Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains
Abstract
1. Introduction
2. Method
2.1. Energy Consumption Coefficient, Models of Surfaces
2.2. Data Filtering
2.3. Probabilistic Surface Classifier with Memory
2.4. Detection of Unexplored Surfaces
2.5. Surface Parameters Identification
3. Results
3.1. Research Setup and Data Gathering
3.2. Surface Classifier
3.3. Detector of Unexplored Surfaces
- Decision Tree: max depth = 10, min samples leaf = 10, min samples split = 100.
- Random Forest: max depth = 20, min samples leaf = 20, estimators = 10.
- Neural Network: hidden layers = 2, neurons per layer = 32, dropout = 0.05, activation = ReLU, fully connected.
- Linear Regression. Standard parameters.
- CatBoost. Standard parameters.
3.4. Surface Parameters Identification
3.5. Classification with Identified Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zurn, J.; Burgard, W.; Valada, A. Self-Supervised Visual Terrain Classification From Unsupervised Acoustic Feature Learning. IEEE Trans. Robot. 2021, 37, 466–481. [Google Scholar] [CrossRef]
- Kurobe, A.; Nakajima, Y.; Kitani, K.; Saito, H. Audio-Visual Self-Supervised Terrain Type Recognition for Ground Mobile Platforms. IEEE Access 2021, 9, 29970–29979. [Google Scholar] [CrossRef]
- Satsevich, S.; Savotin, Y.; Belov, D.; Pestova, E.; Erhov, A.; Khabibullin, B.; Bazhenov, A.; Kovalev, V.; Fedoseev, A.; Tsetserukou, D. HyperSurf: Quadruped Robot Leg Capable of Surface Recognition with GRU and Real-to-Sim Transferring. In Proceedings of the 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Kuching, Malaysia, 6–10 October 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 2625–2630. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, H.; Yang, C.; Ding, L.; Gao, H.; Li, N. Multi-Slip Conditions Acquisition of Planetary Rovers with Application to Terrain Parameter Identification. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China, 26–28 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 60–65. [Google Scholar] [CrossRef]
- Gonzalez, R.; Iagnemma, K. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges. J. F. Robot. 2018, 35, 564–577. [Google Scholar] [CrossRef]
- Mohammad, F.; Gao, Y.; Kay, S.; Field, R.; De Benedetti, M.; Ntagiou, E.V. Deep Learning based Semantic Segmentation for Mars Rover Terrain Classification. In Proceedings of the 2024 International Conference on Space Robotics (iSpaRo), Luxembourg, 24–27 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 292–298. [Google Scholar] [CrossRef]
- DuPont, E.M.; Moore, C.A.; Collins, E.G.; Coyle, E. Frequency response method for terrain classification in autonomous ground vehicles. Auton. Robot. 2008, 24, 337–347. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Li, Z.; Zuo, J.; Wang, P. Robot Ground Classification and Recognition Based on CNN-LSTM Model. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; IEEE: Piscataway, NJ, USA; pp. 1110–1113. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Chen, H. Contrastive Learning-Based Attribute Extraction Method for Enhanced Terrain Classification. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 5644–5650. [Google Scholar] [CrossRef]
- Wu, X.A.; Huh, T.M.; Sabin, A.; Suresh, S.A.; Cutkosky, M.R. Tactile Sensing and Terrain-Based Gait Control for Small Legged Robots. IEEE Trans. Robot. 2020, 36, 15–27. [Google Scholar] [CrossRef]
- Bednarek, M.; Lysakowski, M.; Bednarek, J.; Nowicki, M.R.; Walas, K. Fast Haptic Terrain Classification for Legged Robots Using Transformer. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August–3 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Odedra, S. Using unmanned ground vehicle performance measurements as a unique method of terrain classification. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 286–291. [Google Scholar] [CrossRef]
- Dutta, A.; Dasgupta, P. Ensemble Learning With Weak Classifiers for Fast and Reliable Unknown Terrain Classification Using Mobile Robots. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2933–2944. [Google Scholar] [CrossRef]
- Iwashita, Y.; Nakashima, K.; Gatto, J.; Higa, S.; Stoica, A.; Khoo, N.; Kurazume, R. Virtual IR Sensing for Planetary Rovers: Improved Terrain Classification and Thermal Inertia Estimation. IEEE Robot. Autom. Lett. 2020, 5, 6302–6309. [Google Scholar] [CrossRef]
- Lee, K.; Lee, K. Terrain-aware path planning via semantic segmentation and uncertainty rejection filter with adversarial noise for mobile robots. J. F. Robot. 2025, 42, 287–301. [Google Scholar] [CrossRef]
- Alcayaga, J.M.; Menéndez, O.A.; Torres-Torriti, M.A.; Vásconez, J.P.; Arévalo-Ramirez, T.; Romo, A.J.P. LSTM-Enhanced Deep Reinforcement Learning for Robust Trajectory Tracking Control of Skid-Steer Mobile Robots Under Terra-Mechanical Constraints. Robotics 2025, 14, 74. [Google Scholar] [CrossRef]
- Arafin, T.; Hosen, A.; Najdovski, Z.; Wei, L.; Rokonuzzaman, M.; Johnstone, M. Advances and Trends in Terrain Classification Methods for Off-Road Perception. J. F. Robot. 2025. [Google Scholar] [CrossRef]
- Li, Q.; Cicirelli, F.; Vinci, A.; Guerrieri, A.; Qi, W.; Fortino, G. Quadruped Robots: Bridging Mechanical Design, Control, and Applications. Robotics 2025, 14, 57. [Google Scholar] [CrossRef]
- Sarcevic, P.; Csík, D.; Pesti, R.; Stančin, S.; Tomažič, S.; Tadic, V.; Rodriguez-Resendiz, J.; Sárosi, J.; Odry, A. Online Outdoor Terrain Classification Algorithm for Wheeled Mobile Robots Equipped with Inertial and Magnetic Sensors. Electronics 2023, 12, 3238. [Google Scholar] [CrossRef]
- Yu, Z.; Sadati, S.M.H.; Hauser, H.; Childs, P.R.N.; Nanayakkara, T. A Semi-Supervised Reservoir Computing System Based on Tapered Whisker for Mobile Robot Terrain Identification and Roughness Estimation. IEEE Robot. Autom. Lett. 2022, 7, 5655–5662. [Google Scholar] [CrossRef]
- Bai, C.; Guo, J.; Guo, L.; Song, J. Deep Multi-Layer Perception Based Terrain Classification for Planetary Exploration Rovers. Sensors 2019, 19, 3102. [Google Scholar] [CrossRef]
- Hu, Y. Robotic terrain classification based on convolutional and long short-term memory neural networks. Cogn. Robot. 2025, 5, 166–175. [Google Scholar] [CrossRef]
- Sheppard, A.; Brown, J.; Renno, N.; Skinner, K.A. Learning Surface Terrain Classifications from Ground Penetrating Radar. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 3047–3055. [Google Scholar] [CrossRef]
- Ojeda, L.; Borenstein, J.; Witus, G.; Karlsen, R. Terrain characterization and classification with a mobile robot. J. F. Robot. 2006, 23, 103–122. [Google Scholar] [CrossRef]
- Belyaev, A.S.; Kushnarev, O.Y.; Brylev, O.A. Synthesis of a hybrid underlying surface classifier based on fuzzy logic using current consumption of mobile robot motion. Inf. Control. Syst. 2024, 1, 31–43. [Google Scholar]
- Zhu, B.; He, J.; Yuan, Z.; Gao, F. Probabilistic Path Planning for Wheel-Legged Rover in Dense Environment Based on Extended MDP and Configuration Topology Analysis. IEEE Trans. Robot. 2025, 41, 2512–2532. [Google Scholar] [CrossRef]
- Bai, X.; Li, C.; Zhang, B.; Wu, Z.; Ge, S.S. Efficient Performance Impact Algorithms for Multirobot Task Assignment With Deadlines. IEEE Trans. Ind. Electron. 2024, 71, 14373–14382. [Google Scholar] [CrossRef]
- Bai, X.; Cao, M.; Yan, W. Event- and time-triggered dynamic task assignments for multiple vehicles. Auton. Robot. 2020, 44, 877–888. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Andrakhanov, A.; Belyaev, A. GMDH-Based Learning System for Mobile Robot Navigation in Heterogeneous Environment. In Advances in Intelligent Systems and Computing II; Springer: Cham, Switzerland, 2018; pp. 1–20. [Google Scholar] [CrossRef]
- Belyaev, A.S.; Brylev, O.A.; Ivanov, E.A. Slip Detection and Compensation System for Mobile Robot in Heterogeneous Environment. IFAC-Pap. 2021, 54, 339–344. [Google Scholar] [CrossRef]
- Buscarino, A.; Fortuna, L.; Frasca, M.; Muscato, G. Chaos does help motion control. Int. J. Bifurc. Chaos 2007, 17, 3577–3581. [Google Scholar] [CrossRef]
Dataset | |||
---|---|---|---|
Linear | Circle | Square | |
Original | 85.9% | 65.1% | 70.2% |
With memory | 91.0% | 83.7% | 76.0% |
∆ | 5.1% | 18.5% | 5.8% |
Model | Surface | ||||
---|---|---|---|---|---|
Gray | Green | Table | Red | F-Score | |
Neural Network | 98.1% | 99.9% | 90.5% | 95.9% | 88.81% |
CatBoost | 94.8% | 99.6% | 90.3% | 95.8% | 84.95% |
Logistic Regression | 92.0% | 99.1% | 90.2% | 95.9% | 81.63% |
Random Forest | 89.1% | 98.4% | 90.1% | 95.9% | 78.34% |
Decision Tree | 89.0% | 97.3% | 90.3% | 95.7% | 77.25% |
Neural Network | ∆ | |||
---|---|---|---|---|
Original | Retrain | |||
F-score | 88.81% | 89.67% | +0.87% | |
Accuracy | Gray | 98.08% | 98.80% | +0.72% |
Green | 99.89% | 99.96% | +0.07% | |
Table | 90.46% | 90.63% | +0.16% | |
Red | 95.87% | 95.62% | −0.25% | |
Square | 99.91% | 99.91% | 0.00% | |
Circle | 87.64% | 92.55% | +4.91% |
Surface | Number of Directions | Window Width, s | ||||
---|---|---|---|---|---|---|
3 | 4 | 5 | 1 | 1.5 | 2 | |
Gray | 6.80% | 6.77% | 1.92% | 6.80% | 7.67% | 7.08% |
Green | 5.59% | 2.96% | 3.99% | 5.59% | 5.25% | 1.71% |
Table | 13.70% | 3.13% | 1.98% | 13.70% | 13.53% | 8.73% |
Surface | Models Source | |
---|---|---|
Whole Dataset | Identification | |
Gray | 86.2% | 73.4% |
Green | 88.3% | 93.8% |
Table | 98.4% | 98.4% |
Red | 97.5% | 97.3% |
Mean | 92.6% | 90.7% |
Groups | Article, Year | Data Type | Surfaces | Accuracy |
---|---|---|---|---|
Mixed | Ojeda et al. [24], 2006 | Velocity | Gravel, Grass, Sand, Pavement, Dirt | 53.20% |
IMU | 78.40% | |||
Current | 56.90% | |||
Andrakhanov et al. [30], 2017 | Velocity, Current, IMU | Rubber, Plastic, Wood, Carpet, Foam Rubber | 90.52% | |
(1) Visual | Iwashita et al. [14], 2020 | RGB and IR camera | Rocks, Bedrock, Compacted Send, Compacted Send with Gravel, Loose Send with Gravel | 95.10% |
Mohammad et al. [6], 2024 | Visual | AI4Mars Dataset | 99% | |
Sheppard et al. [23], 2024 | Radar | Asphalt, Grass, Sand, Sidewalk | 80–98.5% | |
Lee et al. [15], 2025 | RGB-D | RUGD Dataset + Hard Ground, Dirt, Gravel, Grass, Sand, Mulch, Bush, Water, Background | 74.80% | |
(2) audio | Zurn et at. [1], 2021 | Audio | Asphalt, Parking Lot, Grass, Gravel, Cobblestone | 93.10% |
Kurobe et al. [2], 2021 | Audio, Video | Carpet, Concrete Flooring, Title, Linoleum, Rough Concrete, Asphalt, Grass, Pavement, Wood Deck, Mulch | 85% | |
(2) IMU | DuPont et al. [7], 2008 | IMU | Packed Gravel, Loose Gravel, Sparse Grass, Tall Grass, Asphalt, Sand | 70–100% |
Dutta et al. [13], 2017 | IMU, Acceleration, RPY | Grass, Rock, Concrete, Sand, Brick | 63% | |
Bai et al. [21], 2019 | IMU | Brick, Sand, Flat, Cement, Soil | 75–98% | |
Li et al. [8], 2021 | IMU | Hard Tiles with Large Space, Hard Tiles, Soft Tiles, Fine Concrete, Concrete, Soft Polyvinyl Chloride, Tiles, Wood, Carpet | 68.54 ± 3.71% | |
Sarcevic et al. [19], 2023 | IMU, Magnetometer | Concrete, Grass, Pebbles, Sand, Paving Stone, Synthetic Running Track | 75–98% | |
Satsevich et al. [3], 2024 | IMU | Carpet, Rubber, Tile, Rough Tile | 98% | |
Hu et al. [22], 2025 | IMU | Large Space, Hard Tiles, Soft Tiles, Fine Concrete, Concrete, Soft Polyvinyl Chloride (PVC), Tiles, Wood, And Carpet | 81% | |
(2) vibration | Yu et al. [20], 2022 | Tapered Whiskered Tactile Sensor | Hard Rough Cobblestones, Hard Roughish Brick Soft Rough Grass, Soft Roughish Sand Hard Smooth Flat, Soft Smooth Carpet | 84.12% |
(3) contact force | Wu et al. [10], 2021 | Leg tactile | Concrete, Waxed Tile, Laminate Wood, Medium-Density Grass, Wood Chips/Mulch, Gravel, Rubble, Sand | 82.50% |
Bednarek et al. [11], 2021 | Leg tactile | Carpet, Artificial Grass, Rubber, Sand, Foam, Rocks, Ceramic Tiles, PVC | 83.3–91.7% | |
Liu et al. [9], 2024 | Leg tactile | Asphalt, Stone Brick Soul, Sidewalk, Grass, Dry Grass, Tall Grass, Track | 96.95% | |
(4) Energy | Belyaev et al. [25], 2024 | Current | Soft Smooth, Hard Rough, Hard Smooth | 85.2–91.1% |
Ours | Current | Rubber, Plastic, Laminated chipboard, EVA honeycomb | 92.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyaev, A.; Kushnarev, O. Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains. Robotics 2025, 14, 130. https://doi.org/10.3390/robotics14090130
Belyaev A, Kushnarev O. Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains. Robotics. 2025; 14(9):130. https://doi.org/10.3390/robotics14090130
Chicago/Turabian StyleBelyaev, Alexander, and Oleg Kushnarev. 2025. "Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains" Robotics 14, no. 9: 130. https://doi.org/10.3390/robotics14090130
APA StyleBelyaev, A., & Kushnarev, O. (2025). Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains. Robotics, 14(9), 130. https://doi.org/10.3390/robotics14090130