AntGrip—Boosting Parallel Plate Gripper Performance Inspired by the Internal Hairs of Ant Mandibles
Abstract
1. Introduction
- Extending the capabilities of two-fingered grippers, particularly to make robust grasps of cylindrical objects.
- Enabling slimmer gripper designs for space-constrained grasping tasks, thanks to internal hairs that distribute grasping forces without the added bulk of traditional soft pads.
- Redefining the role of internal hairs of ant mandibles by demonstrating the potential mechanical impact of such hairs in securing a stable grasp.
2. Materials and Methods
2.1. Ant-Inspired Gripper Design
2.2. Stress Analysis
2.3. Experiments and Methodology
3. Results
3.1. Evaluation Metrics
3.2. Grasp Force Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Correll, N.; Bekris, K.E.; Berenson, D.; Brock, O.; Causo, A.; Hauser, K.; Okada, K.; Rodriguez, A.; Romano, J.M.; Wurman, P.R. Analysis and Observations From the First Amazon Picking Challenge. IEEE Trans. Autom. Sci. Eng. 2018, 15, 172–188. [Google Scholar] [CrossRef]
- Fujita, M.; Domae, Y.; Noda, A.; Ricardez, G.A.G.; Nagatani, T.; Zeng, A.; Song, S.; Rodriguez, A.; Causo, A.; Chen, I.M.; et al. What are the important technologies for bin picking? Technology analysis of robots in competitions based on a set of performance metrics. Adv. Robot. 2020, 34, 560–574. [Google Scholar] [CrossRef]
- Sorour, M.; Elgeneidy, K.; Srinivasan, A.; Hanheide, M.; Neumann, G. Grasping Unknown Objects Based on Gripper Workspace Spheres. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macao, China, 4–8 November 2019; pp. 1541–1547. [Google Scholar] [CrossRef]
- Habibi, M.; Sutera, G.; Guastella, D.C.; Muscato, G. Design and Experimental Validation of a 3D-Printed Two-Finger Gripper with a V-Shaped Profile for Lightweight Waste Collection. Robotics 2025, 14, 87. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, S.; Chow, S.L. Grippers and End-Effectors. In Handbook of Manufacturing Engineering and Technology; Nee, A.Y.C., Ed.; Springer: London, UK, 2015; pp. 2035–2070. [Google Scholar]
- Yu, K.T.; Fazeli, N.; Chavan-Dafle, N.; Taylor, O.; Donlon, E.; Lankenau, G.D.; Rodriguez, A. A Summary of Team MIT’s Approach to the Amazon Picking Challenge 2015. arXiv 2016, arXiv:1604.03639. [Google Scholar]
- Gustavo, R.; El Hafi, L.; von Drigalski, F. Standing on Giant’s Shoulders: Newcomer’s Experience from the Amazon Robotics Challenge 2017. In Advances on Robotic Item Picking: Applications in Warehousing and E-Commerce Fulfillment; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 87–100. [Google Scholar]
- Majumder, A.; Kundu, O.; Dutta, S.; Kumar, S.; Behera, L. Description of IITK-TCS System for ARC 2017. In Advances on Robotic Item Picking: Applications in Warehousing and E-Commerce Fulfillment; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 113–124. [Google Scholar]
- Morrison, D.; Tow, A.W.; McTaggart, M.; Smith, R.; Kelly-Boxall, N.; Wade-McCue, S.; Erskine, J.; Grinover, R.; Gurman, A.; Hunn, T.; et al. Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge. arXiv 2017, arXiv:1709.06283. [Google Scholar]
- Fujita, M.; Domae, Y.; Kawanishi, R.; Ricardez, G.A.G.; Kato, K.; Shiratsuchi, K.; Haraguchi, R.; Araki, R.; Fujiyoshi, H.; Akizuki, S.; et al. Bin-picking Robot using a Multi-gripper Switching Strategy based on Object Sparseness. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; pp. 1540–1547. [Google Scholar]
- Hernandez, C.; Bharatheesha, M.; Ko, W.; Gaiser, H.; Tan, J.; van Deurzen, K.; de Vries, M.; Van Mil, B.; van Egmond, J.; Burger, R.; et al. Team Delft’s Robot Winner of the Amazon Picking Challenge 2016. In RoboCup 2016: Robot World Cup XX; Behnke, S., Sheh, R., Sarıel, S., Lee, D.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 613–624. [Google Scholar]
- Huang, H.; Danielczuk, M.; Kim, C.M.; Fu, L.; Tam, Z.; Ichnowski, J.; Angelova, A.; Ichter, B.; Goldberg, K. Mechanical Search on Shelves using a Novel “Bluction” Tool. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 6158–6164. [Google Scholar]
- Valencia, A.J.; Idrovo, R.M.; Sappa, A.D.; Guingla, D.P.; Ochoa, D. A 3D vision based approach for optimal grasp of vacuum grippers. In Proceedings of the 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia-San Sebastian, Spain, 24–26 May 2017. [Google Scholar]
- Mantriota, G.; Messina, A. Theoretical and experimental study of the performance of flat suction cups in the presence of tangential loads. Mech. Mach. Theory 2011, 46, 607–617. [Google Scholar] [CrossRef]
- Avigal, Y.; Ichnowski, J.; Cao, M.Y.; Goldberg, K. GOMP-ST: Grasp Optimized Motion Planning for Suction Transport. arXiv 2022, arXiv:2203.08359. [Google Scholar] [CrossRef]
- Kang, L.; Seo, J.T.; Kim, S.H.; Kim, W.J.; Yi, B.J. Design and Implementation of a Multi-Function Gripper for Grasping General Objects. Appl. Sci. 2019, 9, 5266. [Google Scholar] [CrossRef]
- Pham, H.; Pham, Q.C. Critically fast pick-and-place with suction cups. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3045–3051. [Google Scholar]
- Nakamoto, H.; Ohtake, M.; Komoda, K.; Sugahara, A.; Ogawa, A. A Gripper System for Robustly Picking Various Objects Placed Densely by Suction and Pinching. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6093–6098. [Google Scholar]
- Wade-McCue, S.; Kelly-Boxall, N.; McTaggart, M.; Morrison, D.; Tow, A.W.; Erskine, J.; Grinover, R.; Gurman, A.; Hunn, T.; Lee, D.; et al. Design of a Multi-Modal End-Effector and Grasping System: How Integrated Design helped win the Amazon Robotics Challenge. arXiv 2017, arXiv:1710.01439. [Google Scholar]
- Nechyporenko, N.; Morales, A.; Cervera, E.; del Pobil, A.P. A Practical Approach for Picking Items in an Online Shopping Warehouse. Appl. Sci. 2021, 11, 5805. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.; Zhao, J.; Wang, X.; Zhou, W.; Liu, Y. Vision Based Picking System for Automatic Express Package Dispatching. In Proceedings of the 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019; pp. 797–802. [Google Scholar]
- Hasegawa, S.; Wada, K.; Okada, K.; Inaba, M. A Three-Fingered Hand with a Suction Gripping System for Warehouse Automation. J. Robot. Mechatron. 2019, 31, 289–304. [Google Scholar] [CrossRef]
- Vu, Q.; Ronzhin, A. A Model of Four-Finger Gripper with a Built-in Vacuum Suction Nozzle for Harvesting Tomatoes. In Proceedings of the 14th International Conference on Electromechanics and Robotics, Ufa, Russia, 15–18 April 2020; pp. 149–160. [Google Scholar]
- Spectrum, I. Amazon’s Vulcan Robots Now Stow Items Faster Than Humans. Available online: https://spectrum.ieee.org/amazon-stowing-robots? (accessed on 25 July 2025).
- RightHand Robotics Inc. RightPick2. Available online: https://www.righthandrobotics.com/products (accessed on 25 June 2025).
- Wang, Z.; Furuta, H.; Hirai, S.; Kawamura, S. A Scooping-Binding Robotic Gripper for Handling Various Food Products. Front. Robot. AI 2021, 8, 640805. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kinugawa, J.; Arai, S.; Kosuge, K. Design and Development of Compactly Folding Parallel Open-Close Gripper with Wide Stroke. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 2408–2414. [Google Scholar]
- Guo, M.; Gealy, D.V.; Liang, J.; Mahler, J.; Goncalves, A.; McKinley, S.; Ojea, J.A.; Goldberg, K. Design of parallel-jaw gripper tip surfaces for robust grasping. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 2831–2838. [Google Scholar]
- Harada, K.; Tsuji, T.; Nagata, K.; Yamanobe, N.; Maruyama, K.; Nakamura, A.; Kawai, Y. Grasp planning for parallel grippers with flexibility on its grasping surface. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 1540–1546. [Google Scholar]
- Fan, Y.; Lin, H.C.; Tang, T.; Tomizuka, M. Grasp Planning for Customized Grippers by Iterative Surface Fitting. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 28–34. [Google Scholar]
- Mason, M.T. Toward robotic manipulation. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 1–28. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.; Sun, Y.; Wu, J.; Wu, Z. A Mathematical Modeling Method Elucidating the Integrated Gripping Performance of Ant Mandibles and Bio-inspired Grippers. J. Bionic Eng. 2020, 17, 732–746. [Google Scholar] [CrossRef]
- B, W.; O, H.; F, V.; T, W.; F, R.; C, E. Understanding the ant’s unique biting system can improve surgical needle holders. Proc. Natl. Acad. Sci. USA 2024, 121, e2201598121. [Google Scholar]
- Winand, J.; Büscher, T.H.; Gorb, S.N. TriTrap: A Robotic Gripper Inspired by Insect Tarsal Chains. Biomimetics 2024, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Zi, P.; Xu, K.; Tian, Y.; Ding, X. A mechanical adhesive gripper inspired by beetle claw for a rock climbing robot. Mech. Mach. Theory 2023, 181, 105168. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Li, X.; Hou, X.; Zhao, Q.; Meng, Y.; Tian, Y. An Underactuated Adaptive Microspines Gripper for Rough Wall. Biomimetics 2023, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Stajniak, K. Antonyo Photography. Available online: https://ant-photo.eu/en/ (accessed on 25 July 2025).
- Gronenberg, W.; Tautz, J. The sensory basis for the trap-jaw mechanism in the ant Odontomachus bauri. J. Comp. Physiol. A 1994, 174, 49–60. [Google Scholar] [CrossRef]
- Boublil, B.L.; Diebold, C.A.; Moss, C.F. Mechanosensory Hairs and Hair-like Structures in the Animal Kingdom: Specializations and Shared Functions Serve to Inspire Technology Applications. Sensors 2021, 21, 6375. [Google Scholar] [CrossRef]
- Wheeler, W.M. On Certain Modified Hairs Peculiar to the Ants of Arid Regions. Biol. Bull. 1907, 13, 185–202. [Google Scholar] [CrossRef]
- Spangler, H.G.; Rettenmeyer, C.W. The Function of the Ammochaetae or Psammophores of Harvester Ants, Pogonomyrmex spp. J. Kans. Entomol. Soc. 1966, 39, 739–745. [Google Scholar]
- Porter, S.D.; Jorgensen, C.D. Psammophores: Do Harvester Ants (Hymenoptera: Formicidae) Use These Pouches to Transport Seeds? J. Kans. Entomol. Soc. 1990, 63, 138–149. [Google Scholar]
- Paul, J. Mandible movements in ants. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 131, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Cristian, K.; Marco, A.; Alexandre, C.F.; Evan, E.; Marcio, P. Mandibular morphology, task specialization and bite mechanics in Pheidole ants (Hymenoptera: Formicidae). J. R. Soc. 2021, 18, 20210318. [Google Scholar]
- Gronenberg, W.; Paul, J.; Just, S.; Hölldobler, B. Mandible muscle fibers in ants: Fast or powerful? Cell Tissue Res. 1997, 289, 347–361. [Google Scholar] [CrossRef]
- Wang, B.; Si, Y.; Chadha, C.; Allison, J.T.; Patterson, A.E. Nominal Stiffness of GT-2 Rubber-Fiberglass Timing Belts for Dynamic System Modeling and Design. Robotics 2018, 7, 75. [Google Scholar] [CrossRef]
- Neobotix GmbH. Neobotix Two-Finger-Gripper. Available online: https://www.neobotix-robots.com/products/robot-gripper-1/two-finger-gripper (accessed on 28 July 2025).
- Robotiq Inc. The Robotiq 2-Finger Grippers. Available online: https://robotiq.com/products/adaptive-grippers#Two-Finger-Gripper (accessed on 28 July 2025).
- OnRobot A/S. 2FG7 Parallel Gripper. Available online: https://onrobot.com/en/products/2fg7-finger-gripper (accessed on 28 July 2025).
- Budynas, R.G.; Nisbett, J.K. Shigley’s Mechanical Engineering Design, 11th ed.; McGraw-Hill: New York, NY, USA, 2015. [Google Scholar]
- Kitronyx Inc. Kitronyx FSR Matrix and Force Controller. Available online: https://www.kitronyx.com/store/?idx=34 (accessed on 28 July 2025).
- Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 2021, 6, eabj7562. [Google Scholar] [CrossRef]
- Sui, D.; Zhu, Y.; Zhao, S.; Wang, T.; Agrawal, S.K.; Zhang, H.; Zhao, J. A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping. Soft Robot. 2022, 9, 36–56. [Google Scholar] [CrossRef]
- Ruotolo, W.; Brouwer, D.; Cutkosky, M.R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Sci. Robot. 2021, 6, eabi9773. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Dhyan, S.B.; Mai, V.; Han, B.S.; Chow, W.T. Bioinspiration and Biomimetic Art in Robotic Grippers. Micromachines 2023, 14, 1772. [Google Scholar] [CrossRef] [PubMed]
Object | Weight | Grip | No Hair | Hair 30° D1 | Hair 45° D1 | Hair 60° D1 | Hair 75° D1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Grams) | Force (N) | Loose | Firm | Loose | Firm | Loose | Firm | Loose | Firm | Loose | Firm | ||
1 | Cereals box | 441 | 30 | ||||||||||
2 | Coffee jar1 | 365 | 40 | 2 | 5 | 2 | 6 | 1 | 8 | ||||
3 | Coffee jar2 | 542 | 40 | 1 | 8 | ||||||||
4 | Dishwash liquid p1 | 422 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
5 | Dishwash liquid p2 | 422 | 40 | 0 | 7 | ||||||||
6 | Glass cup p1 * | 252 | 30 | 5 | 4 | ||||||||
7 | Glass cup p2 * | 252 | 30 | 6 | 2 | 0 | 9 | ||||||
8 | Honey bottle p1 | 365 | 40 | 0 | 9 | 0 | 9 | ||||||
9 | Honey bottle p2 | 365 | 40 | 0 | 5 | 0 | 7 | 0 | 6 | 0 | 7 | 0 | 7 |
10 | Chocolate powder | 491 | 40 | 0 | 9 | ||||||||
11 | Jam jar p1 | 492 | 40 | 0 | 0 | 10 | 0 | 9 | 0 | 5 | 5 | 6 | 4 |
12 | Jam jar p2 | 492 | 40 | 0 | 3 | 2 | 4 | 0 | 6 | 0 | 6 | 0 | 5 |
13 | Ketchup bottle | 478 | 40 | 0 | 4 | 8 | 2 | 1 | 8 | 5 | 5 | ||
14 | Mug | 323 | 40 | 8 | 0 | 10 | 0 | 10 | 0 | 10 | 0 | 10 | 0 |
15 | Nail polish | 203 | 30 | 3 | 0 | 3 | 0 | 1 | 3 | 5 | 4 | ||
16 | Nutella bottle | 568 | 40 | 6 | 1 | 9 | 1 | 5 | 5 | 6 | 4 | 6 | 4 |
17 | Oil bottle p1 | 491 | 40 | 2 | 2 | 1 | 6 | 0 | 8 | ||||
18 | Oil bottle p2 | 491 | 40 | 7 | 1 | 2 | 6 | ||||||
19 | Peanut butter bottle | 448 | 40 | 8 | 1 | ||||||||
20 | Sauce bottle | 562 | 40 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 8 | 0 |
21 | Shampoo p1 | 455 | 40 | ||||||||||
22 | Shampoo p2 | 455 | 40 | ||||||||||
23 | Sprayer p1 | 571 | 40 | 3 | 4 | 0 | 8 | 1 | 8 | 1 | 6 | 3 | 1 |
24 | Sprayer p2 | 571 | 40 | 0 | 0 | 0 | 5 | 1 | 4 | 0 | 2 | 0 | 1 |
25 | Tea bag | 138 | 10 | ||||||||||
26 | Tin can p1 | 484 | 40 | 8 | 0 | ||||||||
27 | Tin can p2 | 484 | 40 | 0 | 0 | 1 | 7 | 0 | 8 | ||||
28 | Tooth paste | 117 | 10 | ||||||||||
29 | Water bottle p1 | 529 | 30 | ||||||||||
30 | Water bottle p2 | 529 | 30 | 0 | 6 | ||||||||
Total (out of 300 trials per gripper variation) | 61 | 131 | 48 | 207 | 32 | 217 | 35 | 229 | 43 | 223 | |||
Average grasp rate | |||||||||||||
Number of objects with quality grasps |
Object | Hair at 60° D2 | Hair at 75° D2 | Hair at 60° D3 | |||
---|---|---|---|---|---|---|
Loose | Firm | Loose | Firm | Loose | Firm | |
Cereals box | ||||||
Coffee jar1 | ||||||
Coffee jar2 | ||||||
Dishwash liquid p1 | 0 | 0 | 0 | 0 | 0 | 0 |
Dishwash liquid p2 | ||||||
Glass cup p1 | ||||||
Glass cup p2 | ||||||
Honey bottle p1 | ||||||
Honey bottle p2 | 0 | 8 | 0 | 6 | 0 | 8 |
Chocolate powder | ||||||
Jam jar p1 | ||||||
Jam jar p2 | 0 | 8 | 0 | 9 | ||
Ketchup bottle | 1 | 8 | ||||
Mug | 5 | 5 | 3 | 7 | ||
Nail polish | 3 | 6 | 1 | 7 | ||
Nutella bottle | 6 | 4 | 5 | 5 | 6 | 4 |
Oil bottle p1 | 0 | 6 | ||||
Oil bottle p2 | ||||||
Peanut butter bottle | ||||||
Sauce bottle | 7 | 0 | ||||
Shampoo p1 | ||||||
Shampoo p2 | ||||||
Sprayer p1 | 5 | 0 | 2 | 0 | 5 | 0 |
Sprayer p2 | 0 | 0 | 0 | 2 | 0 | 0 |
Tea bag | ||||||
Tin can p1 | ||||||
Tin can p2 | ||||||
Tooth paste | ||||||
Water bottle p1 | ||||||
Water bottle p2 | ||||||
Total | 30 | 239 | 8 | 255 | 17 | 253 |
Av. grasp rate | ||||||
Quality grasps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorour, M.; Webb, B. AntGrip—Boosting Parallel Plate Gripper Performance Inspired by the Internal Hairs of Ant Mandibles. Robotics 2025, 14, 105. https://doi.org/10.3390/robotics14080105
Sorour M, Webb B. AntGrip—Boosting Parallel Plate Gripper Performance Inspired by the Internal Hairs of Ant Mandibles. Robotics. 2025; 14(8):105. https://doi.org/10.3390/robotics14080105
Chicago/Turabian StyleSorour, Mohamed, and Barbara Webb. 2025. "AntGrip—Boosting Parallel Plate Gripper Performance Inspired by the Internal Hairs of Ant Mandibles" Robotics 14, no. 8: 105. https://doi.org/10.3390/robotics14080105
APA StyleSorour, M., & Webb, B. (2025). AntGrip—Boosting Parallel Plate Gripper Performance Inspired by the Internal Hairs of Ant Mandibles. Robotics, 14(8), 105. https://doi.org/10.3390/robotics14080105