Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System
Abstract
:1. Introduction
2. Overview of the STORM Robotic System
Simulations of the STORM System
3. Motion Control of the STORM Module toward Self-Reconfiguration
3.1. Problem Statement
3.2. Controller Design
3.3. Simulation Validation
3.4. Real-World Validation
4. Trajectory Optimization and Tracking of the STORM Module to Improve the Autonomous Alignment Process
4.1. Problem Statement
- 1.
- Rough navigation to the desired position using tracks;
- 2.
- Fine adjustment of the robot poses in lateral locomotion mode;
- 3.
- Fine adjustment of the height of the VTM to align the docking mechanism in the Z direction;
- 4.
- Fine adjustment of the clamps’ positions.
4.2. Problem Formulation
4.3. Proposed Solution
- 1.
- Partition the time interval T into M+N subintervals to compute a piecewise constant control sequence and ; then, the corresponding states at the collocation points are defined as .
- 2.
- Convert the system dynamics into collocation constraints, as follows:
- (a)
- The dynamics can be constructed in integral form:
- (b)
- Then, the discretized system dynamics can be approximated using trapezoidal quadrature. The approximation is applied between every pair of collocation points as follows:
- 3.
- Enforce the path constrains at each collocation point——and the boundary constraints should be enforced at the first and the last collocation points.
- 4.
- Find the approximate objective function using the trapezoid rule as follows:
4.4. Numerical Results
5. Conclusion and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matarić, M.J. Issues and approaches in the design of collective autonomous agents. Robot. Auton. Syst. 1995, 16, 321–331. [Google Scholar] [CrossRef]
- Parker, L. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 1998, 14, 220–240. [Google Scholar] [CrossRef]
- Parker, L.E. Lifelong Adaptation in Heterogeneous Multi-Robot Teams: Response to Continual Variation in Individual Robot Performance. Auton. Robot. 2000, 8, 239–267. [Google Scholar] [CrossRef]
- Bogue, R. Growth in e-commerce boosts innovation in the warehouse robot market. Ind. Robot. Int. J. 2016, 43, 583–587. [Google Scholar] [CrossRef]
- Baker, P.; Canessa, M. Warehouse design: A structured approach. Eur. J. Oper. Res. 2009, 193, 425–436. [Google Scholar] [CrossRef]
- Munkeby, S.H.; Jones, D.; Bugg, G.; Smith, K. Applications for the MATILDA robotic platform. In Unmanned Ground Vehicle Technology IV; SPIE: Bellingham, WA, USA, 2002; Volume 4715. [Google Scholar] [CrossRef]
- Yamauchi, B.M. PackBot: A versatile platform for military robotics. In Unmanned Ground Vehicle Technology VI; SPIE: Bellingham, WA, USA, 2004; Volume 5422. [Google Scholar] [CrossRef]
- Kot, T.; Novak, P. Application of virtual reality in teleoperation of the military mobile robotic system TAROS. Int. J. Adv. Robot. Syst. 2018, 15, 172988141775154. [Google Scholar] [CrossRef]
- Wells, P.; Deguire, D. TALON: A universal unmanned ground vehicle platform, enabling the mission to be the focus. In Unmanned Ground Vehicle Technology VII; SPIE: Bellingham, WA, USA, 2005; Volume 5804. [Google Scholar] [CrossRef]
- Dimastrogiovanni, M.; Cordes, F.; Reina, G. Terrain Estimation for Planetary Exploration Robots. Appl. Sci. 2020, 31, 6044. [Google Scholar] [CrossRef]
- Purvis, J.; Klarer, P. RATLER: Robotic All-Terrain Lunar Exploration Rover. In Proceedings of the 6th Annual Workshop on Space Operations Applications and Research (SOAR 1992), Washington, DC, USA, 4–6 August 1993; Volume 2, pp. 174–179. [Google Scholar]
- Moubarak, P.; Ben-Tzvi, P. Modular and reconfigurable mobile robotics. Robot. Auton. Syst. 2012, 60, 1648–1663. [Google Scholar] [CrossRef]
- Saab, W.; Racioppo, P.; Ben-Tzvi, P. A review of coupling mechanism designs for modular reconfigurable robots. Robotica 2019, 37, 378–403. [Google Scholar] [CrossRef]
- Hossain, K.M.; Nelson, C.A.; Dasgupta, P. Enumeration of Configurations and Their Kinematics for ModRED II Modular Robots. J. Mech. Robot. 2017, 9, 054501. [Google Scholar] [CrossRef]
- Yao, M.; Xiao, X.; Belke, C.H.; Cui, H.; Paik, J. Optimal Distribution of Active Modules in Reconfiguration Planning of Modular Robots. J. Mech. Robot. 2019, 11, 011017. [Google Scholar] [CrossRef]
- Sohal, S.S.; Sebastian, B.; Ben-Tzvi, P. Autonomous Docking of Hybrid-Wheeled Modular Robots With an Integrated Active Genderless Docking Mechanism. J. Mech. Robot. 2022, 14, 011010. [Google Scholar] [CrossRef]
- Brockett, R. Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 1983, 27, 181–191. [Google Scholar]
- De Luca, A.; Oriolo, G.; Vendittelli, M. Control of Wheeled Mobile Robots: An Experimental Overview. RAMSETE Articul. Mob. Robot. Serv. Technol. 2002, 25, 181–226. [Google Scholar] [CrossRef]
- Aicardi, M.; Casalino, G.; Bicchi, A.; Balestrino, A. Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robot. Autom. Mag. 1995, 2, 27–35. [Google Scholar] [CrossRef]
- De Luca, A.; Oriolo, G.; Vendittelli, M. Stabilization of the Unicycle Via Dynamic Feedback Linearization. IFAC Proc. Vol. 2000, 33, 687–692. [Google Scholar] [CrossRef]
- Clarke, F.H.; Ledyaev, Y.S.; Stern, R.J. Asymptotic Stability and Smooth Lyapunov Functions. J. Differ. Equ. 1998, 149, 69–114. [Google Scholar] [CrossRef]
- Tran, T.H.; Phung, M.D.; Nguyen, T.T.V.; Tran, Q.V. Stabilization control of the differential mobile robot using Lyapunov function and extended Kalman filter. Vietnam. J. Online 2012, 441–452. [Google Scholar] [CrossRef]
- Li, Z.; Sastry, S.S. Lyapunov stability theory. In Extensions of Linear-Quadratic Control Theory; Springer: Berlin/Heidelberg, Germany, 2005; pp. 39–59. [Google Scholar] [CrossRef]
- Hespanha, J. Internal or Lyapunov stability. In Linear Systems Theory; Princeton University Press: Princeton, NJ, USA, 2018; pp. 87–107. [Google Scholar] [CrossRef]
- Hoang, T.T.; Duong, P.M.; Van, N.T.T.; Vinh, T.Q. Stabilization Control of the Differential Mobile Robot Using Lyapunov Function and Extended Kalman Filter. arXiv 2017, arXiv:1707.05458. [Google Scholar]
- Schiller, J.D.; Muntwiler, S.; Köhler, J.; Zeilinger, M.N.; Müller, M.A. A Lyapunov Function for Robust Stability of Moving Horizon Estimation. IEEE Trans. Autom. Control 2023, 68, 7466–7481. [Google Scholar] [CrossRef]
- Saab, W.; Ben-Tzvi, P. A Genderless Coupling Mechanism With Six-Degrees-of-Freedom Misalignment Capability for Modular Self-Reconfigurable Robots. J. Mech. Robot. 2016, 8, 061014. [Google Scholar] [CrossRef]
- Rohmer, E.; Singh, S.P.; Freese, M. CoppeliaSim (formerly V-REP): A versatile and scalable robot simulation framework. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1321–1326. [Google Scholar]
- Feng, S.; Sebastian, B.; Ben-Tzvi, P. A Collision Avoidance Method Based on Deep Reinforcement Learning. Robotics 2021, 10, 73. [Google Scholar] [CrossRef]
- d’Andréa Novel, B.; Campion, G.; Bastin, G. Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization. Int. J. Robot. Res. 1995, 14, 543–559. [Google Scholar] [CrossRef]
- Martínez, J.L.; Mandow, A.; Morales, J.; Pedraza, S.; García-Cerezo, A. Approximating kinematics for tracked mobile robots. Int. J. Robot. Res. 2005, 24, 867–878. [Google Scholar] [CrossRef]
- Mandow, A.; Martínez, J.L.; Morales, J.; Blanco, J.L.; García-Cerezo, A.; González, J. Experimental kinematics for wheeled skid-steer mobile robots. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1222–1227. [Google Scholar] [CrossRef]
- Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3400–3407. [Google Scholar] [CrossRef]
- Zhu, F.; Antsaklis, P.J. Optimal control of hybrid switched systems: A brief survey. Discret. Event Dyn. Syst. Theory Appl. 2015, 25, 345–364. [Google Scholar] [CrossRef]
- Bock, H.G.; Kirches, C.; Meyer, A.; Potschka, A. Numerical solution of optimal control problems with explicit and implicit switches. Optim. Methods Softw. 2018, 33, 450–474. [Google Scholar] [CrossRef]
- Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516. [Google Scholar] [CrossRef]
- Boissonnat, J.D.; Cérézo, A.; Leblond, J. Shortest paths of bounded curvature in the plane. J. Intell. Robot. Syst. 1994, 11, 5–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Liu, Y.; Pressgrove, I.; Ben-Tzvi, P. Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System. Robotics 2024, 13, 81. https://doi.org/10.3390/robotics13050081
Feng S, Liu Y, Pressgrove I, Ben-Tzvi P. Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System. Robotics. 2024; 13(5):81. https://doi.org/10.3390/robotics13050081
Chicago/Turabian StyleFeng, Shumin, Yujiong Liu, Isaac Pressgrove, and Pinhas Ben-Tzvi. 2024. "Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System" Robotics 13, no. 5: 81. https://doi.org/10.3390/robotics13050081
APA StyleFeng, S., Liu, Y., Pressgrove, I., & Ben-Tzvi, P. (2024). Autonomous Alignment and Docking Control for a Self-Reconfigurable Modular Mobile Robotic System. Robotics, 13(5), 81. https://doi.org/10.3390/robotics13050081