 0.61 | 0.23 | 355 | 3.4 |
Tianjin | 3.49 | 371 | 1.05 | 3 | 0.16 | 0.52 | 0.31 | 19 | 0.25 |
Shijiazhuang | 2.75 | 328 | 1.06 | 2.93 | 0.17 | 0.56 | 0.27 | 270 | 2.56 |
Cangzhou | 3.1 | 320 | 1.04 | 2.87 | 0.16 | 0.64 | 0.2 | 10 | 0.1 |
Hengshui | 2.98 | 370 | 1.04 | 2.86 | 0.16 | 0.67 | 0.17 | 22 | 0.16 |
Handan | 2.86 | 396 | 1.04 | 2.88 | 0.16 | 0.65 | 0.19 | 239 | 1.73 |
Xingtai | 2.82 | 367 | 1.05 | 2.93 | 0.15 | 0.61 | 0.23 | 168 | 1.47 |
Baoding | 3.02 | 543 | 1.07 | 2.92 | 0.15 | 0.61 | 0.23 | 341 | 2.59 |
Chengde | 3.57 | 1027 | 1.15 | 2.5 | 0.28 | 0.64 | 0.07 | 936 | 4.72 |
Tangshan | 3.31 | 636 | 1.06 | 2.8 | 0.21 | 0.56 | 0.22 | 57 | 0.46 |
Qinhuangdao | 3.47 | 627 | 1.1 | 2.85 | 0.18 | 0.6 | 0.21 | 214 | 2.03 |
Langfang | 3.12 | 459 | 1.04 | 2.9 | 0.19 | 0.54 | 0.27 | 11 | 0.41 |
Shenyang | 3.52 | 576 | 1.06 | 3.1 | 0.11 | 0.58 | 0.29 | 56 | 0.54 |
… | … | … | … | … | … | … | … | … | … |
Evaluation Factor | Measure | Statistical Content | First Step | Second Step | Third Step |
---|---|---|---|---|---|
topography | average altitude (m) | mean | 3925.050 | 1252.709 | 227.319 |
maximum | 5038.000 | 3125.000 | 1389.000 | ||
minimum | 2747.000 | 180.000 | 9.000 | ||
variance | 518,533.418 | 364,182.764 | 53,705.552 | ||
RDLS | mean | 12.091 | 5.125 | 1.890 | |
maximum | 21.270 | 14.560 | 8.390 | ||
minimum | 7.720 | 0.370 | 0.020 | ||
variance | 14.238 | 8.219 | 2.625 | ||
orientation entropy | street network orientation entropy (nat) | mean | 3.540 | 3.454 | 3.432 |
maximum | 3.580 | 3.580 | 3.580 | ||
minimum | 3.420 | 2.480 | 2.750 | ||
variance | 0.002 | 0.034 | 0.034 | ||
grain | average street length (m) | mean | 2194.400 | 935.425 | 673.882 |
maximum | 6882.000 | 2057.000 | 1839.000 | ||
minimum | 552.000 | 307.000 | 93.000 | ||
variance | 2,110,879.200 | 121,476.246 | 99,816.433 | ||
average circuity | average circuity | mean | 1.265 | 1.187 | 1.108 |
maximum | 1.480 | 1.650 | 1.380 | ||
minimum | 1.110 | 1.000 | 1.030 | ||
variance | 0.012 | 0.016 | 0.004 | ||
connectedness | average streets per node | mean | 2.503 | 2.738 | 2.854 |
maximum | 2.740 | 3.170 | 3.260 | ||
minimum | 2.120 | 2.250 | 2.360 | ||
variance | 0.022 | 0.027 | 0.026 |
Ho | LS | C | DS | PDE | P3W | P4W | RDLS | ||
---|---|---|---|---|---|---|---|---|---|
Ho | correlation factor | 1 | |||||||
sig | |||||||||
LS | correlation factor | 0.233 | 1 | ||||||
sig | 0.000 | ||||||||
C | correlation factor | 0.490 | 0.461 | 1 | |||||
sig | 0.000 | 0.000 | |||||||
DS | correlation factor | −0.481 | −0.504 | −0.673 | 1 | ||||
sig | 0.000 | 0.000 | 0.000 | ||||||
PDE | correlation factor | 0.363 | 0.491 | 0.504 | −0.810 | 1 | |||
sig | 0.000 | 0.000 | 0.000 | 0.000 | |||||
P3W | correlation factor | 0.295 | 0.053 | 0.220 | −0.156 | 0.187 | 1 | ||
sig | 0.000 | 0.297 | 0.000 | 0.002 | 0.000 | ||||
P4W | correlation factor | −0.527 | −0.420 | −0.660 | 0.865 | −0.622 | −0.424 | 1 | |
sig | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
RDLS | correlation factor | 0.331 | 0.493 | 0.612 | −0.549 | 0.444 | −0.012 | −0.499 | 1 |
sig | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.820 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Jiang, L.; Chao, Y.; Li, Y.; Liu, P. Influence of Relief Degree of Land Surface on Street Network Complexity in China. ISPRS Int. J. Geo-Inf. 2021, 10, 705. https://doi.org/10.3390/ijgi10100705
Yang N, Jiang L, Chao Y, Li Y, Liu P. Influence of Relief Degree of Land Surface on Street Network Complexity in China. ISPRS International Journal of Geo-Information. 2021; 10(10):705. https://doi.org/10.3390/ijgi10100705
Chicago/Turabian StyleYang, Nai, Le Jiang, Yi Chao, Yang Li, and Pengcheng Liu. 2021. "Influence of Relief Degree of Land Surface on Street Network Complexity in China" ISPRS International Journal of Geo-Information 10, no. 10: 705. https://doi.org/10.3390/ijgi10100705