Predicting the Place Visited of Floating Car: A Three-Layer Framework Using Spatiotemporal Probability
Abstract
:1. Introduction
2. Methodology
2.1. Data Preprocessing and Spatiotemporal Analysis
2.1.1. Dataset and Data Filtering
2.1.2. Temporal Characteristic Analysis
2.2. Clustering Using k-Means and Kernel Density with Hexagon
2.2.1. K-Means Cluster Analysis
2.2.2. Kernel Density Analysis
2.2.3. Divide the Study Area with Hexagons
2.3. Three-Layer Framework, Using Spatiotemporal Probability
3. Results
3.1. The Calculation Results of Tl-STPM
3.2. The Test Result of The Model
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Yue, Y.; He, B.; Nie, K.; Tu, W.; Du, Q.; Li, Q. A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data. Int. J. Geogr. Inf. Sci. 2020, 35, 1–19. [Google Scholar] [CrossRef]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11 August 2013; pp. 1–8. [Google Scholar]
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of urban movements: Polycentric activity and entangled hierarchical flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [Green Version]
- Steiger, E.; Resch, B.; Zipf, A. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. Int. J. Geogr. Inf. Sci. 2016, 30, 1694–1716. [Google Scholar] [CrossRef]
- Yang, Z.; Franz, M.L.; Zhu, S.; Mahmoudi, J.; Nasri, A.; Zhang, L. Analysis of Washington, DC taxi demand using GPS and land-use data. J. Transp. Geogr. 2018, 66, 35–44. [Google Scholar] [CrossRef]
- Zhao, P.X.; Qin, K.; Zhou, Q.; Liu, C.K.; Chen, Y.X. Detecting hotspots from taxi trajectory data using spatial cluster analysis. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Fairfax, VA, USA, 13–15 July 2015; Volume 2, pp. 131–135. [Google Scholar]
- Keler, A.; Krisp, J.M.; Ding, L. Extracting commuter-specific destination hotspots from trip destination data—Comparing the boro taxi service with Citi Bike in NYC. Geo-Spat. Inf. Sci. 2020, 23, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, Y.; Yang, H.; Cui, C.; Li, J.; Qiao, Q. Identifying primary public transit corridors using multi-source big transit data. Int. J. Geogr. Inf. Sci. 2018, 34, 1137–1161. [Google Scholar] [CrossRef]
- Jiang, Z.; Evans, M.; Oliver, D.; Shekhar, S. Identifying K Primary Corridors from urban bicycle GPS trajectories on a road network. Inf. Syst. 2016, 57, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, M.; Koutsopoulos, H.N. Path inference from sparse floating car data for urban networks. Transp. Res. Part C Emerg. Technol. 2013, 30, 41–54. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, J.; Wang, H.; Wang, Y.; An, S. Revealing intra-urban travel patterns and service ranges from taxi trajectories. J. Transp. Geogr. 2017, 61, 72–86. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, S.; Zhang, W.; Liu, F.; Zhang, W.; Wang, Y. Statistical properties of urban mobility from location-based travel networks. Phys. A Stat. Mech. Its Appl. 2016, 461, 694–707. [Google Scholar] [CrossRef]
- Castro, P.S.; Zhang, D.; Li, S. Urban traffic modelling and prediction using large scale taxi gps traces. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Newcastle, UK, 18–22 June 2012; Volume 7319, pp. 57–72. [Google Scholar]
- Tang, J.; Jiang, H.; Li, Z.; Li, M.; Liu, F.; Wang, Y. A Two-Layer Model for Taxi Customer Searching Behaviors Using GPS Trajectory Data. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3318–3324. [Google Scholar] [CrossRef]
- Wong, R.C.P.; Szeto, W.Y.; Wong, S.C. A cell-based logit-opportunity taxi customer-search model. Transp. Res. Part C Emerg. Technol. 2014, 48, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Andris, C.; Ratti, C. Uncovering cabdrivers’ behavior patterns from their digital traces. Comput. Environ. Urban Syst. 2010, 34, 541–548. [Google Scholar] [CrossRef]
- Reades, J.; Calabrese, F.; Ratti, C. Eigenplaces: Analysing cities using the space—Time structure of the mobile phone network. Environ. Plan. B Plan. Des. 2009, 36, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Fang, Z.; Thill, J.C.; Li, Q.; Li, Y. Functionally critical locations in an urban transportation network: Identification and space-time analysis using taxi trajectories. Comput. Environ. Urban Syst. 2015, 52, 34–47. [Google Scholar] [CrossRef]
- Tang, J.; Hu, J.; Wang, Y.; Huang, H.; Wang, Y. Estimating hotspots using a Gaussian mixture model from large-scale taxi GPS trace data. Transp. Saf. Environ. 2019, 1, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Liang, J.; Zhang, S.; Huang, H.; Liu, F. Inferring driving trajectories based on probabilistic model from large scale taxi GPS data. Phys. A Stat. Mech. Its Appl. 2018, 506, 566–577. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, S. Scaling laws of spatial visitation frequency: Applications for trip frequency prediction. Comput. Environ. Urban Syst. 2017, 64, 332–343. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Li, Q.; Mao, Q. Mining time-dependent attractive areas and movement patterns from taxi trajectory data. In Proceedings of the 2009 17th International Conference on Geoinformatics, Geoinformatics, Fairfax, VA, USA, 12–14 August 2009. [Google Scholar]
- Gong, L.; Liu, X.; Wu, L.; Liu, Y. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartogr. Geogr. Inf. Sci. 2016, 43, 103–114. [Google Scholar] [CrossRef]
- Huang, X.; Ye, Y.; Guo, H.; Cai, Y.; Zhang, H.; Li, Y. DSKmeans: A new kmeans-type approach to discriminative subspace clustering. Knowl. Based Syst. 2014, 70, 293–300. [Google Scholar] [CrossRef]
- Huang, J.Z.; Ng, M.K.; Rong, H.; Li, Z. Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Jiawei, H.M.; Kamber, P.J. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Nederlands, 2011. [Google Scholar]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Modell. 2007, 206, 347–359. [Google Scholar] [CrossRef]
Car Num | Pickup Date | Pickup_Lon | Pickup_Lat | Drop-Off_Date | Drop-Off_Lon | Drop-Off_Lat | Pass Mile |
---|---|---|---|---|---|---|---|
8027f4gh | 6/05 8:34 | 118.178853 | 24.521353 | 6/05 8:58 | 118.149598 | 24.533922 | 8.6 |
a71c64ac | 6/05 9:48 | 118.101252 | 24.469193 | 6/05 10:06 | 118.101252 | 24.469193 | 12.7 |
FID | ATD (km) | Ri_density·103 | B’i_density·10 | ||||
---|---|---|---|---|---|---|---|
0 | 0.285714 | 0.080274 | 0.88888 | 18.80 | 0.000062 | 0.068027 | 0.0859849 |
1 | 0.214285 | 1.677728 | 0.36594 | 18.13 | 0.002092 | 0.002043 | 0.5622808 |
2 | 0.133333 | 1.079652 | 0.38624 | 15.96 | 0.001658 | 0.002578 | 0.2376545 |
3 | 8.812500 | 0.042414 | 0.35547 | 11.92 | 0.000334 | 0.012771 | 0.5667384 |
4 | 0.894736 | 0.140836 | 0.52173 | 14.13 | 0.000181 | 0.023584 | 0.2806405 |
5 | 0.421052 | 3.675701 | 0.33569 | 9.69 | 0.004291 | 0.000996 | 2.2204049 |
6 | 6.789473 | 0.035582 | 0.37908 | 25.00 | 0.000183 | 0.023255 | 0.3897308 |
7 | 0.421052 | 7.280948 | 0.36435 | 8.21 | 0.000865 | 0.004943 | 4.7758333 |
8 | 39.16666 | 4.332417 | 0.35599 | 13.43 | 0.001496 | 0.002857 | 258.18227 |
9 | 0.038461 | 75.91045 | 0.34937 | 5.91 | 0.007248 | 0.000590 | 4.3619225 |
10 | 0.285714 | 0.080274 | 0.88888 | 18.80 | 0.001060 | 0.004032 | 0.0871317 |
… | … | … | … | … | … | … | … |
153 | 1147.4540 | 0.066895 | 0.44615 | 14.55 | 0.000490 | 0.008710 | 146.15849 |
No. | Time_Period | Hex_ID | Travel_Num | Correct_Num | Accuracy (%) |
---|---|---|---|---|---|
01 | 00~02 | 60 | 119 | 53 | 44.54 |
02 | 19 | 126 | 51 | 40.48 | |
03 | 82 | 150 | 64 | 42.67 | |
04 | 02~04 | 39 | 492 | 250 | 50.81 |
05 | 46 | 41 | 22 | 53.66 | |
06 | 107 | 24 | 11 | 45.83 | |
07 | 04~06 | 44 | 76 | 33 | 43.42 |
08 | 63 | 244 | 119 | 48.77 | |
09 | 82 | 48 | 26 | 54.17 | |
10 | 06~08 | 101 | 45 | 25 | 55.56 |
11 | 83 | 75 | 35 | 46.67 | |
12 | 38 | 223 | 122 | 54.71 | |
13 | 08~10 | 81 | 299 | 177 | 59.20 |
14 | 34 | 344 | 191 | 55.52 | |
15 | 69 | 406 | 262 | 64.53 | |
16 | 10~12 | 105 | 32 | 14 | 43.75 |
17 | 7 | 104 | 56 | 53.85 | |
18 | 63 | 616 | 412 | 66.88 | |
19 | 12~14 | 5 | 41 | 20 | 48.78 |
20 | 44 | 653 | 447 | 68.45 | |
21 | 68 | 663 | 420 | 63.35 | |
22 | 14~16 | 19 | 52 | 30 | 57.69 |
23 | 64 | 621 | 411 | 66.18 | |
24 | 39 | 944 | 353 | 37.39 | |
25 | 16~18 | 21 | 6 | 3 | 50.00 |
26 | 14 | 291 | 154 | 52.92 | |
27 | 43 | 89 | 47 | 52.81 | |
28 | 18~20 | 16 | 162 | 98 | 60.49 |
29 | 66 | 2555 | 1739 | 68.06 | |
30 | 47 | 638 | 411 | 64.42 | |
31 | 20~22 | 15 | 1155 | 770 | 66.67 |
32 | 8 | 23 | 11 | 47.83 | |
33 | 57 | 30 | 16 | 53.33 | |
34 | 22~24 | 23 | 11 | 6 | 54.55 |
35 | 25 | 19 | 10 | 52.63 | |
36 | 61 | 801 | 485 | 60.55 | |
Mean | 54.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Ren, F. Predicting the Place Visited of Floating Car: A Three-Layer Framework Using Spatiotemporal Probability. ISPRS Int. J. Geo-Inf. 2021, 10, 663. https://doi.org/10.3390/ijgi10100663
He W, Ren F. Predicting the Place Visited of Floating Car: A Three-Layer Framework Using Spatiotemporal Probability. ISPRS International Journal of Geo-Information. 2021; 10(10):663. https://doi.org/10.3390/ijgi10100663
Chicago/Turabian StyleHe, Wenwen, and Fu Ren. 2021. "Predicting the Place Visited of Floating Car: A Three-Layer Framework Using Spatiotemporal Probability" ISPRS International Journal of Geo-Information 10, no. 10: 663. https://doi.org/10.3390/ijgi10100663
APA StyleHe, W., & Ren, F. (2021). Predicting the Place Visited of Floating Car: A Three-Layer Framework Using Spatiotemporal Probability. ISPRS International Journal of Geo-Information, 10(10), 663. https://doi.org/10.3390/ijgi10100663