Functional Design of a 6-DOF Platform for Micro-Positioning
Abstract
:1. Introduction
2. Design Specifications
- overall dimensions of mm ,
- translation of mm along the x-, y- and z-directions, respectively,
- translation resolution of about m, repeatability of m, maximum speed of 5 mm/s,
- rotation range of about x-, y- and z-axes,
- rotation resolution of about , repeatability of ,
- payload of kg.
3. The Hexaglide Kinematics
3.1. Model Parametrization
3.2. Inverse Position Kinematics (IPK)
3.3. Direct Position Kinematics (DPK)
- Input: vector ;
- a discrete sequence of actuated joint vectors, regulated by the index k, is obtained by means of a linear interpolation ranging from to , with resulting from the IPK of ;
- an iterative Newton–Raphson algorithm, this time regulated by the index i, is progressively used for each of the sequence to evaluate the vector that verifies the constraint manifold in (11) with a desired level of accuracy, each iteration starting from the previous solution ;
- Output: vector of study parameters or directly if a matrix form is preferred.
3.4. Differential Kinematics
- when any pair of reciprocal torsors and (with ) satisfies the relation ;
- when is verified at least for one of the ith legs.
4. Optimization Problem
Geometric Optimization
5. Optimization Results
6. Kinematic Performance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahn, C.; Seo, T.; Kim, J.; Kim, T.-W. High-tilt parallel positioning mechanism development and cutter path simulation for laser micro-machining. Comput. Aided Des. 2007, 39, 218–228. [Google Scholar]
- Shimizu, Y.; Peng, Y.; Kaneko, J.; Azuma, T.; Ito, S.; Gao, W.; Lu, T.-F. Design and construction of the motion mechanism of an XY micro-stage for precision positioning. Sens. Actuators A Phys. 2013, 201, 395–406. [Google Scholar]
- Zhang, D.; Li, X.; Ni, M.; Li, P.; Dong, L.; Rui, D.; Zhang, J. Design of 6 degree-of-freedom micro-positioning mechanism for optical elements. In Proceedings of the IEEE 13th International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–22 October 2017. [Google Scholar]
- Xiao, R.; Shao, S.; Xu, M.; Jing, Z. Design and Analysis of a Novel Piezo-Actuated XYθz Micropositioning Mechanism with Large Travel and Kinematic Decoupling. Adv. Mater. Sci. Eng. Hindawi 2019, 2019, 5461725. [Google Scholar]
- Tian, Y.; Shirinzadeh, B.; Zhang, D.; Zhong, Y. Modelling and analysis of a three-revolute parallel micro-positioning mechanism. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 1273–1286. [Google Scholar]
- Palpacelli, M.-C.; Palmieri, G.; Callegari, M. A Redundantly Actuated 2-Degrees-of-Freedom Mini Pointing Device. J. Mech. Robot. 2012, 4, 031012. [Google Scholar]
- Palmieri, G.; Callegari, M.; Carbonari, L.; Palpacelli, M.C. Mechanical design of a mini pointing device for a robotic assembly cell. Meccanica 2015, 50, 1895–1908. [Google Scholar]
- Lin, L.-C.; Tsay, M.-U. Modeling and control of micropositioning systems using Stewart platforms. J. Robot. Syst. 2000, 17, 17–52. [Google Scholar]
- Liu, Z.; Cai, C.; Yang, M.; Zhang, Y. Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform. Sensors 2019, 19, 4233. [Google Scholar]
- Mura, A. Multi-dofs MEMS displacement sensors based on the Stewart platform theory. Microsyst. Technol. 2012, 18, 575–579. [Google Scholar]
- Shi, H.; Duan, X.; Su, H. Optimization of the workspace of a MEMS hexapod nanopositioner using an adaptive genetic algorithm. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Rehsteiner, F.; Neugebauer, R.; Spiewak, S.; Wieland, F. Putting Parallel Kinematics Machines (PKM) to Productive Work. Ann. CIRP 1999, 48, 345–350. [Google Scholar]
- Bernal, J.; Campa, R.; Soto, I. Kinematics and dynamics modeling of the 6-3-PUS-type Hexapod parallel mechanism. J. Mech. Sci. Tech. 2018, 32, 4555–4570. [Google Scholar]
- Giberti, H.; La Mura, F.; Resmini, G.; Parmeggiani, M. Fully Mechatronical Design of an HIL System for Floating Devices. Robotics 2018, 7, 39. [Google Scholar]
- Nabavi, S.N.; Shariatee, M.; Enferadi, J.; Akbarzadeh, A. Parametric design and multi-objective optimization of a general 6-PUS parallel manipulator. Mech. Mach. Theory 2020, 152, 103913. [Google Scholar]
- Guo, J.; Wang, D.; Fan, R.; Chen, W.; Zhao, G. Kinematic calibration and error compensation of a hexaglide parallel manipulator. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 215–225. [Google Scholar]
- Dong, W.; Du, Z.; Xiao, Y.; Chen, X. Development of a parallel kinematic motion simulator platform. Mechatronics 2013, 23, 154–161. [Google Scholar]
- Spiewak, S.A.; Ludwick, S.J.; Hauer, G. A Test Setup for Evaluation of Harmonic Distorsions in Precision Inertial Sensors. J. Manuf. Sci. Eng. 2013, 135, 021015. [Google Scholar]
- Gao, F.; Li, W.; Zhao, X.; Jin, Z.; Zhao, H. New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mech. Mach. Theory 2002, 37, 1395–1411. [Google Scholar]
- Liu, C.H.; Huang, K.-C.; Wang, Y.-T. Forward position analysis of 6-3 Linapod parallel manipulators. Meccanica 2012, 47, 1271–1282. [Google Scholar]
- Abtahi, M.; Pendar, H.; Alasty, A.; Vossoughi, G. Kinematics and Singularity Analysis of the Hexaglide Parallel Robot. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008. [Google Scholar]
- Yen, P.-L.; Ke, Z.-W.; Lu, T.-S.; Lu, C.-W. Development of a New Safety-Enhanced Surgical Robot Using the Hexaglide Structure. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, 10–13 October 2004. [Google Scholar]
- Kong, M.; Zhang, Y.; Sun, L.; Du, Z. Analysis of a New Workspace of the Hexaglide as a Motion Simulator for Fuel Tanker Trucks. In Proceedings of the International Conference on Mechatronics, Kumamoto, Japan, 8–10 May 2007. [Google Scholar]
- Merlet, J.P. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots. ASME J. Mech. Des. 2006, 128, 199–206. [Google Scholar]
- Gosselin, C.; Angeles, J. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. ASME J. Mech. Des. 1991, 113, 220–226. [Google Scholar]
r | L | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Init | 10 | 0 | 75 | 210 | 10 | 100 | −10 | −100 | 0 | 70 |
Inf | 5 | −20 | 50 | 150 | 0 | 0 | −60 | −150 | −100 | 50 |
Sup | 15 | 20 | 100 | 250 | 60 | 150 | 0 | 0 | 100 | 200 |
r | L | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Step | – | ||||||||||
0 | 10 | 0 | 75 | 210 | 10 | 100 | −10 | −100 | 0 | 70 | 0.512 |
1 | 9.99 | −8.63 | 56.63 | 208.66 | 49.97 | 138.07 | −3.28 | −118.84 | 4.69 | 140.95 | 0.498 |
2 | 10.02 | −9.41 | 59.90 | 239.33 | 57.48 | 135.60 | −3.70 | −116.95 | 46.54 | 146.15 | 0.497 |
3 | 10.12 | −10.92 | 59.58 | 245.18 | 57.62 | 135.78 | −3.65 | −117.13 | 50.27 | 150.48 | 0.494 |
4 | 9.98 | −11.68 | 57.82 | 249.86 | 59.89 | 148.93 | −0.14 | −118.10 | 50.83 | 155.30 | 0.493 |
5 | 10.05 | −9.65 | 60.49 | 248.47 | 57.76 | 136.49 | −3.72 | −116.62 | 53.29 | 152.75 | 0.490 |
6 | 10.05 | −9.92 | 57.80 | 249.97 | 59.97 | 149.72 | −0.03 | −118.08 | 50.92 | 155.44 | 0.490 |
7 | 9.98 | −8.93 | 60.59 | 248.57 | 57.76 | 136.54 | −3.72 | −116.57 | 53.43 | 152.80 | 0.487 |
8 | 10.08 | −9.88 | 58.13 | 249.32 | 59.49 | 145.60 | −0.73 | −117.93 | 50.99 | 154.60 | 0.486 |
9 | 10.04 | −9.92 | 57.80 | 249.96 | 59.97 | 149.72 | −0.03 | −118.11 | 50.85 | 155.47 | 0.482 |
10 | 10.06 | −10.24 | 61.14 | 248.53 | 57.79 | 136.80 | −3.79 | −116.27 | 54.00 | 152.58 | 0.478 |
Result | 10 | −10 | 60 | 250 | 60 | 140 | 0 | −115 | 50 | 155 | 0.482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palpacelli, M.-C.; Carbonari, L.; Palmieri, G.; D’Anca, F.; Landini, E.; Giorgi, G. Functional Design of a 6-DOF Platform for Micro-Positioning. Robotics 2020, 9, 99. https://doi.org/10.3390/robotics9040099
Palpacelli M-C, Carbonari L, Palmieri G, D’Anca F, Landini E, Giorgi G. Functional Design of a 6-DOF Platform for Micro-Positioning. Robotics. 2020; 9(4):99. https://doi.org/10.3390/robotics9040099
Chicago/Turabian StylePalpacelli, Matteo-Claudio, Luca Carbonari, Giacomo Palmieri, Fabio D’Anca, Ettore Landini, and Guido Giorgi. 2020. "Functional Design of a 6-DOF Platform for Micro-Positioning" Robotics 9, no. 4: 99. https://doi.org/10.3390/robotics9040099
APA StylePalpacelli, M. -C., Carbonari, L., Palmieri, G., D’Anca, F., Landini, E., & Giorgi, G. (2020). Functional Design of a 6-DOF Platform for Micro-Positioning. Robotics, 9(4), 99. https://doi.org/10.3390/robotics9040099