CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System
Abstract
:1. Introduction
- The entire mechanical and software architecture is fully open-source (CC0-1.0 license) to reduce the focus on mechanical design and encourage community-driven advancement of the platform to address higher-level challenges, especially clinical translation [23].
- A modularized architecture, where the isolated actuator modules for each degree of freedom (DoF) facilitate seamless reconfiguration for similar tasks beyond the initial targeted application of AF ablation; this versatility can boost adoption across domains and integration of the solution with existing software. It overcomes the limitations set by systems designed for specific procedures and those constrained to single-catheter models.
- A catheter-agnostic design to accommodate a variety of commercial catheters, promoting interoperability and accessibility—this is a highlighted limitation of most vascular robots [24]. While the CathROB system is an open platform, it is only compatible with commercially available standard electrophysiology catheters and is limited by its lack of customization and adaptability with various endoscopic catheters for remote navigation outside the scope of standard arrhythmias [18]. Therefore, our goal was to address the shortcomings in prior works that suffer from poor compatibility with interventional devices, either relying on modified research catheters or being limited to specific commercial models [24].
- We demonstrate the system’s capabilities through extensive multi-user clinical evaluation, emphasizing a human-centered design approach to account for clinical needs, practices, and the importance of its integration with the catheterization lab and usability assessments from clinical experts. We capture the system’s performance through benchtop phantom experiments and direct assessment by experienced clinicians with 0–25 years of experience. In conjunction with this article, we have released the presented work in [23].
2. System Description
2.1. Peripheral Unit: Robot
2.1.1. Catheter-Agnostic Handle Gripper
2.1.2. Range-of-Motion Characterization
2.2. Software Architecture for Telerobotic Control
3. Operator’s Workstation: Visual Feedback and Catheter Modeling
3.1. Catheter Tip Modeling
3.2. Model-Based State Estimation
4. System Evaluation
4.1. Experimental Setup
4.2. Assessment of Motion Smoothness
4.3. Assessment of Targeting Performance
4.4. Clinician Evaluation: Questionnaire
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
- The hardware design files and bill of materials for the mechanical embedded components. These are in the form of CAD files that can be used for manufacturing.
- The embedded firmware code running on the microcontrollers with peripherals that control the system.
- The wiring diagram for each individual module.
- Documentation explaining the system design, assembly instructions, and usage guides.
Acknowledgments
Conflicts of Interest
References
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Kuck, K.H.; Cappato, R.; Brugada, J.; Camm, A.J.; Chen, S.; Crijns, H.J.G.; Damiano, R.J.; Davies, D.W.; DiMarco, J.; et al. News from the Heart Rhythm Society: 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions, Endpoints, and Research Trial Design: A report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS). EP Eur. 2012, 4, 632–696. [Google Scholar]
- Morillo, C.A.; Banerjee, A.; Perel, P.; Wood, D.; Jouven, X. Atrial fibrillation: The current epidemic. J. Geriatr. Cardiol. JGC 2017, 14, 195. [Google Scholar] [PubMed]
- Aagaard, P.; Natale, A.; Di Biase, L. Robotic navigation for catheter ablation: Benefits and challenges. Expert Rev. Med. Devices 2015, 12, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Bassil, G.; Markowitz, S.M.; Liu, C.F.; Thomas, G.; Ip, J.E.; Lerman, B.B.; Cheung, J.W. Robotics for catheter ablation of cardiac arrhythmias: Current technologies and practical approaches. J. Cardiovasc. Electrophysiol. 2020, 31, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Faddis, M.N.; Chen, J.; Osborn, J.; Talcott, M.; Cain, M.E.; Lindsay, B.D. Magnetic guidance system for cardiac electrophysiology: A prospective trial of safety and efficacy in humans. J. Am. Coll. Cardiol. 2003, 42, 1952–1958. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Neuzil, P.; Malchano, Z.J.; Vijaykumar, R.; Cury, R.; Abbara, S.; Weichet, J.; McPherson, C.D.; Ruskin, J.N. View-synchronized robotic image-guided therapy for atrial fibrillation ablation: Experimental validation and clinical feasibility. Circulation 2007, 115, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Zhao, Y.; Zhang, J.; Li, H.; Li, K.; Zhang, J. The critical technologies of vascular interventional robotic catheterization: A Review. IEEE Sens. J. 2023, 23, 30051–30069. [Google Scholar] [CrossRef]
- Khan, E.M.; Frumkin, W.; Ng, G.A.; Neelagaru, S.; Abi-Samra, F.M.; Lee, J.; Giudici, M.; Gohn, D.; Winkle, R.A.; Sussman, J.; et al. First experience with a novel robotic remote catheter system: Amigo™ mapping trial. J. Interv. Card. Electrophysiol. 2013, 37, 121–129. [Google Scholar] [CrossRef]
- Ramadani, A.; Bui, M.; Wendler, T.; Schunkert, H.; Ewert, P.; Navab, N. A survey of catheter tracking concepts and methodologies. Med. Image Anal. 2022, 82, 102584. [Google Scholar] [CrossRef]
- Gupta, P.; Schomburg, J.; Krishna, S.; Adejoro, O.; Wang, Q.; Marsh, B.; Nguyen, A.; Genere, J.R.; Self, P.; Lund, E.; et al. Development of a classification scheme for examining adverse events associated with medical devices, specifically the DaVinci surgical system as reported in the FDA MAUDE database. J. Endourol. 2017, 31, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Thai, M.T.; Hoang, T.T.; Davies, J.; Phan, P.T.; Zhu, K.; Wu, L.; Brodie, M.A.; Tsai, D.; Ha, Q.P.; et al. Development of a soft robotic catheter for vascular intervention surgery. Sens. Actuators A Phys. 2023, 357, 114380. [Google Scholar] [CrossRef]
- Gao, A.; Liu, H.; Zou, Y.; Wang, Z.; Liang, M.; Wang, Z. A contact-aided asymmetric steerable catheter for atrial fibrillation ablation. IEEE Robot. Autom. Lett. 2017, 2, 1525–1531. [Google Scholar] [CrossRef]
- Le, H.M.; Do, T.N.; Phee, S.J. A survey on actuators-driven surgical robots. Sens. Actuators A Phys. 2016, 247, 323–354. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Teh, T.; Thai, M.T.; Phan, P.T.; Hoang, T.T.; Low, H.; Davies, J.; Nicotra, E.; Lovell, N.H.; Do, T.N. Bidirectional Soft Robotic Catheter for Arrhythmia Treatment. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: New York, NY, USA, 2022; pp. 9579–9585. [Google Scholar]
- Hwang, J.; Kim, J.y.; Choi, H. A review of magnetic actuation systems and magnetically actuated guidewire-and catheter-based microrobots for vascular interventions. Intell. Serv. Robot. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Xu, Z.; Mower, C.E.; Wu, H.; Walker, Q.; Ayoade, O.; Cotic, N.; Behar, J.; Williams, S.; Arujuna, A.; et al. Design and Development of a Novel Force-Sensing Robotic System for the Transseptal Puncture in Left Atrial Catheter Ablation. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: New York, NY, USA, 2023; pp. 6851–6858. [Google Scholar]
- Cercenelli, L.; Bortolani, B.; Marcelli, E. CathROB: A highly compact and versatile remote catheter navigation system. Appl. Bionics Biomech. 2017, 2017, 2712453. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.P.; Abah, C.; Velasco-Enriquez, M.; Herman, M.; Bennett, G.J.; Vela, E.A.; Walsh, C.J. The soft robotics toolkit: Strategies for overcoming obstacles to the wide dissemination of soft-robotic hardware. IEEE Robot. Autom. Mag. 2017, 24, 57–64. [Google Scholar] [CrossRef]
- Faure, F.; Duriez, C.; Delingette, H.; Allard, J.; Gilles, B.; Marchesseau, S.; Talbot, H.; Courtecuisse, H.; Bousquet, G.; Peterlik, I.; et al. Sofa: A multi-model framework for interactive physical simulation. In Soft Tissue Biomechanical Modeling for Computer Assisted Surgery; Springer: Berlin/Heidelberg, Germany, 2012; pp. 283–321. [Google Scholar]
- Coevoet, E.; Morales-Bieze, T.; Largilliere, F.; Zhang, Z.; Thieffry, M.; Sanz-Lopez, M.; Carrez, B.; Marchal, D.; Goury, O.; Dequidt, J.; et al. Software toolkit for modeling, simulation, and control of soft robots. Adv. Robot. 2017, 31, 1208–1224. [Google Scholar] [CrossRef]
- Yasa, O.; Toshimitsu, Y.; Michelis, M.Y.; Jones, L.S.; Filippi, M.; Buchner, T.; Katzschmann, R.K. An Overview of Soft Robotics. Annu. Rev. Control. Robot. Auton. Syst. 2023, 6, 1–29. [Google Scholar] [CrossRef]
- Xu, Z.; Zeidan, A.M.; He, Y.; Leung, L.; Byrne, C.; Sabu, S.; Wu, Y.; Chen, Z.; Williams, S.E.; Lindenroth, L.; et al. CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System. 2023. Available online: https://github.com/ZhouyangX/CardioXplorer (accessed on 11 April 2024).
- Zhao, Y.; Mei, Z.; Luo, X.; Mao, J.; Zhao, Q.; Liu, G.; Wu, D. Remote vascular interventional surgery robotics: A literature review. Quant. Imaging Med. Surg. 2022, 12, 2552. [Google Scholar] [CrossRef]
- Kesner, S.B.; Howe, R.D. Robotic catheter cardiac ablation combining ultrasound guidance and force control. Int. J. Robot. Res. 2014, 33, 631–644. [Google Scholar] [CrossRef]
- Kiencke, U. A view of automotive control systems. IEEE Control Syst. Mag. 1988, 8, 11–19. [Google Scholar] [CrossRef]
- Palomino, J.; Cuty, E.; Huanachin, A. Development of a CAN Bus datalogger for recording sensor data from an internal combustion ECU. In Proceedings of the 2021 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Liberec, Czech Republic, 21–22 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar]
- Jäckle, S.; García-Vázquez, V.; von Haxthausen, F.; Eixmann, T.; Sieren, M.M.; Schulz-Hildebrandt, H.; Hüttmann, G.; Ernst, F.; Kleemann, M.; Pätz, T. 3D catheter guidance including shape sensing for endovascular navigation. In Proceedings of the Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, Houston, TX, USA, 15–20 February 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11315, pp. 21–29. [Google Scholar]
- Jiang, K.; Zhang, H.; Karimi, H.R.; Lin, J.; Song, L. Simultaneous input and state estimation for integrated motor-transmission systems in a controller area network environment via an adaptive unscented Kalman filter. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1570–1579. [Google Scholar] [CrossRef]
- Hogan, N.; Sternad, D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J. Mot. Behav. 2009, 41, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Zia, A.; Essa, I. Automated surgical skill assessment in RMIS training. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 731–739. [Google Scholar] [CrossRef]
- Kataria, V.; Berte, B.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Remote magnetic versus manual navigation for radiofrequency ablation of paroxysmal atrial fibrillation: Long-term, controlled data in a large cohort. BioMed Res. Int. 2017, 2017, 6323729. [Google Scholar] [CrossRef]
Filter | Moving Variance | Average Absolute Error | ||||
---|---|---|---|---|---|---|
Linear | Axial | Knob | Linear (mm) | Axial (°) | Knob (°) | |
Kalman | 13.9 | 21.6 | 32.1 | 1.85 | 1.59 | 1.83 |
Average | 13.9 | 22.0 | 32.7 | 2.41 | 2.05 | 2.39 |
Median | 15.4 | 23.4 | 36.1 | 2.41 | 2.01 | 2.39 |
Average-Kalman | 13.7 | 21.3 | 31.7 | 2.45 | 2.10 | 2.42 |
Clinical Group (Experience) | Manual (mm/s3) | Robotic (mm/s3) | p-Value |
---|---|---|---|
Intermediate (<10 years) | 3.61 | 3.12 | 1.77 × 10−2 |
Expert (≥10 years) | 3.49 | 2.02 | 2.69 × 10−12 |
p-value | 6.01 × 10−11 | 4.50 × 10−9 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zeidan, A.M.; He, Y.; Leung, L.; Byrne, C.; Sabu, S.; Wu, Y.; Chen, Z.; Williams, S.E.; Lindenroth, L.; et al. CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System. Robotics 2024, 13, 80. https://doi.org/10.3390/robotics13050080
Xu Z, Zeidan AM, He Y, Leung L, Byrne C, Sabu S, Wu Y, Chen Z, Williams SE, Lindenroth L, et al. CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System. Robotics. 2024; 13(5):80. https://doi.org/10.3390/robotics13050080
Chicago/Turabian StyleXu, Zhouyang, Aya Mutaz Zeidan, Yetao He, Lisa Leung, Calum Byrne, Sachin Sabu, Yuanwei Wu, Zhiyue Chen, Steven E. Williams, Lukas Lindenroth, and et al. 2024. "CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System" Robotics 13, no. 5: 80. https://doi.org/10.3390/robotics13050080
APA StyleXu, Z., Zeidan, A. M., He, Y., Leung, L., Byrne, C., Sabu, S., Wu, Y., Chen, Z., Williams, S. E., Lindenroth, L., Behar, J., Rinaldi, C. A., Whitaker, J., Arujuna, A., Housden, R., & Rhode, K. (2024). CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System. Robotics, 13(5), 80. https://doi.org/10.3390/robotics13050080