Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations
Abstract
1. Introduction
2. Materials and Methods
2.1. System Overview
2.1.1. Aerial Unit: Unmanned Aerial Vehicle Platform
2.1.2. Ground Unit: Unmanned Ground Vehicle Platform
2.1.3. Human Participant
2.2. Inter-Robot Communication Protocol
2.2.1. Coordination via a Farm-Management Information System
2.2.2. Coordination via MAVLink Protocol
2.3. System Operational Workflow
2.3.1. Centralized Approach
2.3.2. Decentralized Approach
2.4. Experimental Setup and Execution
2.5. Critical Performance and System Behavior Metrics
- Phase 1: The UAV successfully transfers a photo to the Raspberry Pi for processing, where it analyzes the image to extract important details regarding color information. Once the UGV receives the color result, it exploits these data to make decisions based on the detected colors or objects in the image. At the same time, the UGV receives the worker’s latitude and longitude coordinates, enabling it to determine its position relative to the worker.
- Phase 2: In this phase, the ground vehicle reaches the worker, marking a key point in its task of collaboration. Once the UGV has arrived at the worker, it informs the UAV of its position, allowing the UAV to update its situational awareness.
3. Results
3.1. Phase 1: Color Detection and Worker Localization Initialization
3.2. Phase 2: Ground Vehicle Reaches Worker and Updates Aerial Vehicle with Position
3.3. Summary of Observed Patterns and Trends
4. Discussion
4.1. Study Limitations and Considerations
4.2. Prospective Research Directions
5. Conclusions
- Centralized approach (FMIS-based): The UAV and UGV communicate via a cloud-based FMIS. The UAV performs aerial surveying and sends geotagged images and GPS data to the FMIS, which processes tree and worker recognition, plans UGV navigation, and coordinates task execution. The UGV uses onboard LiDAR for local obstacle avoidance and continuously logs mission data, all centrally stored for post-mission analysis. This approach favors reliable data handling and centralized decision-making.
- Decentralized approach (MAVLink-based): The UAV and UGV directly exchange real-time data via a low-latency MAVLink protocol integrated with ROS over UART telemetry. The UAV runs onboard image processing to detect worker hat colors and sends operational commands and GPS coordinates directly to the UGV. The UGV autonomously navigates using RTK-GPS and local LiDAR for obstacle avoidance. This setup ensures modular, real-time communication without reliance on external servers, supporting operations in remote or low-connectivity environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Category | Component | Description |
---|---|---|
Hardware | Platform | Custom quadcopter designed for autonomous agricultural monitoring |
Autopilot | Pixhawk 4 with 32-bit ARM Cortex-M7 processor @ 216 MHz | |
Localization | H-RTK F9P GNSS receiver with multi-band RTK corrections; positional accuracy 1–2 cm | |
Camera | Sony Alpha 6100 RGB camera, 24.2 MP APS-C Exmor CMOS sensor, up to 11 fps | |
Camera trigger | Seagull Map-X2 hardware trigger | |
Onboard processing | Raspberry Pi 4 Model B (quad-core Cortex-A72, 4 GB RAM) | |
Communication Modules | 4G LTE module (downlink up to 150 Mbps), SiK Telemetry Radio (433 MHz), R9SX receiver (900 MHz) | |
Remote control | FrSky Taranis X9D Plus transmitter | |
Power supply | 12,000 mAh LiPo battery (22.2 V, 6 S); flight time 30–40 min | |
Software | Flight control | ArduPilot and PX4 firmware on Pixhawk 4 autopilot |
Image processing | Custom real-time image aggregation on Raspberry Pi 4 | |
Communication protocol | MAVLink for UAV telemetry and control | |
ROS integration | MAVROS interface for MAVLink-ROS messaging | |
Mission planning | QGroundControl |
Category | Component | Description |
---|---|---|
Hardware | Platform | Thorvald UGV (SAGA Robotics SA), commonly used for autonomous agricultural operations |
LiDAR sensor | Velodyne VLP-16 Puck laser scanner for 3D mapping and obstacle detection | |
Processing unit | Intel NUC with i5 6200U processor, 16 GB RAM, 128 GB storage, running Ubuntu Linux 18.04.6 LTS | |
Motor control | PEAK CANbus system for reliable motor communication | |
Localization | Xsens MTi 630R SK IMU and Stonex S850 RTK GNSS receiver for precise navigation | |
Software | Operating system | Ubuntu Linux 18.04.6 LTS |
Robotics middleware | ROS Melodic | |
Navigation planner | Carrot Planner for goal-point adjustment around obstacles | |
Communication protocols | MAVProxy forwarding MAVLink messages to ROS; MAVLink protocol for decentralized communication |
Appendix B
Hat Color | Success | Failure | Row Total | Expected Success | Expected Failure |
---|---|---|---|---|---|
Blue | 35 | 5 | 40 | 34.67 | 5.33 |
White | 33 | 7 | 40 | 34.67 | 5.33 |
Red | 36 | 4 | 40 | 34.67 | 5.33 |
Appendix C
Environment | Protocol | Total Duration (s) | Handshake Latency (ms) | UAV Battery Use | UGV Battery Use | UAV CPU Load |
---|---|---|---|---|---|---|
Empty | MAVLink | 4.74 ± 0.53 | 276.74 ± 19.52 | 4.27 ± 0.53 | 0.53 ± 0.12 | 49.60 ± 6.62 |
FMIS | 2.93 ± 0.55 | 313.10 ± 18.27 | 1.12 ± 0.56 | 1.59 ± 0.20 | 51.07 ± 5.44 | |
Orchard | MAVLink | 4.81 ± 0.47 | 309.32 ± 34.90 | 4.33 ± 0.46 | 0.56 ± 0.11 | 48.67 ± 5.01 |
FMIS | 3.16 ± 0.56 | 305.07 ± 44.90 | 1.00 ± 0.51 | 1.60 ± 0.22 | 49.38 ± 5.06 |
Environment | Protocol | UGV-to-UAV Position Report Latency (ms) | UGV Battery Use (%) | UGV CPU Load (%) |
---|---|---|---|---|
Empty | MAVLink | 102.65 ± 8.86 | 1.58 ± 0.34 | 19.51 ± 4.40 |
FMIS | 308.20 ± 20.02 | 2.34 ± 0.27 | 25.62 ± 3.27 | |
Orchard | MAVLink | 104.40 ± 7.29 | 1.84 ± 0.27 | 18.29 ± 4.28 |
FMIS | 340.20 ± 21.06 | 2.21 ± 0.40 | 29.10 ± 3.37 |
Metric | Mean Difference 1 | -Value | ||
---|---|---|---|---|
Total duration (s) | 1.74 | 18.34 | <0.001 | 2.37 |
Handshake latency (ms) | −16.00 | −0.04 | 0.97 | −0.005 |
UAV battery use (%) | 3.24 | 41.91 | <0.001 | 5.41 |
UGV battery use (%) | −1.05 | −12.27 | <0.001 | −1.77 |
UAV CPU load (%) | −1.09 | −1.46 | 0.15 | −0.21 |
Metric | Mean Difference 1 | -Value | ||
---|---|---|---|---|
UGV-to-UAV position report latency (ms) | −220.67 | −25.26 | <0.001 | −4.10 |
UGV battery use (%) | −0.57 | −5.62 | <0.001 | −0.91 |
UGV CPU load (%) | −8.46 | −10.76 | <0.001 | −1.74 |
References
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Bissadu, K.D.; Sonko, S.; Hossain, G. Society 5.0 enabled agriculture: Drivers, enabling technologies, architectures, opportunities, and challenges. Inf. Process. Agric. 2025, 12, 112–124. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Benos, L.; Sørensen, C.G.; Bochtis, D. Field Deployment of Robotic Systems for Agriculture in Light of Key Safety, Labor, Ethics and Legislation Issues. Curr. Robot. Rep. 2022, 3, 49–56. [Google Scholar] [CrossRef]
- Agrawal, J.; Arafat, M.Y. Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones 2024, 8, 664. [Google Scholar] [CrossRef]
- Niu, H.; Chen, Y. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture. In Smart Big Data in Digital Agriculture Applications: Acquisition, Advanced Analytics, and Plant Physiology-Informed Artificial Intelligence; Niu, H., Chen, Y., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 99–109. ISBN 978-3-031-52645-9. [Google Scholar]
- Agelli, M.; Corona, N.; Maggio, F.; Moi, P.V. Unmanned Ground Vehicles for Continuous Crop Monitoring in Agriculture: Assessing the Readiness of Current ICT Technology. Machines 2024, 12, 750. [Google Scholar] [CrossRef]
- Ersü, C.; Petlenkov, E.; Janson, K. A Systematic Review of Cutting-Edge Radar Technologies: Applications for Unmanned Ground Vehicles (UGVs). Sensors 2024, 24, 7807. [Google Scholar] [CrossRef]
- Toscano, F.; Fiorentino, C.; Capece, N.; Erra, U.; Travascia, D.; Scopa, A.; Drosos, M.; D’Antonio, P. Unmanned Aerial Vehicle for Precision Agriculture: A Review. IEEE Access 2024, 12, 69188–69205. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.; Liu, G.; Wang, D.; Qin, S.; Li, A.; Xu, J.-L.; He, Y. Intelligent agriculture: Deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1435016. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Xin, B.; Fang, H. Coordination Between Unmanned Aerial and Ground Vehicles: A Taxonomy and Optimization Perspective. IEEE Trans. Cybern. 2016, 46, 959–972. [Google Scholar] [CrossRef]
- Munasinghe, I.; Perera, A.; Deo, R.C. A Comprehensive Review of UAV-UGV Collaboration: Advancements and Challenges. J. Sens. Actuator Netw. 2024, 13, 81. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of unmanned systems for agricultural applications: A theoretical framework. Biosyst. Eng. 2022, 223, 61–80. [Google Scholar] [CrossRef]
- Cardone, M. Cooperative Autonomous Navigation. In Automated and Autonomous Navigation Powered by GNSS: Navigation Techniques and Applications, Future Automated Navigation; Cardone, M., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 203–217. ISBN 978-3-031-78753-9. [Google Scholar]
- Teschner, G.; Hajdu, C.; Hollósi, J.; Boros, N.; Kovács, A.; Ballagi, Á. Digital Twin of Drone-based Protection of Agricultural Areas. In Proceedings of the 2022 IEEE 1st International Conference on Internet of Digital Reality (IoD), Online, 23–24 June 2022; pp. 99–104. [Google Scholar]
- Arbanas, B.; Ivanovic, A.; Car, M.; Orsag, M.; Petrovic, T.; Bogdan, S. Decentralized planning and control for UAV–UGV cooperative teams. Auton. Robot. 2018, 42, 1601–1618. [Google Scholar] [CrossRef]
- Chakraborty, S.; Elangovan, D.; Govindarajan, P.L.; ELnaggar, M.F.; Alrashed, M.M.; Kamel, S. A Comprehensive Review of Path Planning for Agricultural Ground Robots. Sustainability 2022, 14, 9156. [Google Scholar] [CrossRef]
- Lytridis, C.; Kaburlasos, V.G.; Pachidis, T.; Manios, M.; Vrochidou, E.; Kalampokas, T.; Chatzistamatis, S. An Overview of Cooperative Robotics in Agriculture. Agronomy 2021, 11, 1818. [Google Scholar] [CrossRef]
- Bechar, A.; Vigneault, C. Agricultural robots for field operations. Part 2: Operations and systems. Biosyst. Eng. 2017, 153, 110–128. [Google Scholar] [CrossRef]
- Mammarella, M.; Comba, L.; Biglia, A.; Dabbene, F.; Gay, P. Cooperation of unmanned systems for agricultural applications: A case study in a vineyard. Biosyst. Eng. 2022, 223, 81–102. [Google Scholar] [CrossRef]
- Ivić, S.; Andrejčuk, A.; Družeta, S. Autonomous control for multi-agent non-uniform spraying. Appl. Soft Comput. 2019, 80, 742–760. [Google Scholar] [CrossRef]
- Katikaridis, D.; Moysiadis, V.; Tsolakis, N.; Busato, P.; Kateris, D.; Pearson, S.; Sørensen, C.G.; Bochtis, D. UAV-Supported Route Planning for UGVs in Semi-Deterministic Agricultural Environments. Agronomy 2022, 12, 1937. [Google Scholar] [CrossRef]
- McAllister, W.; Osipychev, D.; Davis, A.; Chowdhary, G. Agbots: Weeding a field with a team of autonomous robots. Comput. Electron. Agric. 2019, 163, 104827. [Google Scholar] [CrossRef]
- Lytridis, C.; Bazinas, C.; Kalathas, I.; Siavalas, G.; Tsakmakis, C.; Spirantis, T.; Badeka, E.; Pachidis, T.; Kaburlasos, V.G. Cooperative Grape Harvesting Using Heterogeneous Autonomous Robots. Robotics 2023, 12, 147. [Google Scholar] [CrossRef]
- Millard, A.G.; Ravikanna, R.; Groß, R.; Chesmore, D. Towards a Swarm Robotic System for Autonomous Cereal Harvesting. In Towards Autonomous Robotic Systems; Althoefer, K., Konstantinova, J., Zhang, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 458–461. [Google Scholar]
- Blender, T.; Buchner, T.; Fernandez, B.; Pichlmaier, B.; Schlegel, C. Managing a Mobile Agricultural Robot Swarm for a seeding task. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 6879–6886. [Google Scholar]
- Tokekar, P.; Hook, J.V.; Mulla, D.; Isler, V. Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Trans. Robot. 2016, 32, 1498–1511. [Google Scholar] [CrossRef]
- Menendez-Aponte, P.; Garcia, C.; Freese, D.; Defterli, S.; Xu, Y. Software and Hardware Architectures in Cooperative Aerial and Ground Robots for Agricultural Disease Detection. In Proceedings of the 2016 International Conference on Collaboration Technologies and Systems (CTS), Orlando FL, USA, 31 October–4 November 2016; pp. 354–358. [Google Scholar]
- Benos, L.; Moysiadis, V.; Kateris, D.; Tagarakis, A.C.; Busato, P.; Pearson, S.; Bochtis, D. Human-Robot Interaction in Agriculture: A Systematic Review. Sensors 2023, 23, 6776. [Google Scholar] [CrossRef]
- Elias, A.; Galvez Trigo, M.J.; Camacho-Villa, C. Analyzing Previous Human-Robot Interaction Implementation in Agriculture: What Can We Learn from the Past? In Proceedings of the 2025 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Melbourne, Australia, 4–6 March 2025; pp. 123–131. [Google Scholar]
- Moysiadis, V.; Benos, L.; Karras, G.; Kateris, D.; Peruzzi, A.; Berruto, R.; Papageorgiou, E.; Bochtis, D. Human–Robot Interaction through Dynamic Movement Recognition for Agricultural Environments. AgriEngineering 2024, 6, 2494–2512. [Google Scholar] [CrossRef]
- Urvina, R.P.; Guevara, C.L.; Vásconez, J.P.; Prado, A.J. An Integrated Route and Path Planning Strategy for Skid–Steer Mobile Robots in Assisted Harvesting Tasks with Terrain Traversability Constraints. Agriculture 2024, 14, 1206. [Google Scholar] [CrossRef]
- Vásconez, J.P.; Auat Cheein, F.A. Workload and production assessment in the avocado harvesting process using human-robot collaborative strategies. Biosyst. Eng. 2022, 223, 56–77. [Google Scholar] [CrossRef]
- Grimstad, L.; From, P.J. The Thorvald II Agricultural Robotic System. Robotics 2017, 6, 24. [Google Scholar] [CrossRef]
- Quigley, M.; Gerkey, B.P.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.N. ROS: An Open-Source Robot Operating System; In ICRA Workshop on Open Source Software. In Proceedings of the IEEE International Conference on Robotics and Automation, Koba, Japan, 12–17 May 2009; pp. 1–6. [Google Scholar]
- MAVLink Development Team. MAVLink Developer Guide. Available online: https://mavlink.io/ (accessed on 12 May 2025).
- Koubâa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access 2019, 7, 87658–87680. [Google Scholar] [CrossRef]
- Anagnostis, I.; Kotzanikolaou, P.; Douligeris, C. Understanding and Securing the Risks of Uncrewed Aerial Vehicle Services. IEEE Access 2025, 13, 47955–47995. [Google Scholar] [CrossRef]
- de Castro, G.G.R.; Santos, T.M.B.; Andrade, F.A.A.; Lima, J.; Haddad, D.B.; Honório, L.d.M.; Pinto, M.F. Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments. Machines 2024, 12, 200. [Google Scholar] [CrossRef]
- ROS Wiki. Mavros. Available online: https://wiki.ros.org/mavros (accessed on 12 May 2025).
- Moysiadis, V.; Katikaridis, D.; Benos, L.; Busato, P.; Anagnostis, A.; Kateris, D.; Pearson, S.; Bochtis, D. An Integrated Real-Time Hand Gesture Recognition Framework for Human-Robot Interaction in Agriculture. Appl. Sci. 2022, 12, 8160. [Google Scholar] [CrossRef]
- ROS Wiki. Roscore. Available online: https://wiki.ros.org/roscore (accessed on 12 May 2025).
- Thahsin, A.; Ananthapadmanabhan, A.; Pathak, S.; Maity, A.; Kasbekar, G.S. Enhancing MAVLink Security: Implementation and Performance Evaluation of Encryption on a Drone Testbed. In Proceedings of the 2025 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 15–17 January 2025; pp. 529–534. [Google Scholar]
- Reichstein, L.; Schopferer, S.; Jünger, F. A Comparison of Command and Control Communication Protocols for Unmanned Aircraft: STANAG 4586 vs. MAVLink. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Xi’an, China, 23–25 September 2022; pp. 1283–1292. [Google Scholar]
- Aljumah, A.; Ahanger, T.A.; Ullah, I. Challenges in Securing UAV IoT Framework: Future Research Perspective. IEEE Trans. Netw. Serv. Manag. 2025, 1, 2607–2629. [Google Scholar] [CrossRef]
- Bampasidou, M.; Goldgaber, D.; Gentimis, T.; Mandalika, A. Overcoming ‘Digital Divides’: Leveraging higher education to develop next generation digital agriculture professionals. Comput. Electron. Agric. 2024, 224, 109181. [Google Scholar] [CrossRef]
- Vasconez, J.P.; Kantor, G.A.; Auat Cheein, F.A. Human–robot interaction in agriculture: A survey and current challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Yerebakan, M.O.; Hu, B. Human–Robot Collaboration in Modern Agriculture: A Review of the Current Research Landscape. Adv. Intell. Syst. 2024, 6, 2300823. [Google Scholar] [CrossRef]
- Roshanianfard, A.; Noguchi, N.; Okamoto, H.; Ishii, K. A review of autonomous agricultural vehicles (The experience of Hokkaido University). J. Terramech. 2020, 91, 155–183. [Google Scholar] [CrossRef]
- Xu, G.; Chen, M.; He, X.; Liu, Y.; Wu, J.; Diao, P. Research on state-parameter estimation of unmanned Tractor—A hybrid method of DEKF and ARBFNN. Eng. Appl. Artif. Intell. 2024, 127, 107402. [Google Scholar] [CrossRef]
Column Name/Metric | Description | Phase |
---|---|---|
Trial | Unique sequential identifier for each run | 1, 2 |
Protocol | Communication protocol used (“MAVLink” or “FMIS”) | 1, 2 |
Environment | Test setting (“Empty Field” or “Orchard”) | 1, 2 |
Hat color | Color that indicates worker intent (“blue”, “white”, or “red”) | 1, 2 |
Total duration | Time elapsed from camera image transferred to Raspberry to UGV receiving color result and worker GPS coordinates | 1 |
UAV battery use (%) | Energy cost associated with the flight and any onboard processing of UAV | 1 |
Handshake latency | Time from UAV sending color info to UGV response confirming reception | 1 |
UGV battery use (%) | Energy consumption of the UGV while receiving data and preparing for action | 1 |
UAV CPU load (%) | Mean CPU usage of the UAV during messages broadcasting/receiving | 1 |
UGV-to-UAV position report latency | The time delay between the UGV initiating the message (“I reached the worker”) and the UAV successfully receiving and processing that information | 2 |
UGV battery use (%) | Energy cost during final navigation to worker and informing UAV | 2 |
UGV CPU load (%) | Average processing load on the UGV during communication with the UAV | 2 |
Notes | Observations, anomalies, or context-specific info | 1, 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katikaridis, D.; Benos, L.; Busato, P.; Kateris, D.; Papageorgiou, E.; Karras, G.; Bochtis, D. Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations. Robotics 2025, 14, 119. https://doi.org/10.3390/robotics14090119
Katikaridis D, Benos L, Busato P, Kateris D, Papageorgiou E, Karras G, Bochtis D. Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations. Robotics. 2025; 14(9):119. https://doi.org/10.3390/robotics14090119
Chicago/Turabian StyleKatikaridis, Dimitris, Lefteris Benos, Patrizia Busato, Dimitrios Kateris, Elpiniki Papageorgiou, George Karras, and Dionysis Bochtis. 2025. "Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations" Robotics 14, no. 9: 119. https://doi.org/10.3390/robotics14090119
APA StyleKatikaridis, D., Benos, L., Busato, P., Kateris, D., Papageorgiou, E., Karras, G., & Bochtis, D. (2025). Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations. Robotics, 14(9), 119. https://doi.org/10.3390/robotics14090119