Blood Concentrations of Folic Acid and Homocysteine Are Associated with Treatment-Resistant Depression Among Female Depressed Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Data for Subjects
2.2. Blood Sample Procedures and Laboratory Analyses
2.3. Sociodemographic and Clinical Assessment
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Variables in Female Depressed Patients with or Without TRD
3.2. Clinical and Biological Variables in Female Depressed Patients with or Without TRD
3.3. Prediction of Treatment-Resistant Depression (TRD) in All Female Patients Using Blood Folic Acid, Vitamin B12, and Homocysteine
3.4. Prediction of Depression Severity (MADRS) in All Female Patients Using Blood Folic Acid, Vitamin B12, and Homocysteine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIDS | Acquired immunodeficiency syndrome |
| BDNF | Brain-derived neurotrophic factor |
| CSF | Cerebrospinal fluid |
| ICD-10 | International Statistical Classification of Diseases and Related Health Problems, 10th Revision |
| HPA | Hypothalamic–pituitary–adrenal |
| MADRS | Montgomery–Asberg Depression Rating Scale |
| MDD | Major depressive disorder |
| TRD | Treatment-resistant depression |
References
- Voineskos, D.; Daskalakis, Z.J.; Blumberger, D.M. Management of Treatment-Resistant Depression: Challenges and Strategies. Neuropsychiatr. Dis. Treat. 2020, 16, 221–234. [Google Scholar] [CrossRef]
- McLachlan, G. Treatment resistant depression: What are the options? BMJ 2018, 363, k5354. [Google Scholar] [CrossRef] [PubMed]
- Zhdanava, M.; Pilon, D.; Ghelerter, I.; Chow, W.; Joshi, K.; Lefebvre, P.; Sheehan, J.J. The Prevalence and National Burden of Treatment-Resistant Depression and Major Depressive Disorder in the United States. J. Clin. Psychiatry 2021, 82, 20m13699. [Google Scholar] [CrossRef]
- Sagud, M.; Mihaljevic-Peles, A.; Uzun, S.; Cusa, B.V.; Kozumplik, O.; Kudlek-Mikulic, S.; Mustapic, M.; Barisic, I.; Muck-Seler, D.; Pivac, N. The lack of association between components of metabolic syndrome and treatment resistance in depression. Psychopharmacology 2013, 230, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.; Goldner, E.M. Approaches to understanding and addressing treatment-resistant depression: A scoping review. Depress. Res. Treat. 2012, 2012, 469680. [Google Scholar] [CrossRef]
- Halaris, A.; Sohl, E.; Whitham, E.A. Treatment-Resistant Depression Revisited: A Glimmer of Hope. J. Pers. Med. 2021, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Nikolac Perkovic, M.; Gredicak, M.; Sagud, M.; Nedic Erjavec, G.; Uzun, S.; Pivac, N. The association of brain-derived neurotrophic factor with the diagnosis and treatment response in depression. Expert Rev. Mol. Diagn. 2023, 23, 283–296. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Ionescu, D.F. Towards new mechanisms: An update on therapeutics for treatment-resistant major depressive disorder. Mol. Psychiatry 2015, 20, 1142–1150. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Vuksan-Ćusa, B.; Jakovljević, M.; Sagud, M.; Mihaljević Peleš, A.; Marčinko, D.; Topić, R.; Mihaljević, S.; Sertić, J. Metabolic syndrome and serum homocysteine in patients with bipolar disorder and schizophrenia treated with second generation antipsychotics. Psychiatry Res. 2011, 189, 21–25. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.; Zhang, Z.; Sun, Z.; He, Y.; Li, R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl. Psychiatry 2018, 8, 242. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Petersen, T.; Mischoulon, D.; Ryan, J.L.; Nierenberg, A.A.; Bottiglieri, T.; Rosenbaum, J.F.; Alpert, J.E.; Fava, M. Serum folate, vitamin B12, and homocysteine in major depressive disorder, Part 1: Predictors of clinical response in fluoxetine-resistant depression. J. Clin. Psychiatry 2004, 65, 1090–1095. [Google Scholar] [CrossRef]
- Coppen, A.; Bailey, J. Enhancement of the antidepressant action of fluoxetine by folic acid: A randomised, placebo controlled trial. J. Affect. Disord. 2000, 60, 121–130. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Shelton, R.C.; Zajecka, J.M.; Etemad, B.; Rickels, K.; Clain, A.; Baer, L.; Dalton, E.D.; Sacco, G.R.; Schoenfeld, D.; et al. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: Results of two randomized, double-blind, parallel-sequential trials. Am. J. Psychiatry 2012, 169, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Almeida, O.P.; Ford, A.H.; Flicker, L. Systematic review and meta-analysis of randomized placebo-controlled trials of folate and vitamin B12 for depression. Int. Psychogeriatr. 2015, 27, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Bottiglieri, T.; Laundy, M.; Crellin, R.; Toone, B.K.; Carney, M.W.; Reynolds, E.H. Homocysteine, folate, methylation, and monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry 2000, 69, 228–232. [Google Scholar] [CrossRef]
- Stanger, O.; Fowler, B.; Piertzik, K.; Huemer, M.; Haschke-Becher, E.; Semmler, A.; Lorenzl, S.; Linnebank, M. Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: Review and treatment recommendations. Expert Rev. Neurother. 2009, 9, 1393–1412. [Google Scholar] [CrossRef]
- Pano, O.; Sayón-Orea, C.; Hershey, M.S.; de la O, V.; Fernández-Lázaro, C.; Bes-Rastrollo, M.; Sánchez-Villegas, A.; Martínez, J. The risk of incident depression when assessed with the Lifestyle and Well-Being Index. Public Health 2023, 220, 165–171. [Google Scholar] [CrossRef]
- Resler, G.; Lavie, R.; Campos, J.; Mata, S.; Urbina, M.; García, A.; Apitz, R.; Lima, L. Effect of folic acid combined with fluoxetine in patients with major depression on plasma homocysteine and vitamin B12, and serotonin levels in lymphocytes. Neuroimmunomodulation 2008, 15, 145–152. [Google Scholar] [CrossRef]
- de Koning, E.J.; van der Zwaluw, N.L.; van Wijngaarden, J.P.; Sohl, E.; Brouwer-Brolsma, E.M.; van Marwijk, H.W.J.; Enneman, A.W.; Swart, K.M.A.; van Dijk, S.C.; Ham, A.C.; et al. Effects of Two-Year Vitamin B12 and Folic Acid Supplementation on Depressive Symptoms and Quality of Life in Older Adults with Elevated Homocysteine Concentrations: Additional Results from the B-PROOF Study, an RCT. Nutrients 2016, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Li, W.; Qi, H.; Xiao, L.; Sim, K.; Ungvari, G.S.; Lu, X.-B.; Huang, X.; Ning, Y.-P.; Xiang, Y.-T. Adjunctive folate for major mental disorders: A systematic review. J. Affect. Disord. 2020, 267, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, G.I.; Petersen, T.; Lebowitz, B.D.; Mischoulon, D.; Ryan, J.L.; Nierenberg, A.A.; Bottiglieri, T.; Alpert, J.E.; Rosenbaum, J.F.; Fava, M. The relationship between serum folate, vitamin B12, and homocysteine levels in major depressive disorder and the timing of improvement with fluoxetine. Int. J. Neuropsychopharmacol. 2005, 8, 523–528. [Google Scholar] [CrossRef]
- Laird, E.J.; O’hAlloran, A.M.; Molloy, A.M.; Healy, M.; Hernandez, B.; O’cOnnor, D.M.A.; Kenny, R.A.; Briggs, R. Low vitamin B12 but not folate is associated with incident depressive symptoms in community-dwelling older adults: A 4-year longitudinal study. Br. J. Nutr. 2023, 130, 268–275. [Google Scholar] [CrossRef]
- Sangle, P.; Sandhu, O.; Aftab, Z.; Anthony, A.T.; Khan, S. Vitamin B12 Supplementation: Preventing Onset and Improving Prognosis of Depression. Cureus 2020, 12, e11169. [Google Scholar] [CrossRef] [PubMed]
- Quittschalle, J.; Pabst, A.; Löbner, M.; Luppa, M.; Heser, K.; Wagner, M.; Bussche, H.v.D.; Hajek, A.; König, H.-H.; Wiese, B.; et al. Association of Alcohol and Tobacco Consumption with Depression Severity in the Oldest Old. Results from the Age Different Old Age Cohort Platform. Int. J. Environ. Res. Public Health 2021, 18, 7959. [Google Scholar] [CrossRef]
- Kang, E.; Lee, J. A longitudinal study on the causal association between smoking and depression. J. Prev. Med. Public Health 2010, 43, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S.; Sagud, M.; Pivac, N. Biomarkers of Depression Associated with Comorbid Somatic Diseases. Psychiatr. Danub. 2021, 33, 463–470. [Google Scholar]
- Oliveira, P.; Ribeiro, J.; Donato, H.; Madeira, N. Smoking and antidepressants pharmacokinetics: A systematic review. Ann. Gen. Psychiatry 2017, 16, 17. [Google Scholar] [CrossRef]
- Shaikh, A.; Roy, H. Folate deprivation induced neuroinflammation impairs cognition. Neurosci. Lett. 2023, 807, 137264. [Google Scholar] [CrossRef]
- Gao, L.; Liu, X.; Yu, L.; Wu, J.; Xu, M.; Liu, Y. Folic acid exerts antidepressant effects by upregulating brain-derived neurotrophic factor and glutamate receptor 1 expression in brain. Neuroreport 2017, 28, 1078–1084. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Liang, X.; Xu, Y.; Wang, G.; Bai, Y.; Zhou, Z.; Pu, Y.; Zhou, Y.; Xue, M.; et al. Neuroprotective effect of folic acid by maintaining DNA stability and mitochondrial homeostasis through the ATM/CHK2/P53/PGC-1α pathway in alcohol-exposed mice. Food Funct. 2025, 16, 4874–4893. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Sagud, M.; Tudor, L.; Konjevod, M.; Svob Strac, D.; Pivac, N. A Load to Find Clinically Useful Biomarkers for Depression. In Major Depressive Disorder; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 1305, pp. 175–202. [Google Scholar] [CrossRef]
- Deep, S.N.; Seelig, S.; Paul, S.; Poddar, R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J. Biol. Chem. 2024, 300, 107253. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liang, X.; Zhang, Q.; Luo, S.; Liu, H.; Wang, X.; Sai, N.; Zhang, X. Homocysteine can aggravate depressive like behaviors in a middle cerebral artery occlusion/reperfusion rat model: A possible role for NMDARs-mediated synaptic alterations. Nutr. Neurosci. 2023, 26, 483–495. [Google Scholar] [CrossRef]
- Nolan, M.; Roman, E.; Nasa, A.; Levins, K.J.; O’Hanlon, E.; O’Keane, V.; Willian Roddy, D. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. Chronic Stress 2020, 4, 2470547020944553. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.L.; Batten, L.A.; Tremblay, P.; Aldosary, F.; Blier, P. A Prospective, Longitudinal Study of the Effect of Remission on Cortical Thickness and Hippocampal Volume in Patients with Treatment-Resistant Depression. Int. J. Neuropsychopharmacol. 2015, 18, pyv037. [Google Scholar] [CrossRef]
- Kaner, S.; Soylu, M.; Yüksel, N.; Inanç, N.; Ongan, D.; Başmisirli, E. Evaluation of Nutritionl Status in Patients with Depression. Biomed. Res. Int. 2015, 2015, 521481. [Google Scholar] [CrossRef]
- Selman, A.; Dai, J.; Driskill, J.; Reddy, A.P.; Reddy, P.H. Depression and obesity: Focus on factors and mechanistic links. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167561. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Aghajanian, S.; Heidari, E.; Abbasi, M.; Jafarabady, K.; Baradaran, S.; Bakhtiyari, M. Contribution of obesity in the association between fast-food consumption and depression: A mediation analysis. J. Affect. Dis. 2024, 362, 623–629. [Google Scholar] [CrossRef]
- Ramires Jũnior, O.V.; Prauchner, G.R.K.; Rieder, A.S.; Leite, A.K.O.; Farias, C.P.; Wyse, A.T.S. Uncovering Hyperhomocysteinemia: Global Risk Patterns and Molecular Disruption in Brain and Vascular Health. J. Neurochem. 2025, 169, e70327. [Google Scholar] [CrossRef]
- Sagud, M.; Hotujac, L.j.; Mihaljević-Peles, A.; Jakovljević, M. Gender differences in depression. Coll. Antropol. 2002, 26, 149–157. [Google Scholar]
- da Silva, F.E.R.; Yucel, A.; Menezes, A.P.M.; Ruiz, A.C.; Carbajal Tamez, M.C.; Barichello, T.; Scaini, G.; Quevedo, J. Mechanisms Underlying Treatment-Resistant Depression: Exploring Sex-Based Biological Differences. J. Neurochem. 2025, 169, e70215. [Google Scholar] [CrossRef]
- Xu, R.; Huang, F.; Wang, Y.; Liu, Q.; Lv, Y.; Zhang, Q. Gender- and age-related differences in homocysteine concentration: A cross-sectional study of the general population of China. Sci. Rep. 2020, 10, 17401. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Fanelli Kuczmarski, M.T.; Beydoun, H.A.; Shroff, M.R.; Mason, M.A.; Evans, M.K.; Zonderman, A.B. The sex-specific role of plasma folate in mediating the association of dietary quality with depressive symptoms. J. Nutr. 2010, 140, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Margalit, I.; Shochat, T.; Goldberg, E.; Krause, I. Sex Differences in Folate Levels: A Cross Sectional Study of a Large Cohort from Israel. Isr. Med. Assoc. J. 2021, 23, 17–22. [Google Scholar]
- Fan, N.; Zhao, W.; Yun, Y.; Bai, L.; An, H.; Zhang, Q.; Yan, J.; Fan, F.; Han, X.; Yang, F. Homocysteine levels in first-episode patients with psychiatric disorders. Front. Psychiatry 2024, 15, 1380900. [Google Scholar] [CrossRef]
- Barlattani, T.; Cavatassi, A.; Bologna, A.; Socci, V.; Trebbi, E.; Malavolta, M.; Rossi, A.; Martiadis, V.; Tomasetti, C.; De Berardis, D.; et al. Glymphatic system and psychiatric disorders: Need for a new paradigm? Front. Psychiatry 2025, 16, 1642605. [Google Scholar] [CrossRef]
- Benveniste, H.; Lee, H.; Volkow, N.D. The glymphatic pathway: Waste removal from the CNS via cerebrospinal fluid transport. Neuroscientist 2017, 23, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Hablitz, L.M.; Vinitsky, H.S.; Sun, Q.; Stæger, F.F.; Sigurdsson, B.; Mortensen, K.N.; Lilius, T.O.; Nedergaard, M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 2019, 5, eaav5447. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, G. Vitamins, Vascular Health and Disease. Nutrients 2025, 17, 2955. [Google Scholar] [CrossRef] [PubMed]
- Köse, S.; Sözlü, S.; Bölükbaşi, H.; Ünsal, N.; Gezmen-Karadağ, M. Obesity is associated with folate metabolism. Int. J. Vitam. Nutr. Res. 2020, 90, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Moderie, C.; Nuñez, N.; Fielding, A.; Comai, S.; Gobbi, G. Sex Differences in Responses to Antidepressant Augmentations in Treatment-Resistant Depression. Int. J. Neuropsychopharmacol. 2022, 25, 479–488. [Google Scholar] [CrossRef]
| Parameter | Patients Without TRD (n = 57) | Patients with TRD (n = 59) | Χ2; p | |
|---|---|---|---|---|
| Education | Primary school | 8 (14%) | 10 (17%) | 0.460; 0.794 |
| Secondary school | 41 (72%) | 39 (66%) | ||
| Higher education | 8 (14%) | 10 (17%) | ||
| Work status | Employed | 11 (19%) | 13 (22%) | 0.319; 0.853 |
| Unemployed | 28 (49%) | 30 (51%) | ||
| Retired | 18 (32%) | 16 (27%) | ||
| Relationship status | Not married | 3 (5%) | 5 (8%) | 4.747; 0.191 |
| Married | 43 (75%) | 39 (66%) | ||
| Divorced | 4 (7%) | 11 (19%) | ||
| Widowed | 7 (13%) | 4 (7%) | ||
| Family history of mental disorders | No | 41 (72%) | 45 (76%) | 0.285; 0.593 |
| Yes | 16 (28%) | 14 (24%) | ||
| Alcohol consumption | No | 53 (93%) | 58 (98%) | 1.991; 0.158 |
| Yes | 4 (7%) | 1 (2%) | ||
| Smoking status | No | 37 (65%) | 39 (66%) | 0.018; 0.893 |
| Yes | 20 (35%) | 20 (34%) |
| Parameter | Patients Without TRD (n = 57) | Patients with TRD (n = 59) | Z; p | r |
|---|---|---|---|---|
| Age (years) | 56 (20–61) | 55 (30–65) | −0.592; 0.554 | −0.055 |
| Folic acid nmol/L | 17.6 (12.6–45) | 8.8 (4.5–12) | −9.287; 0.000 | −0.862 |
| Vit B12 pmol/L | 292 (141–677) | 261 (115–862) | −1.933; 0.053 | −0.179 |
| Homocysteine µmol/L | 5 (5–19) | 12 (6–41) | 5.297; 0.000 | 0.492 |
| MADRS scores | 32 (7–50) | 34 (22–46) | 1.062; 0.288 | 0.099 |
| Lifetime treatment duration (years) | 8 (1–27) | 7 (1–28) | −0.581; 0.561 | −0.054 |
| Predictor | B (S.E.) | Wald | Exp(B) [95% CI] | p |
|---|---|---|---|---|
| Age | −0.057 (0.029) | 3.792 | 0.945 [0.892, 1.000] | 0.053 |
| Education level | 0.397 (0.516) | 0.594 | 1.488 [0.542, 4.087] | 0.441 |
| Number of children | 0.136 (0.259) | 0.275 | 1.146 [0.689, 1.905] | 0.600 |
| Smoking status | 0.147 (0.588) | 0.063 | 1.159 [0.366, 3.671] | 0.803 |
| Alcohol consumption | −3.333 (1.731) | 3.707 | 0.036 [0.001, 1.062] | 0.055 |
| Family history of mental disorders | −0.185 (0.601) | 0.095 | 0.831 [0.256, 2.700] | 0.758 |
| Homocysteine µmol/L | 0.291 (0.064) | 20.546 | 1.338 [1.180, 1.518] | 0.000 |
| Predictor | B [95% CI] | β | p | F | R2 |
|---|---|---|---|---|---|
| Age | −0.050 [−0.186, 0.085] | −0.079 | 0.495 | 2.066 * | 0.125 |
| Folic acid nmol/L | −0.213 [−0.404, −0.022] | −0.296 | 0.036 | ||
| Vit B12 pmol/L | 0.005 [−0.003, −0.014] | 0.126 | 0.215 | ||
| Homocysteine µmol/L | −0.068 [−0.265, 0.128] | −0.075 | 0.532 | ||
| Relationship status | −1.287 [−3.016, 0.442] | −0.133 | 0.224 | ||
| Education level | −1.274 [−3.430, 0.881] | −0.103 | 0.327 | ||
| Number of children | 0.700 [−0.531, 1.932] | 0.119 | 0.245 | ||
| Work status | 0.243 [−1.671, 2.157] | 0.011 | 0.923 | ||
| Family history of mental disorders | 1.671 [−0.944, 4.286] | 0.142 | 0.161 | ||
| Alcohol consumption | −3.244 [−8.993, 2.505] | −0.120 | 0.261 | ||
| Smoking status | 4.534 [1.882, 7.186] | 0.488 | 0.007 | ||
| Clinical group (TRD vs. patients without TRD) | −1.073 [−4.429, 2.283] | −0.084 | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Radoš, I.; Vuksan-Ćusa, Z.; Milić, J.; Šagud, M.; Lončar Vrančić, A.; Jakšić, N.; Vuksan-Ćusa, B.; Pivac, N. Blood Concentrations of Folic Acid and Homocysteine Are Associated with Treatment-Resistant Depression Among Female Depressed Patients. Biomolecules 2026, 16, 70. https://doi.org/10.3390/biom16010070
Radoš I, Vuksan-Ćusa Z, Milić J, Šagud M, Lončar Vrančić A, Jakšić N, Vuksan-Ćusa B, Pivac N. Blood Concentrations of Folic Acid and Homocysteine Are Associated with Treatment-Resistant Depression Among Female Depressed Patients. Biomolecules. 2026; 16(1):70. https://doi.org/10.3390/biom16010070
Chicago/Turabian StyleRadoš, Iva, Zrinka Vuksan-Ćusa, Jakov Milić, Marina Šagud, Ana Lončar Vrančić, Nenad Jakšić, Bjanka Vuksan-Ćusa, and Nela Pivac. 2026. "Blood Concentrations of Folic Acid and Homocysteine Are Associated with Treatment-Resistant Depression Among Female Depressed Patients" Biomolecules 16, no. 1: 70. https://doi.org/10.3390/biom16010070
APA StyleRadoš, I., Vuksan-Ćusa, Z., Milić, J., Šagud, M., Lončar Vrančić, A., Jakšić, N., Vuksan-Ćusa, B., & Pivac, N. (2026). Blood Concentrations of Folic Acid and Homocysteine Are Associated with Treatment-Resistant Depression Among Female Depressed Patients. Biomolecules, 16(1), 70. https://doi.org/10.3390/biom16010070

