Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance †
Abstract
:1. Introduction
2. Kinematics and Singularity Analysis
2.1. Kinematics
2.2. Singularity Analysis of the UR Robot
3. Control Strategy
3.1. Distribution of Motion
3.2. Haptic Feedback
3.2.1. Virtual Spring
3.2.2. Singularity Avoidance
4. Experimental Results
4.1. Straight Pulling
4.2. Straight Pushing
4.3. Curved Pulling
4.4. Singularity Avoidance–Elbow-Joint
4.5. Singularity Avoidance - Wrist-Joint
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pai, Y.S.; Yap, H.J.; Singh, R. Augmented reality—Based programming, planning and simulation of a robotic work cell. J. Eng. Manuf. 2015, 229, 1029–1045. [Google Scholar] [CrossRef]
- Van den Bergh, M.; Carton, D.; De Nijs, R.; Mitsou, N.; Landsiedel, C.; Kuehnlenz, K.; Wollherr, D.; Van Gool, L.; Buss, M. Real-time 3D hand gesture interaction with a robot for understanding directions from humans. In Proceedings of the International Conference on Robot and Human Interactive Communication (RO-MAN), Atlanta, GA, USA, 31 July–3 August 2011; pp. 357–362. [Google Scholar]
- Valner, R.; Kruusamäe, K.; Pryor, M. TeMoto: Intuitive Multi-Range Telerobotic System with Natural Gestural and Verbal Instruction Interface. Robotics 2018, 7, 9. [Google Scholar] [CrossRef]
- Goto, S. Forcefree control for flexible motion of industrial articulated robot arms. In Industrial Robotics: Theory, Modelling and Control; Pro Literatur Verlag: Mammendorf, Germany, 2006. [Google Scholar]
- Akgun, B.; Cakmak, M.; Yoo, J.W.; Thomaz, A.L. Trajectories and keyframes for kinesthetic teaching: A human-robot interaction perspective. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, Boston, MA, USA, 5–8 March 2012; pp. 391–398. [Google Scholar]
- Elliott, S.; Toris, R.; Cakmak, M. Efficient programming of manipulation tasks by demonstration and adaptation. In Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 1146–1153. [Google Scholar]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Vischer, D.; Khatib, O. Design and development of high-performance torque-controlled joints. Trans. Robot. Autom. 1995, 11, 537–544. [Google Scholar] [CrossRef]
- Bicchi, A.; Rizzini, S.L.; Tonietti, G. Compliant design for intrinsic safety: General issues and preliminary design. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; pp. 1864–1869. [Google Scholar]
- Hirzinger, G.; Sporer, N.; Albu-Schaffer, A.; Hahnle, M.; Krenn, R.; Pascucci, A.; Schedl, M. DLR’s torque-controlled light weight robot III-are we reaching the technological limits now? In Proceedings of the International Conference on Robotics and Automation (ICRA), Washington, DC, USA, 11–15 May 2002; pp. 1710–1716. [Google Scholar]
- Zollo, L.; Siciliano, B.; Laschi, C.; Teti, G.; Dario, P. An experimental study on compliance control for a redundant personal robot arm. Rob. Autom. Syst. 2003, 44, 101–129. [Google Scholar] [CrossRef]
- Zinn, M.; Roth, B.; Khatib, O.; Salisbury, J.K. A new actuation approach for human friendly robot design. Int. J. Robot. Res. 2004, 23, 379–398. [Google Scholar] [CrossRef]
- Haddadin, S.; Huber, F.; Albu-Schäffer, A. Optimal control for exploiting the natural dynamics of variable stiffness robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 3347–3354. [Google Scholar]
- Leboutet, Q.; Dean-León, E.; Cheng, G. Tactile-based compliance with hierarchical force propagation for omnidirectional mobile manipulators. In Proceedings of the IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids 2016), Cancun, Mexico, 15–17 November 2016; pp. 926–931. [Google Scholar]
- Navarro, B.; Cherubini, A.; Fonte, A.; Poisson, G.; Fraisse, P. A framework for intuitive collaboration with a mobile manipulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6293–6298. [Google Scholar]
- Han, H.; Park, J. Robot control near singularity and joint limit using a continuous task transition algorithm. Int. J. Adv. Robot. Syst. 2013, 10, 346. [Google Scholar] [CrossRef]
- Weyrer, M.; Brandstötter, M.; Mirkovic, D. Intuitive Hand Guidance of a Force-Controlled Sensitive Mobile Manipulator. In Proceedings of the IFToMM Symposium on Mechanism Design for Robotics, Udine, Italy, 11–13 August 2018; pp. 361–368. [Google Scholar]
- Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D.; Arkin, R.C. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Kebria, P.M.; Al-Wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- Husty, M.L.; Karger, A.; Sachs, H.; Steinhilper, W. Kinematik und Robotik, 1st ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: New York, NY, USA, 2010. [Google Scholar]
- Albu-Schäffer, A.; Ott, C.; Hirzinger, G. A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 2007, 26, 23–39. [Google Scholar] [CrossRef]
- Wahrburg, A.; Bös, J.; Listmann, K.D.; Dai, F.; Matthias, B.; Ding, H. Motor-Current-Based Estimation of Cartesian Contact Forces and Torques for Robotic Manipulators and Its Application to Force Control. IEEE Trans. Autom. Sci. Eng. 2018, 15, 879–886. [Google Scholar] [CrossRef]
Symbol | Value | Unit | Description |
---|---|---|---|
0.48 | m | Radius of inner circle | |
0.8 | m | Radius of outer circle | |
AP | m | Anchor-point in | |
N·s/m | Translational damping matrix | ||
Nm·s/rad | Rotational damping matrix | ||
- | Mobile base damping matrix | ||
140 | N/m | Virt. spring stiffness Pull-Mode | |
300 | N/m | Virt. spring stiffness Push-Mode | |
30 | - | Constant for pushback-force | |
1 | N/rad | Virt. spring stiffness in joint 5 | |
rad | Position threshold for joint 3 | ||
rad | Position threshold for joint 5 | ||
rad | Position threshold for joint 5 | ||
m | DH-Parameters of UR-10: a | ||
m | DH-Parameter of UR-10: d | ||
rad | DH-Parameter of UR-10: |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weyrer, M.; Brandstötter, M.; Husty, M. Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance. Robotics 2019, 8, 14. https://doi.org/10.3390/robotics8010014
Weyrer M, Brandstötter M, Husty M. Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance. Robotics. 2019; 8(1):14. https://doi.org/10.3390/robotics8010014
Chicago/Turabian StyleWeyrer, Matthias, Mathias Brandstötter, and Manfred Husty. 2019. "Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance" Robotics 8, no. 1: 14. https://doi.org/10.3390/robotics8010014
APA StyleWeyrer, M., Brandstötter, M., & Husty, M. (2019). Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance. Robotics, 8(1), 14. https://doi.org/10.3390/robotics8010014