Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping
Abstract
1. Introduction
- (a)
- Development of a reliable mobile manipulation system by combining the state-of-the-art perception, mapping, navigation, and grasping subsystems.
- (b)
- Construction of a hierarchical navigation system with CLF restricting deviation from trajectory and CBF ensuring obstacle avoidance.
- (c)
- Incorporation of learning-based and optimization gripping algorithms with antipodal gripper’s kinematic constraints to achieve higher success rate of grasping.
2. Related Works
3. System Design and System Integration
3.1. System Hardware Design
3.1.1. Mobile Platform
3.1.2. Robot Manipulators
3.2. Communication Framework
3.3. System Integration and System Behaviors
3.3.1. Task Planning
3.3.2. Mapping and Object Detection
3.3.3. Navigation
3.3.4. Scene Understanding and Grasping
4. Optimization-Based Motion Control Algorithm for Mobile Robot
4.1. Modeling of the Differential-Drive Mobile Platform
4.2. Construction of Lyapunov Function
- ,
4.3. Construction of Control Barrier Function
4.4. Quadratic Program Formulation
5. Learning-Optimization Hybrid Grasping Method
5.1. Scene Interaction Module
5.1.1. Fingertip Dataset Generation
5.1.2. Fingertip Prediction
5.1.3. Ensemble of Scalar and Directional Data
- Applying rotational parameters to transform the image. is used as the input transformation with rotational parameters.
- Transforming estimates to restore their original alignment.
- Calculating the arithmetic mean for scalar values and the circular mean for directional data.
- The above methodology produces both scalar estimate and directional estimates as follows:
5.1.4. Interpolating to Interference Space
5.2. Grasping Synthesis Algorithm
5.2.1. Kinematic Constraint
5.2.2. Scene Constraint
5.2.3. Objective Function
- To ensure grasping stability, the configurations should achieve force closure. The grasping stability measure evaluates the candidates based on the distance from the object’s center of mass to fingertip positions .
- The probability function reflects the aggregation of the scalar estimates of both fingertips .
- The orientation function is based on the angular constraint of the antipodal grippers: . Therefore,
5.3. Collision Avoidance for Grasping
6. Experimental Results
6.1. Environment Layout
6.2. Workflow Generation
6.3. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seyboldt, R.; Frese, C.; Zube, A. Sampling-based path planning to cartesian goal positions for a mobile manipulator exploiting kinematic redundancy. In Proceedings of the 47st International Symposium on Robotics (ISR 2016), Munich, Germany, 21–22 June 2016; pp. 1–9. [Google Scholar]
- Spahn, M.; Brito, B.; Alonso-Mora, J. Coupled mobile manipulation via trajectory optimization with free space decomposition. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 12759–12765. [Google Scholar]
- Xiong, H.; Mendonca, R.; Shaw, K.; Pathak, D. Adaptive mobile manipulation for articulated objects in the open world. arXiv 2024, arXiv:2401.14403. [Google Scholar]
- Wang, C.; Zhang, Q.; Tian, Q.; Li, S.; Wang, X.; Lane, D.; Petillot, Y.; Wang, S. Learning mobile manipulation through deep reinforcement learning. Sensors 2020, 20, 939. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Sreenath, K. Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation. In Proceedings of the Robotics: Science and Systems, Cambridge, MA, USA, 12–16 July 2017; Volume 13, pp. 1–10. [Google Scholar]
- Desai, M.; Ghaffari, A. Clf-cbf based quadratic programs for safe motion control of nonholonomic mobile robots in presence of moving obstacles. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Sapporo, Japan, 11–15 July 2022; pp. 16–21. [Google Scholar]
- Ames, A.D.; Grizzle, J.W.; Tabuada, P. Control barrier function based quadratic programs with application to adaptive cruise control. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 6271–6278. [Google Scholar]
- Haviland, J.; Sünderhauf, N.; Corke, P. A holistic approach to reactive mobile manipulation. IEEE Robot. Autom. Lett. 2022, 7, 3122–3129. [Google Scholar] [CrossRef]
- Haviland, J.; Corke, P. NEO: A novel expeditious optimisation algorithm for reactive motion control of manipulators. IEEE Robot. Autom. Lett. 2021, 6, 1043–1050. [Google Scholar] [CrossRef]
- Burgess-Limerick, B.; Leitner, C.L.J.; Corke, P. Enabling failure recovery for on-the-move mobile manipulation. arXiv 2023, arXiv:2305.08351. [Google Scholar]
- Zimmermann, S.; Poranne, R.; Coros, S. Go fetch!—Dynamic grasps using boston dynamics spot with external robotic arm. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 4488–4494. [Google Scholar]
- Sayar, E.; Gao, X.; Hu, Y.; Chen, G.; Knoll, A. Toward coordinated planning and hierarchical optimization control for highly redundant mobile manipulator. ISA Trans. 2024, 146, 16–28. [Google Scholar] [CrossRef]
- Huang, J.K.; Grizzle, J.W. Efficient anytime clf reactive planning system for a bipedal robot on undulating terrain. IEEE Trans. Robot. 2023, 39, 2093–2110. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, B.; Sreenath, K. Safety-critical model predictive control with discrete-time control barrier function. In Proceedings of the 2021 American Control Conference (ACC), Xi’an, China, 25–28 May 2021; pp. 3882–3889. [Google Scholar]
- Cao, H.; Xiong, H.; Zeng, W.; Jiang, H.; Cai, Z.; Hu, L.; Zhang, L.; Lu, W. Safe Reinforcement Learning-Based Motion Planning for Functional Mobile Robots Suffering Uncontrollable Mobile Robots. IEEE Trans. Intell. Transp. Syst. 2024, 25, 4346–4363. [Google Scholar] [CrossRef]
- Dong, K.; Pereida, K.; Shkurti, F.; Schoellig, A.P. Catch the ball: Accurate high-speed motions for mobile manipulators via inverse dynamics learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 6718–6725. [Google Scholar]
- Miller, A.T.; Allen, P.K. Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 2004, 11, 110–122. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Jiao, Z.; Zhu, Y.; Zhu, S.C. Synthesizing diverse and physically stable grasps with arbitrary hand structures using differentiable force closure estimator. IEEE Robot. Autom. Lett. 2021, 7, 470–477. [Google Scholar] [CrossRef]
- Roa, M.A.; Suárez, R. Grasp quality measures: Review and performance. Auton. Robot. 2015, 38, 65–88. [Google Scholar] [CrossRef]
- Varley, J.; DeChant, C.; Richardson, A.; Ruales, J.; Allen, P. Shape completion enabled robotic grasping. In Proceedings of the 2017 IEEE/RSJ Inte. Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2442–2447. [Google Scholar]
- Newbury, R.; Gu, M.; Chumbley, L.; Mousavian, A.; Eppner, C.; Leitner, J.; Bohg, J.; Morales, A.; Asfour, T.; Kragic, D.; et al. Deep learning approaches to grasp synthesis: A review. IEEE Trans. Robot. 2023, 39, 3994–4015. [Google Scholar] [CrossRef]
- Lundell, J.; Corona, E.; Le, T.N.; Verdoja, F.; Weinzaepfel, P.; Rogez, G.; Moreno-Noguer, F.; Kyrki, V. Multi-fingan: Generative coarse-to-fine sampling of multi-finger grasps. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 4495–4501. [Google Scholar]
- Veres, M.; Moussa, M.; Taylor, G.W. Modeling grasp motor imagery through deep conditional generative models. IEEE Robot. Autom. Lett. 2017, 2, 757–764. [Google Scholar] [CrossRef]
- Kappler, D.; Bohg, J.; Schaal, S. Leveraging big data for grasp planning. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4304–4311. [Google Scholar]
- Wang, X.; Xu, Q. Transferring Grasping Across Grippers: Learning-Optimization Hybrid Framework for Generalized Planar Grasp Generation. IEEE Trans. Robot. 2024, 40, 3388–3405. [Google Scholar] [CrossRef]
- Blomqvist, K.; Breyer, M.; Cramariuc, A.; Förster, J.; Grinvald, M.; Tschopp, F.; Chung, J.J.; Ott, L.; Nieto, J.; Siegwart, R. Go fetch: Mobile manipulation in unstructured environments. arXiv 2020, arXiv:2004.00899. [Google Scholar]
- Lim, J.; Lee, I.; Shim, I.; Jung, H.; Joe, H.M.; Bae, H.; Sim, O.; Oh, J.; Jung, T.; Shin, S.; et al. Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. J. Field Robot. 2017, 34, 802–829. [Google Scholar] [CrossRef]
- Spenko, M.; Buerger, S.; Iagnemma, K. The DARPA Robotics Challenge Finals: Humanoid Robots to the Rescue; Springer: Berlin/Heidelberg, Germany, 2018; Volume 121. [Google Scholar]
- Kindle, J.; Furrer, F.; Novkovic, T.; Chung, J.J.; Siegwart, R.; Nieto, J. Whole-body control of a mobile manipulator using end-to-end reinforcement learning. arXiv 2020, arXiv:2003.02637. [Google Scholar]
- Li, M.; Yang, Z.; Zha, F.; Wang, X.; Wang, P.; Li, P.; Ren, Q.; Chen, F. Design and analysis of a whole-body controller for a velocity controlled robot mobile manipulator. Sci. China Inf. Sci. 2020, 63, 1–15. [Google Scholar] [CrossRef]
- Dietrich, A.; Wimböck, T.; Täubig, H.; Albu-Schäffer, A.; Hirzinger, G. Extensions to reactive self-collision avoidance for torque and position controlled humanoids. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3455–3462. [Google Scholar]
- Gorjup, G.; Gerez, L.; Liarokapis, M. Leveraging Human Perception in Robot Grasping and Manipulation Through Crowdsourcing and Gamification. Front. Robot. AI 2021, 8, 652760. [Google Scholar] [CrossRef]
- Engemann, H.; Du, S.; Kallweit, S.; Cönen, P.; Dawar, H. Omnivil–an autonomous mobile manipulator for flexible production. Sensors 2020, 20, 7249. [Google Scholar] [CrossRef]
- Stückler, J.; Schwarz, M.; Behnke, S. Mobile manipulation, tool use, and intuitive interaction for cognitive service robot cosero. Front. Robot. AI 2016, 3, 58. [Google Scholar] [CrossRef]
- Outón, J.L.; Merino, I.; Villaverde, I.; Ibarguren, A.; Herrero, H.; Daelman, P.; Sierra, B. A real application of an autonomous industrial mobile manipulator within industrial context. Electronics 2021, 10, 1276. [Google Scholar] [CrossRef]
- Pantusin, F.J.; Carvajal, C.P.; Ortiz, J.S.; Andaluz, V.H. Virtual teleoperation system for mobile manipulator robots focused on object transport and manipulation. Technologies 2024, 12, 146. [Google Scholar] [CrossRef]
- Iriondo, A.; Lazkano, E.; Susperregi, L.; Urain, J.; Fernandez, A.; Molina, J. Pick and place operations in logistics using a mobile manipulator controlled with deep reinforcement learning. Appl. Sci. 2019, 9, 348. [Google Scholar] [CrossRef]
- Pankert, J.; Hutter, M. Perceptive model predictive control for continuous mobile manipulation. IEEE Robot. Autom. Lett. 2020, 5, 6177–6184. [Google Scholar] [CrossRef]
- Bohren, J.; Rusu, R.B.; Jones, E.G.; Marder-Eppstein, E.; Pantofaru, C.; Wise, M.; Mösenlechner, L.; Meeussen, W.; Holzer, S. Towards autonomous robotic butlers: Lessons learned with the PR2. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5568–5575. [Google Scholar]
- Nicolescu, M.N.; Matarić, M.J. A hierarchical architecture for behavior-based robots. In Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, Bologna, Italy, 15–19 July 2002; pp. 227–233. [Google Scholar]
- Zhang, J.; Tang, L.; Song, Y.; Meng, Q.; Qian, H.; Shao, J.; Song, W.; Zhu, S.; Gu, J. FLTRNN: Faithful long-horizon task planning for robotics with large language models. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 6680–6686. [Google Scholar]
- Yenamandra, S.; Ramachandran, A.; Yadav, K.; Wang, A.; Khanna, M.; Gervet, T.; Yang, T.Y.; Jain, V.; Clegg, A.W.; Turner, J.; et al. Homerobot: Open-vocabulary mobile manipulation. arXiv 2023, arXiv:2306.11565. [Google Scholar]
- Jauhri, S.; Peters, J.; Chalvatzaki, G. Robot learning of mobile manipulation with reachability behavior priors. IEEE Robot. Autom. Lett. 2022, 7, 8399–8406. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Height with folded UR3e arms | 1275 |
Length | 1055 |
Width | 743 |
Total weight | 200 |
Max. payload (mobile platform) | 200 |
Max. velocity (mobile platform) | 4 −1 |
Wheel diameter | 400 |
Surmountable obstacle height | 100 |
Max. approaching angle | 15° |
Max. reach (UR3e) | 500 |
Max. payload (UR3e) | 3 |
Max. stroke (Robotiq gripper) | 85 |
Grip force (Robotiq gripper) | 20 to 235 |
Max. payload (Robotiq gripper) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wang, X.; Wu, Z.; Xu, Q. Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping. Robotics 2025, 14, 96. https://doi.org/10.3390/robotics14070096
Cao Y, Wang X, Wu Z, Xu Q. Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping. Robotics. 2025; 14(7):96. https://doi.org/10.3390/robotics14070096
Chicago/Turabian StyleCao, Yuning, Xianli Wang, Zehao Wu, and Qingsong Xu. 2025. "Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping" Robotics 14, no. 7: 96. https://doi.org/10.3390/robotics14070096
APA StyleCao, Y., Wang, X., Wu, Z., & Xu, Q. (2025). Development of a Multifunctional Mobile Manipulation Robot Based on Hierarchical Motion Planning Strategy and Hybrid Grasping. Robotics, 14(7), 96. https://doi.org/10.3390/robotics14070096