Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5
Abstract
:1. Introduction
2. Summarization of Models and Mechanisms of Kv1.5 Modulators
3. Synthetic Kv1.5 Inhibitors and SAR Investigations
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
BLAST | Basic Local Alignment Search Tool |
Ceu20 | Unbound steady-state plasma concentration |
CHO cells | Chinese hamster ovary cells |
CNS | Central nervous system |
EDGs | Electron donating groups |
EWGs | Electron withdrawing groups |
HEK cells | Human embryonic kidney 293 cells |
hERG | Human ether-à-go-go-related gene |
hKv1.5 channels | Human Kv1.5 channels |
Human PASMCs | Human pulmonary arterial smooth muscle cells |
IKur | Cardiac ultra-rapid delayed-rectifier |
IC50 | 50% inhibitory concentration |
Ile | Isoleucine |
Nrf2 | Nuclear factor erythroid 2-related factor |
SAR | Structure–activity relationship |
Thr | Threonine |
Val | Valine |
VERP | Ventricular effective refractory period |
References
- Milnes, J.T.; Madge, D.J.; Ford, J.W. New pharmacological approaches to atrial fibrillation. Drug Discov. Today 2012, 17, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Amos, G.J.; Wettwer, E.; Metzger, F.; Li, Q.; Himmel, H.M.; Ravens, U. Differences between outward currents of human atrial, and subepicardial ventricular myocytes. J. Physiol. 1996, 491, 31–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, E.S.A.; Dart, C. Neuronal and cardiovascular potassium channels as therapeutic drug targets: Promise and pitfalls. J. Biomol. Screen. 2015, 20, 1055–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, A.; Ito, Y.; Ding, W.-G.; Kitagawa, H.; Matsuura, H. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region. Eur. J. Pharmacol. 2015, 764, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Nerbonne, J.M.; Kass, R.S. Molecular physiology of cardiac repolarization. Physiol. Rev. 2005, 85, 1205–1253. [Google Scholar] [CrossRef] [Green Version]
- Tamargo, J.; Caballero, R.; Gomez, R.; Delpon, E. I-Kur/Kv1.5 channel blockers for the treatment of atrial fibrillation. Expert Opin. Inv. Drug. 2009, 18, 399–416. [Google Scholar] [CrossRef]
- Yellen, G. The voltage-gated potassium channels and their relatives. Nature 2002, 419, 35–42. [Google Scholar] [CrossRef]
- Tikhonov, D.B.; Zhorov, B.S. Homology modeling of Kv1.5 channel block by cationic and electroneutral ligands. Biochim. Biophys. Acta. 2014, 1838, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ding, W.G.; Matsuura, H.; Tsuji, K.; Zang, W.J.; Horie, M. Inhibitory actions of the phosphatidylinositol 3-kinase inhibitor LY294002 on the human Kv1.5 channel. Brit. J. Pharmacol. 2009, 156, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Chen, R.; Chung, S.-H. Inhibition of Voltage-Gated K+ Channel Kv1.5 by Antiarrhythmic Drugs. Biochemistry 2018, 57, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.H.; Wu, J.; Fan, T.T.; Zhang, H.H.; Gong, X.X.; Cao, Z.Y.; Zhang, J.; Lin, H.W.; Han, B.N. Chemical and biological study of aplysiatoxin derivatives showing inhibition of potassium channel Kv1.5. RSC Adv. 2019, 9, 7594–7600. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Cheng, N.; Li, X.T. Inhibitory effects of cholinesterase inhibitor donepezil on the Kv1.5 potassium channel. Sci. Rep. 2017, 7, 41509–41518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Xue, B.; Wang, J.; Liu, H.; Shi, L.; Xie, J. Potassium channels: A potential therapeutic target for Parkinson’s disease. Neurosci. Bull. 2018, 34, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, Z.; Xu, H.; Sun, H.; Li, H.; Liu, H.; Yang, H.; Gao, Z.; Jiang, H.; Li, M. The gating charge pathway of an epilepsy-associated potassium channel accommodates chemical ligands. Cell Res. 2013, 23, 1106–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, G.; Henneberger, C.; Steinhaeuser, C. Diversity of astrocyte potassium channels: An update. Brain Res. Bull. 2018, 136, 26–36. [Google Scholar] [CrossRef]
- Schmitt, N.; Grunnet, M.; Olesen, S.P. Cardiac potassium channel subtypes: New roles in repolarization and arrhythmia. Physiol. Rev. 2014, 94, 609–653. [Google Scholar] [CrossRef] [Green Version]
- Geller, J.C.; Egstrup, K.; Kulakowski, P.; Rosenqvist, M.; Jansson, M.A.; Berggren, A.; Edvardsson, N.; Sager, P.; Crijns, H.J. Rapid conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009. J. Clin. Pharmacol. 2009, 49, 312–322. [Google Scholar] [CrossRef]
- Ng, F.L.; Davis, A.J.; Jepps, T.A.; Harhun, M.I.; Yeung, S.Y.; Wan, A.; Reddy, M.; Melville, D.; Nardi, A.; Khong, T.K.; et al. Expression and function of the K plus channel KCNQ genes in human arteries. Br. J. Pharmacol. 2011, 162, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, F.; Pardo, L.A.; Dominguez, P.; Maria Sierra, L.; De la Pena, P. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int. J. Mol. Sci. 2019, 20, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozrzymas, J.W.; Teisseyre, A.; Vittur, F. Propofol blocks voltage-gated potassium channels in human T lymphocytes. Biochem. Pharmacol. 1996, 52, 843–849. [Google Scholar] [CrossRef]
- Teisseyre, A.; Michalak, K. Inhibition of the activity of human lymphocyte Kv1.3 potassium channels by resveratrol. J. Membr. Biol. 2006, 214, 123–129. [Google Scholar] [CrossRef]
- Ishii, T.; Warabi, E.; Siow, R.C.M.; Mann, G.E. Sequestosome1/p62: A regulator of redox-sensitive voltage-activated potassium channels, arterial remodeling, inflammation, and neurite outgrowth. Free Radic. Biol. Med. 2013, 65, 102–116. [Google Scholar] [CrossRef]
- Dos Santos-Nascimento, T.; Veras, K.M.; Cruz, J.S.; Leal-Cardoso, J.H. Inhibitory Effect of Terpinen-4-ol on Voltage-Dependent Potassium Currents in Rat Small Sensory Neurons. J. Nat. Prod. 2015, 78, 173–180. [Google Scholar] [CrossRef]
- Kulcitki, V.; Harghel, P.; Ungur, N. Unusual cyclic terpenoids with terminal pendant prenyl moieties: From occurrence to synthesis. Nat. Prod. Rep. 2014, 31, 1686–1720. [Google Scholar] [CrossRef]
- Menezes, P.M.N.; Brito, M.C.; de Paiva, G.O.; dos Santos, C.O.; de Oliveira, L.M.; Ribeiro, L.A.D.; De Lima, J.T.; Lucchese, A.M.; Silva, F.S. Relaxant effect of Lippia origanoides essential oil in guinea-pig trachea smooth muscle involves potassium channels and soluble guanylyl cyclase. J. Ethnopharmacol. 2018, 220, 16–25. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Barakat, K.H. Development of safe crugs: The hERG challenge. Med. Res. Rev. 2018, 38, 525–555. [Google Scholar] [CrossRef]
- Cheong, A.; Dedman, A.M.; Beech, D.J. Expression and function of native potassium channel (K-v alpha 1) subunits in terminal arterioles of rabbit. J. Physiol. 2001, 534, 691–700. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, W.; Liu, Y.; Yu, M.; Sun, X.; Matsuura, H. Long-term 4-AP treatment facilitates functional expression of human Kv1.5 channel. Eur. J. Pharmacol. 2019, 844, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Eldstrom, J.; Wang, Z.; Xu, H.; Pourrier, M.; Ezrin, A.; Gibson, K.; Fedida, D. The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels. Mol. Pharmacol. 2007, 72, 1522–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, I.; Kamiya, K.; Honjo, H.; Toyama, J. Acute and chronic effects of amiodarone on mammalian ventricular cells. Jpn. Heart J. 1996, 37, 719–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, D.; Mamarbachi, A.; Simoes, M.; Parent, L.; Sauve, R.; Wang, Z.G.; Nattel, S. A single residue in the S6 transmembrane domain governs the differential flecainide sensitivity of voltage-gated potassium channels. Mol. Pharmacol. 2005, 68, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Wang, Z.; Fedida, D. Influence of permeating ions on Kv1.5 channel block by nifedipine. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H1160–H1172. [Google Scholar] [CrossRef]
- Franqueza, L.; Valenzuela, C.; Delpon, E.; Longobardo, M.; Caballero, R.; Tamargo, J. Effects of propafenone and 5-hydroxy-propafenone on hKv1.5 channels. Brit. J. Pharmacol. 1998, 125, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Fedida, D. Gating charge and ionic currents associated with quinidine block of human Kv1.5 delayed rectifier channels. J. Physiol. 1997, 499, 661–675. [Google Scholar] [CrossRef] [Green Version]
- Caballero, R.; Gomez, R.; Nunez, L.; Moreno, I.; Tamargo, J.; Delpon, E. Diltiazem inhibits hKv1.5 and Kv4.3 currents at therapeutic concentrations. Cardiovasc. Res. 2004, 64, 457–466. [Google Scholar] [CrossRef]
- Chow, L.W.C.; Cheng, K.-S.; Wong, K.-L.; Leung, Y.-M. Voltage-gated K+ channels promote BT-474 breast cancer cell migration. Chin. J. Cancer Res. 2018, 30, 613–622. [Google Scholar] [CrossRef]
- Malayev, A.A.; Nelson, D.J.; Philipson, L.H. Mechanism of clofilium block of the human Kv1.5 delayed rectifier potassium channel. Mol. Pharmacol. 1995, 47, 198–205. [Google Scholar]
- Yang, I.C.H.; Scherz, M.W.; Bahinski, A.; Bennett, P.B.; Murray, K.T. Stereoselective interactions of the enantiomers of chromanol 293B with human voltage-gated potassium channels. J. Pharmacol. Exp. 2000, 294, 955–962. [Google Scholar]
- Kobayashi, S.; Reien, Y.; Ogura, T.; Saito, T.; Masuda, Y.; Nakaya, H. Inhibitory effect of bepridil on hKv1.5 channel current: Comparison with amiodarone and E-4031. Eur. J. Pharmacol. 2001, 430, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.M.; Hahn, S.J.; Choi, B.H. Blockade of Kv1.5 by paroxetine, an antidepressant drug. Korean J. Physiol. Pharmacol. 2016, 20, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, F.F.; Mao, Z.F.; Xia, J.; Zhu, S.P.; Wu, Z.Y. Fluoxetine protects against big endothelin-1 induced anti-apoptosis by rescuing Kv1.5 channels in human pulmonary arterial smooth muscle cells. Yonsei Med. J. 2012, 53, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Hahn, S.J.; Choi, B.H. Blockade of Kv1.5 channels by the antidepressant drug sertraline. Korean J. Physiol. Pharmacol. 2016, 20, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Park, M.-H.; Jo, S.-H. Inhibitory effects of cortisone and hydrocortisone on human Kv1.5 channel currents. Eur. J. Pharmacol. 2015, 746, 158–166. [Google Scholar] [CrossRef]
- Lammers, C.; Dartsch, T.; Brandt, M.C.; Rottlander, D.; Halbach, M.; Peinkofer, G.; Ockenpoehler, S.; Weiergraeber, M.; Schneider, T.; Reuter, H.; et al. Spironolactone prevents aldosterone induced increased duration of atrial fibrillation in rat. Cell Physiol. Biochem. 2012, 29, 833–840. [Google Scholar] [CrossRef]
- Frolov, R.V.; Singh, S. Celecoxib and ion channels: A story of unexpected discoveries. Eur. J. Pharmacol. 2014, 730, 61–71. [Google Scholar] [CrossRef]
- Luzhkov, V.B.; Nilsson, J.; Arhem, P.; Aqvist, J. Computational modelling of the open-state K(v)1.5 ion channel block by bupivacaine. Biochim. Biophys. Acta. 2003, 1652, 35–51. [Google Scholar] [CrossRef]
- Valenzuela, C.; Delpon, E.; Tamkun, M.M.; Tamargo, J.; Snyders, D.J. Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys. J. 1995, 69, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Vonderlin, N.; Fischer, F.; Zitron, E.; Seyler, C.; Scherer, D.; Thomas, D.; Katus, H.A.; Scholz, E.P. Inhibition of cardiac Kv1.5 potassium current by the anesthetic midazolam: Mode of action. Drug Des. Dev. 2014, 8, 2263–2271. [Google Scholar]
- Su, J.P.; Huang, Y.; Lenka, N.; Hescheler, J.; Ullrich, S. The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1. Pflugers Arch. 2001, 442, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Moreno, I.; Gonzalez, T.; Valenzuela, C.; Tamargo, J.; Delpon, E. Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovasc. Res. 2002, 56, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Jie, L.; Wu, W.; Li, G.; Xiao, G.; Zhang, S.; Li, G.; Wang, Y. Clemizole hydrochloride blocks cardiac potassium currents stably expressed in HEK 293 cells. Brit. J. Pharmacol. 2017, 174, 254–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, K.J.; Brendel, J.; Steinmeyer, K.; Linz, D.K.; Ruetten, H.; Goegelein, H. In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231. J. Cardiovasc. Pharmacol. 2007, 49, 197–206. [Google Scholar] [CrossRef]
- Persson, F.; Carlsson, L.; Duke, G.; Jacobson, I. Blocking characteristics of hKv1.5 and hKv4.3/hKChIP2.2 after administration of the novel antiarrhythmic compound AZD7009. J. Cardiovasc. Pharmacol. 2005, 46, 7–17. [Google Scholar] [CrossRef]
- Lloyd, J.; Finlay, H.J.; Vacarro, W.; Hyunh, T.; Kover, A.; Bhandaru, R.; Yan, L.; Atwal, K.; Conder, M.L.; Jenkins-West, T.; et al. Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1.5 blockers. Bioorg. Med. Chem. Lett. 2010, 20, 1436–1439. [Google Scholar] [CrossRef]
- Gunaga, P.; Lloyd, J.; Mummadi, S.; Banerjee, A.; Dhondi, N.K.; Hennan, J.; Subray, V.; Jayaram, R.; Rajugowda, N.; Reddy, K.U.; et al. Selective I-Kur inhibitors for the potential treatment of atrial fibrillation: Optimization of the phenyl quinazoline series leading to clinical candidate 5- 5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl pyridine-3-sulfon amide. J. Med. Chem. 2017, 60, 3795–3803. [Google Scholar] [CrossRef]
- Loose, S.; Mueller, J.; Wettwer, E.; Knaut, M.; Ford, J.; Milnes, J.; Ravens, U. Effects of IKur blocker MK-0448 on human right atrial action potentials from patients in sinus rhythm and in permanent atrial fibrillation. Front. Pharmacol. 2014, 5, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Ford, J.; Milnes, J.; El Haou, S.; Wettwer, E.; Loose, S.; Matschke, K.; Tyl, B.; Round, P.; Ravens, U. The positive frequency-dependent electrophysiological effects of the IKur inhibitor XEN-D0103 are desirable for the treatment of atrial fibrillation. Heart Rhythm 2016, 13, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Gautier, P.; Guillemare, E.; Djandjighian, L.; Marion, A.; Planchenault, J.; Bernhart, C.; Herbert, J.M.; Nisato, D. In vivo and in vitro characterization of the novel antiarrhythmic agent SSR149744C-Electrophysiological, anti-adrenergic, and anti-angiotensin II effects. J. Cardiovasc. Pharmacol. 2004, 44, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Gasparoli, L.; D’Amico, M.; Masselli, M.; Pillozzi, S.; Caves, R.; Khuwaileh, R.; Tiedke, W.; Mugridge, K.; Pratesi, A.; Mitcheson, J.S.; et al. New pyrimido-indole compound CD-160130 preferentially inhibits the K(V)11.1B isoform and produces antileukemic effects without cardiotoxicity. Mol. Pharmacol. 2015, 87, 183–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, B.; Liang, T.; Keen, L.J.; Fan, T.; Zhang, X.; Xu, L.; Zhao, Q.; Wang, S.; Lin, H. Two marine cyanobacterial aplysiatoxin polyketides, neo-debromoaplysiatoxin A and B, with K+ channel inhibition activity. Org. Lett. 2018, 20, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Grissmer, S.; Nguyen, A.N.; Aiyar, J.; Hanson, D.C.; Mather, R.J.; Gutman, G.A.; Karmilowicz, M.J.; Auperin, D.D.; Chandy, K.G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol. 1994, 45, 1227–1234. [Google Scholar] [PubMed]
- Kwak, Y.G.; Kim, D.K.; Ma, T.; Park, S.-A.; Park, H.; Jung, Y.H.; Yoo, D.-J.; Eun, J.S. Torilin from Torilis japonica (Houtt.) DC. blocks hKv1.5 channel current. Arch. Pharmacol. Res. 2006, 29, 834–839. [Google Scholar] [CrossRef]
- Jin, S.; Guo, Q.; Xu, J.; Yu, P.; Liu, J.; Tang, Y. Antiarrhythmic ionic mechanism of Guanfu base A -Selective inhibition of late sodium current in isolated ventricular myocytes from guinea pigs. Chin. J. Nat. Med. 2015, 13, 361–367. [Google Scholar] [CrossRef]
- Jeong, I.; Choi, B.H.; Hahn, S.J. Effects of lobeline, a nicotinic receptor ligand, on the cloned Kv1.5. Pflugers Arch. 2010, 460, 851–862. [Google Scholar] [CrossRef]
- Fischer, F.; Vonderlin, N.; Zitron, E.; Seyler, C.; Scherer, D.; Becker, R.; Katus, H.A.; Scholz, E.P. Inhibition of cardiac Kv1.5 and Kv4.3 potassium channels by the class Ia anti-arrhythmic ajmaline: Mode of action. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 991–999. [Google Scholar]
- Choe, H.; Lee, Y.K.; Lee, Y.T.; Choe, H.; Ko, S.H.; Joo, C.U.; Kim, M.H.; Kim, G.S.; Eun, J.S.; Kim, J.H.; et al. Papaverine blocks hKv1.5 channel current and human atrial ultrarapid delayed rectifier K+ currents. Can. J. Cardiol. 2003, 304, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Pi, M.; Li, X. The inhibitory effects of levo-tetrahydropalmatine on rat Kv1.5 channels expressed in HEK293 cells. Eur. J. Pharmacol. 2017, 809, 105–110. [Google Scholar] [CrossRef]
- Li, Y.F.; Tu, D.N.; Xiao, H.; Du, Y.M.; Zou, A.R.; Liao, Y.H.; Dong, S.H. Aconitine blocks HERG and Kv1.5 potassium channels. J. Ethnopharmacol. 2010, 131, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Bin, X.; Wang, L.; Li, M.; Yang, Y.; Fan, X.; Zeng, X. Myricetin inhibits K (v) 1.5 channels in HEK293 cells. Mol. Med. Rep. 2016, 13, 1725–1731. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, X.; Liu, Z.; Du, X.; Chen, K.; Xin, X.; Jin, Z.; Shen, J.; Hu, Y.; Li, G.; et al. Effects of the natural flavone trimethylapigenin on cardiac potassium currents. Biochem. Pharmacol. 2012, 84, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ma, J.; Zhang, P.; Zou, A.; Tu, D. Quercetin activates human Kv1.5 channels by a residue I502 in the S6 segment. Clin. Exp. Pharmacol. Physiol. 2009, 36, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-J.; Wu, W.; Sun, H.-Y.; Qin, G.-W.; Wang, H.-B.; Wang, P.; Yalamanchili, H.K.; Wang, J.; Tse, H.-F.; Lau, C.-P.; et al. Acacetin causes a frequency- and use-dependent blockade of hKv1.5 channels by binding to the S6 domain. J. Mol. Cell. Cardiol. 2011, 51, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Paffett, M.L.; Lucas, S.N.; Campen, M.J. Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: A potential role for atrogin-1 in smooth muscle. Vasc. Pharmacol. 2012, 56, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.G.; Choi, B.-H.; Kim, D.K.; Eun, J.S. Decursin from Angelica gigas Nakai blocks hKv1.5 channel. Biomol. Ther. 2011, 19, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, J.; Kiss, L.; Kane, S.A.; Koblan, K.S.; Lynch, R.J.; Spencer, R.H. High-throughput analysis of drug binding interactions for the human cardiac channel, Kv1.5. Biochem. Pharmacol. 2009, 77, 177–185. [Google Scholar] [CrossRef]
- Yang, Q.; Lv, Q.; Feng, M.; Liu, M.; Feng, Y.; Lin, S.; Yang, J.; Hu, J. Taurine prevents the electrical remodeling in ach-CaCl2 induced atrial fibrillation in rats. In Taurine 10; Lee, D.H., Schaffer, S.W., Park, W., Kim, H.W., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 975, pp. 821–830. [Google Scholar]
- Peukert, S.; Brendel, J.; Pirard, B.; Bruggemann, A.; Below, P.; Kleemann, H.W.; Hemmerle, H.; Schmidt, W. Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. J. Med. Chem. 2003, 46, 486–498. [Google Scholar] [CrossRef]
- Peukert, S.; Brendel, J.; Pirard, B.; Strubing, C.; Kleemann, H.W.; Bohme, T.; Hemmerle, H. Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg. Med. Chem. Lett. 2004, 14, 2823–2827. [Google Scholar] [CrossRef]
- Schmitz, A.; Sankaranarayanan, A.; Azam, P.; Schmidt-Lassen, K.; Homerick, D.; Hansel, W.; Wulff, H. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol. Pharmacol. 2005, 68, 1254–1270. [Google Scholar] [CrossRef] [Green Version]
- Blass, B.E.; Coburn, K.; Lee, W.; Fairweather, N.; Fluxe, A.; Wu, S.; Janusz, J.M.; Murawsky, M.; Fadayel, G.M.; Fang, B.; et al. Synthesis and evaluation of (2-phenethyl-2H-1,2,3-triazol-4-yl)(phenyl) methanones as Kv1.5 channel blockers for the treatment of atrial fibrillation. Bioorg. Med. Chem. Lett. 2006, 16, 4629–4632. [Google Scholar] [CrossRef] [PubMed]
- Fluxe, A.; Wu, S.D.; Sheffer, J.B.; Janusz, J.M.; Murawsky, M.; Fadayel, G.M.; Fang, B.; Hare, M.; Djandjighian, L. Discovery and synthesis of tetrahydroindolone-derived carbamates as Kv1.5 blockers. Bioorg. Med. Chem. Lett. 2006, 16, 5855–5858. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Fluxe, A.; Janusz, J.M.; Sheffer, J.B.; Browning, G.; Blass, B.; Cobum, K.; Hedges, R.; Murawsky, M.; Fang, B.; et al. Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorg. Med. Chem. Lett. 2006, 16, 5859–5863. [Google Scholar] [CrossRef] [PubMed]
- Nanda, K.K.; Nolt, M.B.; Cato, M.J.; Kane, S.A.; Kiss, L.; Spencer, R.H.; Wang, J.; Lynch, J.J.; Regan, C.P.; Stump, G.L.; et al. Potent antagonists of the Kv1.5 potassium channel: Synthesis and evaluation of analogous N,N-diisopropyl-2-(pyridine-3-yl)acetamides. Bioorg. Med. Chem. Lett. 2006, 16, 5897–5901. [Google Scholar] [CrossRef]
- Trotter, B.W.; Nanda, K.K.; Kett, N.R.; Regan, C.P.; Lynch, J.J.; Stump, G.L.; Kiss, L.; Wang, J.; Spencer, R.H.; Kane, S.A.; et al. Design and synthesis of novel isoquinoline-3-nitriles as orally bioavailable Kv1.5 antagonists for the treatment of atrial fibrillation. J. Med. Chem. 2006, 49, 6954–6957. [Google Scholar] [CrossRef]
- Eun, J.S.; Kim, K.S.; Kim, H.N.; Park, S.A.; Ma, T.-Z.; Lee, K.A.; Kim, D.K.; Kim, H.K.; Kim, I.S.; Jung, Y.H.; et al. Synthesis of psoralen derivatives and their blocking effect of hKv1.5 channel. Arch. Pharmacol. Res. 2007, 30, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.M.; Blass, B.; Coburn, K.; Djandjighian, L.; Fadayel, G.; Fluxe, A.J.; Hodson, S.J.; Janusz, J.M.; Murawsky, M.; Ridgeway, J.M.; et al. Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias. Bioorg. Med. Chem. Lett. 2007, 17, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Atwal, K.S.; Finlay, H.J.; Nyman, M.; Huynh, T.; Bhandaru, R.; Kover, A.; Schmidt, J.; Vaccaro, W.; Conder, M.L.; et al. Benzopyran sulfonamides as K(v)1.5 potassium channel blockers. Bioorg. Med. Chem. Lett. 2007, 17, 3271–3275. [Google Scholar] [CrossRef] [PubMed]
- Finlay, H.J.; Lloyd, J.; Nyman, M.; Conder, M.L.; West, T.; Levesque, P.; Atwal, K. Pyrano- [2,3b] -pyridines as potassium channel antagonists. Bioorg. Med. Chem. Lett. 2008, 18, 2714–2718. [Google Scholar] [CrossRef]
- Gross, M.F.; Castle, N.A.; Zou, A.; Wickenden, A.D.; Yu, W.; Spear, K.L. Aryl sulfonamido tetralin inhibitors of the Kv1.5 ion channel. Bioorg. Med. Chem. Lett. 2009, 19, 3063–3066. [Google Scholar] [CrossRef]
- Blass, B.E.; Fensome, A.; Trybulski, E.; Magolda, R.; Gardell, S.J.; Liu, K.; Samuel, M.; Feingold, I.; Huselton, C.; Jackson, C.M.; et al. Selective Kv1.5 blockers: Development of (R)-1-(methylsulfonylamino)-3-2-(4-methoxyphenyl)ethyl -4-(4-methoxyphe nyl)-2-imidazolidinone (KVI-020/WYE-160020) as a potential treatment for atrial arrhythmia. J. Med. Chem. 2009, 52, 6531–6534. [Google Scholar] [CrossRef]
- Blass, B. Derivatives of heteroarylsulfonamides, their peparation, and their application in human therapy patent highlight. Acs Med. Chem. Lett. 2012, 3, 618–619. [Google Scholar] [CrossRef] [Green Version]
- Finlay, H.J.; Lloyd, J.; Vaccaro, W.; Kover, A.; Yan, L.; Bhave, G.; Prol, J.; Tram, H.; Bhandaru, R.; Caringal, Y.; et al. Discovery of ((S)-5-(methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4, 7-dihydropyrazolo 1,5-a pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl)pyr rolidin-1-yl)methanone as a potent and selective I-Kur inhibitor. J. Med. Chem. 2012, 55, 3036–3048. [Google Scholar] [CrossRef] [PubMed]
- Finlay, H.J.; Jiang, J.; Caringal, Y.; Kover, A.; Conder, M.L.; Xing, D.; Levesque, P.; Harper, T.; Hsueh, M.M.; Atwal, K.; et al. Triazolo and imidazo dihydropyrazolopyrimidine potassium channel antagonists. Bioorg. Med. Chem. Lett. 2013, 23, 1743–1747. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, Q.; Xu, J.; Zhang, L.; Chu, H.; Yu, P.; Zhu, Y.; Wei, J.; Chen, W.; Zhang, Y.; et al. Design and bio-evaluation of indole derivatives as potent Kv1.5 inhibitors. Bioorg. Med. Chem. 2013, 21, 6466–6476. [Google Scholar] [CrossRef]
- Olsson, R.I.; Jacobson, I.; Bostrom, J.; Fex, T.; Bjore, A.; Olsson, C.; Sundell, J.; Gran, U.; Ohrn, A.; Nordin, A.; et al. Synthesis and evaluation of diphenylphosphinic amides and diphenylphosphine oxides as inhibitors of Kv1.5. Bioorg. Med. Chem. Lett. 2013, 23, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Olsson, R.I.; Jacobson, I.; Iliefski, T.; Bostrom, J.; Davidsson, O.; Fjellstrom, O.; Bjore, A.; Olsson, C.; Sundell, J.; Gran, U.; et al. Lactam sulfonamides as potent inhibitors of the Kv1.5 potassium ion channel. Bioorg. Med. Chem. Lett. 2014, 24, 1269–1273. [Google Scholar] [CrossRef]
- Johnson, J.A.; Xu, N.; Jeon, Y.; Finlay, H.J.; Kover, A.; Conder, M.L.; Sun, H.; Li, D.; Levesque, P.; Hsueh, M.-M.; et al. Design, synthesis and evaluation of phenethylaminoheterocycles as K(v)1.5 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3018–3022. [Google Scholar] [CrossRef]
- Guo, X.; Ma, X.; Yang, Q.; Xu, J.; Huang, L.; Jia, J.; Shan, J.; Liu, L.; Chen, W.; Chu, H.; et al. Discovery of 1-aryloxyethyl piperazine derivatives as Kv1.5 potassium channel inhibitors (part I). Eur. J. Med. Chem. 2014, 81, 89–94. [Google Scholar] [CrossRef]
- Kajanus, J.; Jacobson, I.; Astrand, A.; Olsson, R.I.; Gran, U.; Bjore, A.; Fjellstrom, O.; Davidsson, O.; Emtenas, H.; Dahlen, A.; et al. Isoindolinone compounds active as Kv1.5 blockers identified using a multicomponent reaction approach. Bioorg. Med. Chem. Lett. 2016, 26, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Finlay, H.J.; Johnson, J.A.; Lloyd, J.L.; Jiang, J.; Neels, J.; Gunaga, P.; Baneriee, A.; Dhondi, N.; Chimalakonda, A.; Mandlekar, S.; et al. Discovery of 5-Phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine as a Potent I-Kur Inhibitor. Acs Med. Chem. Lett. 2016, 7, 831–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zidar, N.; Zula, A.; Tomasic, T.; Rogers, M.; Kirby, R.W.; Tytgat, J.; Peigneur, S.; Kikelj, D.; Ilas, J.; Masic, L.P. Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. Eur. J. Med. Chem. 2017, 139, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Wolkenberg, S.E.; Nolt, M.B.; Bilodeau, M.T.; Trotter, B.W.; Manley, P.J.; Kett, N.R.; Nanda, K.K.; Wu, Z.C.; Cato, M.J.; Kane, S.A.; et al. Discovery of MK-1832, a Kv1.5 inhibitor with improved selectivity and pharmacokinetics. Bioorg. Med. Chem. Lett. 2017, 27, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Kajanus, J.; Antonsson, T.; Carlsson, L.; Jurva, U.; Pettersen, A.; Sundell, J.; Inghardt, T. Potassium channel blocking 1,2-bis(aryl)ethane-1,2-diamines active as antiarrhythmic agents. Bioorg. Med. Chem. Lett. 2019, 29, 1241–1245. [Google Scholar] [CrossRef]
- Banerjee, S.; Adhikari, N.; Amin, S.A.; Jha, T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur. J. Med. Chem. 2019, 164, 214–240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Song, H.; Xie, J.; Liu, T.; Zhao, X.; Chen, X.; He, X.; Wu, S.; Zhang, Y.; Zheng, X. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur. J. Med. Chem. 2019, 173, 213–227. [Google Scholar] [CrossRef]
No. | Name | CAS | Status | Model | Mechanism | Ref. |
---|---|---|---|---|---|---|
Clinical Cardiovascular Drugs | ||||||
1 | | 54-96-6 | Approved | Smooth muscle cells | Blocking hKv1.5 current with a threshold fur activation near –45 mV. | [30] |
2 | | 504-24-5 | Approved | HEK cells | Inhibiting hKv1.5 current after long-term treatment, abbreviating the prolongation of action potential duration in chronic atrial fibrillation (AF). | [31] |
3 | | 794466-70-9 | Approved, investigational | HEK cells | Selective blocking of the Kv1.5 channel by interacting with important residues including Thr 479, Thr 480, Ile 502, Val 505, and Val 508. | [32] |
4 | | 1951-25-3 | Approved, investigational | Papillary muscles or single ventricular cells | Decreasing the amount of mRNA for Kv1.5. | [33] |
5 | | 54143-55-4 | Approved, withdrawn | Xenopus laevis oocytes | Producing open-channel block of Kv1.5 by sensitively interacting with key residues including Asp 469, Val 481, and Ile 502 in the S6 region of Kv1.5. | [34] |
6 | | 21829-25-4 | Approved | HEK cells | Blocking hKv1.5 channels with 6.3 μM of Kd was affected by mutations like Arg 487 similar to those known to affect outer pore C-type inactivation. | [35] |
7 | | 54063-53-5 | Approved | Ltk- cells | Inhibiting hKv1.5 current with Kdvalue of 9.2 μM, showing time-dependent and dose-dependent manners simultaneously. | [36] |
8 | | 86384-10-3 | - | Ltk- cells | Inhibiting hKv1.5 current with Kdvalue of 4.4 μM, showing time-dependent and dose-dependent manners simultaneously. | [36] |
9 | | 56-54-2 | Approved, investigational | HEK cells | Producing a voltage-dependent block between +30 and +120 mV (Kd at +60 mV = 7.2 μM) with an equivalent electrical distance in the steady state. | [37] |
10 | | 42399-41-7 | Approved, investigational | CHO cells | Blocking hKv1.5 channels, in a frequency-dependent manner exhibiting a biphasic dose-response curve (IC50: 4.8 nM and 42.3 μM) by binding to the open and inactivated state of the channels. | [38] |
11 | | 66-40-0 | Experimental, investigational | BT-474 breast cancer cell | Blocking hKv1.5 channels in a delayed rectifier manner. | [39] |
12 | | 68379-03-3 | - | CHO cells | Inhibiting hKv1.5 current with concentration-dependent acceleration of the apparent channel inactivation in both outside-out and inside-out patches. | [40] |
13 | | 163163-23-3 | - | CHO cells | Blocking hKv1.5 current stereoselectivity, the results showed that (-)-[3R, 4S] was more potent than the (-)-enantiomer. | [41] |
14 | | 64706-54-3 | Approved, withdrawn | HEK cells | Inhibiting the hKv1.5 channel current with IC50 value of 6.6 μM. | [42] |
Other Clinical Drugs | ||||||
15 | | 120014-06-4 | Approved | HEK cells | Resulting in a rapid and reversible block of Kv1.5 currents (IC50: 72.5 μM) with a significant delay in the duration of activation and deactivation, and the outer mouth region proved to be the target site. | [15] |
16 | | 61869-08-7 | Approved, investigational | CHO cells | Slowing the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of paroxetine, were superimposed. | [43] |
17 | | 54910-89-3 | Approved, vet approved | Human Pulmonary Artery Smooth Muscle Cells | Protecting against big endothelin-1 induced anti-apoptosis and rescued Kv1.5 channels in human pulmonary arterial smooth muscle cells. | [44] |
18 | | 79617-96-2 | Approved | CHO cells | Reducing Kv1.5 whole-cell currents in a reversible dose-dependent manner and accelerating the decay rate of inactivation of Kv1.5 currents without modifying the kinetics of current activation. | [45] |
19 | | 53-06-5 | Approved | Xenopus oocytes | Suppressing the amplitude of Kv1.5 channel current with IC50 value of 50.2 μM. | [46] |
20 | | 50-23-7 | Approved, vet approved | Xenopus oocytes | Suppressing the amplitude of Kv1.5 channel current with IC50 value of 33.4 μM. | [46] |
21 | | 52-01-7 | Approved | Male Wistar rats | Shorting the APD90(action potential duration) and increasing the expression of Kv1.5. | [47] |
22 | | 169590-42-5 | Approved, investigational | Ltk- cells | Blocking hKv1.5 channels with an IC50 of 26.2 μM for the peak current and 5.5 μM for the current at the end of a 250 ms pulse to +60 mV. | [48] |
23 | | 38396-39-3 | Approved, investigational | Ltk- cells | Blocking the opening of hKv1.5 channels stereoselectivity; the results showed the Kd value for R(+)-enantiomer (4.1 μM) was six-fold more potent than the S(-)-enantiomer (27.3 μM). | [49,50] |
24 | | 2078-54-8 | Approved, investigational, vet approved | CHO cells | Inducing a time-dependent decline of the hKv1.5 current (IC50: 62.9 μM) during depolarizing steps and slowing the time course of tail current decay upon repolarization. | [4] |
25 | | 59467-70-8 | Approved | HEK cells | Inhibited Kv1.5 current (IC50: 17 μM) without influence on the half-maximal activation voltage of Kv1.5 channels. | [51] |
26 | | 64-77-7 | Approved, investigational | Insulin-secreting (INS-1) cells | Activating Kv1.5 channel and the activation of secretion can be counteracted by an excessive stimulation of Kv channels in INS-1 cells which shorten the Ca2+ signal and confine the insulin secretion. | [52] |
27 | | 94-09-7 | Approved | Ltk- cells | Blocking hKv1.5 channels in a voltage-dependent manner and modifying the voltage-dependence of channel activation. | [53] |
Drugs in Development | ||||||
28 | | 1163-36-6 | Phase 2 Clinical | HEK cells | Decreasing IKs and human Kv1.5 channel current at doses of 3 and 10 μM at voltages ranging from –14.3 to +34.7 mV. | [54] |
29 | | 767334-89-4 | Phase 1 discontinued | CHO cells | Inhibiting hKv1.5 current with IC50 value of 3.6 μM, blocking early atrial K+ channels, and prolonging atrial refractoriness with no effects on electrocardiography intervals and ventricular repolarization. | [55] |
30 | | 864368-79-6 | Phase 2 discontinued | CHO cells | Blocking hKv1.5 current with IC50 value of 27 μM with a slight decrease at higher frequency. | [56] |
31 | | 343246-73-1 | Phase 1 discontinued | Mouse fibroblast L929 cells | Showing excellent activity in blocking Kv1.5 (IC50: 0.05 μM) and very good selectivity over hERG, sodium, and L-type calcium ion channels. | [57] |
32 | | 1272353-82-8 | Phase 1 discontinued | Mammalian L-929 cells | Blocking hKv1.5 current with IC50 value of 0.05 μM with an acceptable in vitroselectivity and liability profile and a good pharmacokinetic profile across species. | [58] |
33 | | 875562-81-5 | Phase 1 discontinued | HK2BN9 cells | Blocking Kv1.5 current in an expression system and concentration-dependently elevated the plateau phase of atrial action potentials (APs). | [59] |
34 | XEN-D0103 (Undisclosed structure) | 1410180-16-3 | Phase 2 discontinued | CHO cells | Prolongating action potential duration (APD) and suppressed APs at high stimulation rates in sinus rhythm (SR) and paroxysmal AF (pAF) tissue. | [60] |
35 | | 154447-36-6 | Experimental | CHO cells | Acting directly on hKv1.5 currents as an open channel blocker with key interacting residues located in the pore region (Thr 480, Arg 487) and the S6 segment (Ile 502, Ile 508, Leu 510, Val 516). | [9] |
36 | | 752253-75-1 | - | CHO cells | Inhibiting several potassium currents including IKr, IKs, IK(ACh), and IKv1.5 at doses of 0.01–30 μM. | [61] |
37 | | 1034194-07-4 | - | HEK cells | Inhibiting hKv1.5 current slightly when specially blocked by the Kv11.1 channel. | [62] |
Natural Products | Type | |||||
38 | | 2334247-91-3 | Terpenoid | CHO cells | Blocking Kv1.5 with an IC50 value of 6.94 μM. | [63] |
39 | | 2334247-94-6 | Terpenoid | CHO cells | Blocking Kv1.5 with an IC50 value of 0.30 μM. | [63] |
40 | | 57444-62-9 | Terpenoid | C6 glioma cells | Inhibiting the hKv1.5 current in time and dose-dependent manners. | [64] |
41 | | 13018-10-5 | Terpenoid | Ltk- cells | Inhibiting the hKv1.5 current in time- and voltage-dependent manners, with an IC50 value of 2.51 μM at +60 mV accelerated the inactivation kinetics of the hKv1.5 channel and slowed the deactivation kinetics of the hKv1.5 current, resulting in a tail crossover phenomenon. | [65] |
42 | | 1394-48-5 | Alkaloid | Guinea pigs | Blocking I-Kv1.5 slightly with a ratio of 20.6% at a dosage of 200 μM. | [66] |
43 | | 90-69-7 | Alkaloid | HEK cells | Accelerating the decay rate of Kv1.5 inactivation, decreased the current amplitude at the end of the pulse in a concentration-dependent manner with an IC50 value of 15.1 μM. | [67] |
44 | | 4360-12-7 | Alkaloid | Xenopus oocytes | Inhibiting Kv1.5 with an IC50 of 1.70 μM in Xenopus expression system, resulting in a mild leftward shift of Kv1.5 activation curve. | [68] |
45 | | 58-74-2 | Alkaloid | Ltk- cells | Blocking hKv1.5 channels and native hKv1.5 channels in a concentration-, voltage-, state-, and time-dependent manner. | [69] |
46 | | 2934-97-6 | Alkaloid | HEK cells | Blocking Kv1.5 currents dose-dependently with an IC50 value of 53.2 μM inhibited the delayed rectifier effect of Kv1.5 resulting in a potential left shift of the inactivation curve. | [70] |
47 | | 302-27-2 | Alkaloid | Xenopus laevis oocytes | Producing a voltage-, time-, and frequency-dependent inhibition of Kv1.5 (IC50: 0.796 μM). | [71] |
48 | | 529-44-2 | Flavonoid | HEK cells | Inhibiting Ikur and the expression of hKv1.5 in a dose-, time-, and frequency-dependent manner. | [72] |
49 | | 5631-70-9 | Flavonoid | HEK cells | Suppressing hKv1.5 current in HEK 293 cell line (IC50: 6.4 μM) and the ultra-rapid delayed rectify K+ current IKur in human atrial myocytes (IC50: 8.0 μM) by binding to open channels in a use- and frequency-dependent manner. | [73] |
50 | | 117-39-5 | Flavonoid | Xenopus laevisoocytes | Activating hKv1.5 channels (EC50: 37.8 μM) by interacting with key residue Ile 502 in S6 region. | [74] |
51 | | 480-44-4 | Flavonoid | HEK cells | Blocking open hKv1.5 channels by binding to their S6 domain influenced by the interaction of V505A, I508A, and V512A. | [75] |
52 | | 501-36-0 | Phenol | Human PASMCs | Reducing the expression of Kv1.5 mRNA to reverse monocrotaline-induced pulmonary vascular and cardiac dysfunction. | [76] |
53 | | 5928-25-6 | Coumarin | Ltk− cells | Inhibiting hKv1.5 current in a concentration- and use-dependent manner, with an IC50 value of 2.7 μM at +60 mV accelerated the inactivation kinetics of the hKv1.5 channel, resulting in a tail crossover phenomenon. | [77] |
54 | Kaliotoxin | 145199-73-1 | Polypeptide | T cell | Inhibiting hKv1.5 current in a dose-dependent manner. | [64] |
55 | | 190017-00-6 | Nor-triterpenoid | CHO cells | Inhibiting Kv1.5 with an IC50 of 1.77 μM and influenced by the mutations T480A, V505A, I508A, as well as V516A. | [78] |
56 | | 107-35-7 | Amino acid | Male Wistar rats | Down-regulating the mRNA expression level of Kv1.5. | [79] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Ruan, S.; Ma, X.; Feng, Q.; Xie, Z.; Nie, Z.; Fan, P.; Qian, M.; He, X.; Wu, S.; et al. Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5. Biomolecules 2020, 10, 10. https://doi.org/10.3390/biom10010010
Zhao Z, Ruan S, Ma X, Feng Q, Xie Z, Nie Z, Fan P, Qian M, He X, Wu S, et al. Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5. Biomolecules. 2020; 10(1):10. https://doi.org/10.3390/biom10010010
Chicago/Turabian StyleZhao, Zefeng, Songsong Ruan, Xiaoming Ma, Qian Feng, Zhuosong Xie, Zhuang Nie, Peinan Fan, Mingcheng Qian, Xirui He, Shaoping Wu, and et al. 2020. "Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5" Biomolecules 10, no. 1: 10. https://doi.org/10.3390/biom10010010
APA StyleZhao, Z., Ruan, S., Ma, X., Feng, Q., Xie, Z., Nie, Z., Fan, P., Qian, M., He, X., Wu, S., Zhang, Y., & Zheng, X. (2020). Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5. Biomolecules, 10(1), 10. https://doi.org/10.3390/biom10010010