A Stage-Based Approach to Therapy in Parkinson’s Disease
Abstract
:1. Introduction
2. Early Stage
2.1. Treatments for Non-Motor Symptoms in the Early Stage
2.1.1. Olfactory Dysfunction
2.1.2. REM Sleep Behavior Disorder (RBD)
2.1.3. Constipation
2.1.4. Depression and Anxiety
2.1.5. Impulse Control Disorder
2.2. Treatments for Motor Symptoms in the Early Stage
2.2.1. l-Dopa
2.2.2. Dopamine Agonists
2.2.3. Non-Ergot Dopamine Agonists
2.2.4. Ergot-Derived Dopamine Agonists
2.2.5. Monoamine Oxidase Inhibitors
2.2.6. Anticholinergics
2.2.7. Amantadine
3. Advanced Stage
3.1. Treatments for Motor Symptoms in the Advanced Stage
3.2. Treatments for Non-Motor Symptoms in the Advanced Stage
3.2.1. Cognitive Deficits
3.2.2. Apathy
3.2.3. Psychotic Disturbances
3.2.4. Dysphagia
3.2.5. Dysautonomic Symptoms
4. Complicated Stage: Pharmacological Treatment for Motor Complications
4.1. Motor Fluctuations
4.2. Dyskinesia
4.3. Super-Off and Akinetic Crisis
5. Non-Pharmacological Treatments for Motor and Non-Motor Symptoms
5.1. Motor Symptoms
5.2. Non-Motor Symptoms
6. Disease-Modifying Drugs: Potential Approaches
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef]
- Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: A review. JAMA 2014, 311, 1670–1683. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Gjerstad, M.D.; Wentzel-Larsen, T.; Aarsland, D.; Larsen, J.P. Insomnia in Parkinson’s disease: Frequency and progression over time. J. Neurol. Neurosurg. Psychiatry 2007, 78, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.; Bennett, G. Parkinson’s disease and anxiety. Postgrad. Med. J. 2001, 77, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Bosboom, J.L.W.; Stoffers, D.; Wolters, E.C. Cognitive dysfunction and dementia in Parkinson’s disease. J. Neural Transm. 2004, 111, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Pluck, G.C.; Brown, R.G. Apathy in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2002, 73, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu-Boire, I.; Lang, A.E. Behavioral effects of levodopa. Mov. Disord. 2015, 30, 90–102. [Google Scholar] [CrossRef]
- Sakakibara, R.; Uchiyama, T.; Yamanishi, T.; Shirai, K.; Hattori, T. Bladder and bowel dysfunction in Parkinson’s disease. J. Neural Transm. 2008, 115, 443–460. [Google Scholar] [CrossRef]
- Lauzé, M.; Daneault, J.F.; Duval, C. The Effects of Physical Activity in Parkinson’s Disease: A Review. J. Park. Dis. 2016, 6, 685–698. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. 1), 318–324. [Google Scholar] [CrossRef]
- Macleod, A.D.; Taylor, K.S.M.; Counsell, C.E. Mortality in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2014, 29, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Postuma, R.B.; Adler, C.H.; Bloem, B.R.; Chan, P.; Dubois, B.; Gasser, T.; Goetz, C.G.; Halliday, G.; Joseph, L.; et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2015, 30, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K.; Rub, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Braak, H.; Sastre, M.; Bohl, J.R.; de Vos, R.A.; Del Tredici, K. Parkinson’s disease: Lesions in dorsal horn layer I, involvement of para-sympathetic and sympathetic pre-and postganglionic neurons. Acta Neuropathol. 2007, 113, 421–429. [Google Scholar] [CrossRef]
- Postuma, R.B.; Aarsland, D.; Barone, P.; Burn, D.J.; Hawkes, C.H.; Oertel, W.; Ziemssen, T. Identifying prodromal Parkinson’s disease: Pre-motor disorders in Parkinson’s disease. Mov. Disord. 2012, 27, 617–626. [Google Scholar] [CrossRef]
- Carlsson, A.; Lindqvist, M.; Magnusson, T.O.R. 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957, 180, 1200. [Google Scholar] [CrossRef]
- De Deurwaerdère, P.; Di Giovanni, G.; Millan, M.J. Expanding the repertoire of l-DOPA’s actions: A comprehensive review of its functional neurochemistry. Prog. Neurobiol. 2017, 151, 57–100. [Google Scholar] [CrossRef]
- Foley, P. The l-DOPA story revisited. Further surprises to be expected? J. Neural Transm. Suppl. 2000, 1–20. [Google Scholar] [CrossRef]
- Hawkes, C.H.; Shephard, B.C.; Daniel, S.E. Olfactory dysfunction in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Jennings, D.; Siderowf, A.; Stern, M.; Seibyl, J.; Eberly, S.; Oakes, D.; Marek, K.; PARS Investigators. Imaging prodromal Parkinson disease: The Parkinson Associated Risk Syndrome Study. Neurology 2014, 83, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, P.; Iranzo, A.; Högl, B.; Frauscher, B.; Müller, C.; Santamaría, J.; Tolosa, E.; Serradell, M.; Mitterling, T.; Gschliesser, V.; et al. Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology 2015, 84, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.J.; Stimson, E.; Henderson, J.M.; Halliday, G.M. Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 2002, 125, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Stern, M.B.; Pfeiffer, C.; Gollomp, S.M.; Hurtig, H.I. Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1992, 55, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Gjerde, K.V.; Müller, B.; Skeie, G.O.; Assmus, J.; Alves, G.; Tysnes, O.B. Hyposmia in a simple smell test is associated with accelerated cognitive decline in early Parkinson’s disease. Acta Neurol. Scand. 2018, 138, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 2012, 8, 329–339. [Google Scholar] [CrossRef]
- De Almeida, C.M.O.; Pachito, D.V.; Sobreira-Neto, M.A.; Tumas, V.; Eckeli, A.L. Pharmacological treatment for REM sleep behavior disorder in Parkinson disease and related conditions: A scoping review. J. Neurol. Sci. 2018, 393, 63–68. [Google Scholar] [CrossRef]
- Mahlknecht, P.; Seppi, K.; Frauscher, B.; Kiechl, S.; Willeit, J.; Stockner, H.; Djamshidian, A.; Nocker, M.; Rastner, V.; Defrancesco, M.; et al. Probable RBD and association with neurodegenerative disease markers: A population-based study. Mov. Disord. 2015, 30, 1417–1421. [Google Scholar] [CrossRef]
- Iranzo, A.; Molinuevo, J.L.; Santamaría, J.; Serradell, M.; Martí, M.J.; Valldeoriola, F.; Tolosa, E. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: A descriptive study. Lancet Neurol. 2006, 5, 572–577. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.F.; Vendette, M.; Charland, K.; Montplaisir, J. Manifestations of Parkinson disease differ in association with REM sleep behavior disorder. Mov. Disord. 2008, 23, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.H.; Mahowald, M.W. Long-term, nightly benzodiazepine treatment of injurious parasomnias and other disorders of disrupted nocturnal sleep in 170 adults. Am. J. Med. 1996, 100, 333–337. [Google Scholar] [CrossRef]
- Olson, E.; Boeve, B.; Silber, M. Rapid eye movement sleep behavior disorder: Demographic, clinical, and laboratory findings in 93 cases. Brain 2000, 123, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.; Hurwitz, T.D.; Mahowald, M.W. Symposium: Normal and abnormal REM sleep regulation: REM sleep behaviour disorder: An update on a series of 96 patients and a review of the world literature. J. Sleep Res. 1993, 2, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Aurora, R.N.; Zak, R.S.; Maganti, R.K.; Auerbach, S.H.; Casey, K.R.; Chowdhuri, S.; Karippot, A.; Ramar, K.; Kristo, D.A.; Morgenthaler, T.I.; et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J. Clin. Sleep Med. 2010, 6, 85–95. [Google Scholar] [PubMed]
- Brzezinski, A. Melatonin in humans. N. Engl. J. Med. 1997, 336, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Mcarter, S.J.; Boswell, C.L.; St Louis, E.; Dueffert, L.G.; Slocumb, N.; Boeve, B.F.; Silber, M.H.; Olson, E.J.; Tippmann-Peikert, M. Treatment outcomes in REM sleep behavior disorder. Sleep Med. 2013, 14, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, N.; Uchimura, N.; Hashizume, Y.; Mukai, M.; Etoh, Y.; Yamamoto, K.; Kotorii, T.; Ohshima, H.; Ohshima, M.; Maeda, H. Melatonin therapy for REM sleep behavior disorder. Psychiatry Clin. Neurosci. 2001, 55, 267–269. [Google Scholar] [CrossRef]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: Results in 14 patients. Sleep Med. 2003, 4, 281–284. [Google Scholar] [CrossRef]
- Kunz, D.; Mahlberg, R. A two-part, double-blind, placebo-controlled trial of exogenous melatonin in REM sleep behaviour disorder. J. Sleep Res. 2010, 19, 591–596. [Google Scholar] [CrossRef]
- Bonakis, A.; Economou, N.T.; Papageorgiou, S.G.; Vagiakis, E.; Nanas, S.; Paparrigopoulos, T. Agomelatine may improve REM sleep behavior disorder symptoms. J. Clin. Psychopharmacol. 2012, 32, 732–734. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, K.; Nomura, T.; Maeda, T.; Tsuboi, Y.; Mishima, T.; Takigawa, H.; Nakashima, K. Beneficial Effects of Ramelteon on Rapid Eye Movement Sleep Behavior Disorder Associated with Parkinson’s Disease—Results of a Multicenter Open Trial. Intern. Med. 2016, 55, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Borreguero, D.; Caminero, A.B.; de la Llave, Y.; Larrosa, O.; Barrio, S.; Granizo, J.J.; Pareja, J.A. Decreased phasic EMG activity during rapid eye movement sleep in treatment-naive Parkinson’s disease: Effects of treatment with levodopa and progression of illness. Mov. Disord. 2002, 17, 934–941. [Google Scholar] [CrossRef]
- Ozekmekci, S.; Apaydin, H.; Kilic, E. Clinical features of 35 patients with Parkinson’s disease displaying REM behavior disorder. Clin. Neurol. Neurosurg. 2005, 107, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.L.; Gagno, J.-F.; Filipini, D.; Montplaisir, J. The effects of pramipexole in REM sleep behavior disorder. Neurology 2003, 61, 1418–1420. [Google Scholar] [CrossRef]
- Sasai, T.; Matsuura, M.; Inoue, Y. Factors associated with the effect of pramipexole on symptoms of idiopathic REM sleep behavior disorder. Park. Relat. Disord. 2013, 19, 153–157. [Google Scholar] [CrossRef]
- Kumru, H.; Iranzo, A.; Carrasco, E.; Valldeoriola, F.; Marti, M.J.; Santamaria, J.; Tolosa, E. Lack of effects of pramipexole on REM sleep behavior disorder in Parkinson disease. Sleep 2008, 31, 1418–1421. [Google Scholar]
- Rye, D.B. Contributions of the pedunculopontine region to normal and altered REM sleep. Sleep 1997, 20, 757–788. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Morrison, A.R.; Mann, G.L. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res. 1982, 239, 81–105. [Google Scholar] [CrossRef]
- Greene, R.W.; Gerber, U.; Carley, R.W. Cholinergic activation of medial pontine reticular formation neurons in vitro. Brain Res. 1989, 476, 154–159. [Google Scholar] [CrossRef]
- Boeve, B.F.; Silber, M.H.; Saper, C.B.; Ferman, T.J.; Dickson, D.W.; Parisi, J.E.; Benarroch, E.E.; Ahlskog, J.E.; Smith, G.E.; Caselli, R.C.; et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain. 2007, 130 Pt 11, 2770–2788. [Google Scholar] [CrossRef] [Green Version]
- Larsson, V.; Aarsland, D.; Ballard, C.; Minthon, L.; Londos, E. The effect of memantine on sleep behaviour in dementia with Lewy bodies and Parkinson’s disease dementia. Int. J. Geriatr. Psychiatry 2010, 25, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Shneerson, J.M. Successful treatment of REM sleep behavior disorder with sodium oxybate. Clin. Neuropharmacol. 2009, 32, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, K.K.; Pizza, F.; Primavera, A.; Ferri, R.; Plazzi, G. Sodium oxybate for idiopathic REM sleep behavior disorder: A report on two patients. Sleep Med. 2017, 32, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Chagas, M.H.N.; Eckeli, A.L.; Zuardi, A.W.; Pena-Pereira, M.A.; Sobreira-Neto, M.A.; Sobreira, E.T.; Camilo, M.R.; Bergamaschi, M.M.; Schenck, C.H.; Hallak, J.E. Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: A case series. J. Clin. Pharm. 2014, 39, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.L.; Pfeiffer, R.F.; Quigley, E.M.; Hofman, R.; Balluff, M. Gastrointestinal symptoms in Parkinson’s disease. Mov. Disord. 1991, 6, 151–156. [Google Scholar] [CrossRef]
- Savica, R.; Carlin, J.M.; Grossardt, B.R.; Bower, J.H.; Ahlskog, J.E.; Maraganore, D.M.; Bharucha, A.E.; Rocca, W.A. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Neurology 2009, 73, 1752–1758. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa Carrasco, A.J.; Timmermann, L.; Pedrosa, D.J. Management of constipation in patients with Parkinson’s disease. NPJ Park. Dis. 2018, 4, 6. [Google Scholar] [CrossRef]
- Seppi, K.; Ray Chaudhuri, K.; Coelho, M.; Fox, S.H.; Katzenschlager, R.; Perez Lloret, S.; Weintraub, D.; Sampaio, C.; the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov. Disord. 2019, 34, 180–198. [Google Scholar] [CrossRef]
- Muller, B.; Assmus, J.; Larsen, J.P.; Haugarvoll, K.; Skeie, G.O.; Tysnes, O.B.; ParkWest study group. Autonomic symptoms and dopaminergic treatment in de novo Parkinson’s disease. Acta Neurol. Scand. 2013, 127, 290–294. [Google Scholar] [CrossRef]
- Pagano, G.; Tan, E.E.; Haider, J.M.; Bautista, A.; Tagliati, M. Constipation is reduced by beta-blockers and increased by dopaminergic medications in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Tateno, F.; Sakakibara, R.; Yokoi, Y.; Kishi, M.; Ogawa, E.; Uchiyama, T.; Yamamoto, T.; Yamanishi, T.; Takahashi, O. Levodopa ameliorated anorectal constipation in de novo Parkinson’s disease: The Ql-GAT study. Park. Relat. Disord. 2011, 17, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Barone, P. Neurotransmission in Parkinson’s disease: Beyond dopamine. Eur. J. Neurol. 2010, 17, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, J.; Tolosa, E.; Valles, A. Parkinson’s disease with depression: A possible subgroup of idiopathic parkinsonism. Neurology 1986, 36, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, A. Depression in Parkinson’s Disease—Review. Acta Neurol. Scand. 2006, 113, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.; Kurlan, R.; Kerson, J.M.; Como, P. Preliminary examination of the comorbidity of anxiety and depression in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 1992, 4, 257–264. [Google Scholar]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef]
- Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.M.; Poewe, W.; Rascol, O.; Goetz, C.G.; et al. The Movement Disorder Society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26 (Suppl. 3), S42–S80. [Google Scholar] [CrossRef]
- Poewe, W. Depression in Parkinson’s Disease. J. Neurol. 2007, 254 (Suppl. 5), 49–55. [Google Scholar] [CrossRef]
- Rana, A.Q.; Ahmed, U.S.; Chaudry, Z.M.; Vasan, S. Parkinson’s disease: A review of non-motor symptoms. Expert Rev. Neurother. 2015, 15, 549–562. [Google Scholar] [CrossRef]
- Martinez-Castrillo, J.C. Impulse control disorders in Parkinson’s disease: A hard-turning point. J. Neurol. Neurosurg. Psychiatry 2019, 90, 2. [Google Scholar] [CrossRef] [PubMed]
- Molde, H.; Moussavi, Y.; Kopperud, S.T.; Erga, A.H.; Hansen, A.L.; Pallesen, S. Impulse-Control Disorders in Parkinson’s Disease: A Meta-Analysis and Review of Case–Control Studies. Front. Neurol. 2018, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Pondal, M.; Marras, C.; Miyasaki, J.; Moro, E.; Armstrong, M.J.; Strafella, A.P.; Shah, B.B.; Fox, S.; Prashanth, L.K.; Phielipp, N.; et al. Clinical features of dopamine agonist withdrawal syndrome in a movement disorders clinic. J. Neurol. Neurosurg. Psychiatry 2012, 84, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacson, S.I.; Hauser, R.A. Improving Symptom Control in Early Parkinson’s Disease. Ther. Adv. Neurol. Disord. 2009, 2, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.; Sortwell, C.E.; Sladek, C.D.; Roth, R.H.; Steece-Collier, K. Comparison of neurotoxicity following repeated administration of l-dopa, D-dopa and dopamine to embryonic mesencephalic dopamine neurons in cultures derived from Fisher 344 and Sprague-Dawley donors. Cell Transplant. 1997, 6, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Fahn, S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later l-DOPA. Arch. Neurol. 1999, 56, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Glover, A.; Ghilardi, M.F.; Bodis-Wollner, I.; Onofrj, M. Alterations in event-related potentials (ERPs) of MPTP-treated monkeys. Electroencephalogr. Clin. Neurophysiol. 1988, 71, 461–468. [Google Scholar] [CrossRef]
- Ghilardi, M.F.; Chung, E.; Bodis-Wollner, I.; Dvorzniak, M.; Glover, A.; Onofrj, M. Systemic 1-methyl,4-phenyl,1-2-3-6-tetrahydropyridine (MPTP) administration decreases retinal dopamine content in primates. Life Sci. 1988, 43, 255–262. [Google Scholar] [CrossRef]
- Pakkenberg, H.; Birket-Smith, E.; Dupont, E.; Hansen, E.; Mikkelsen, B.; Presthus, J.; Rautakorpi, I.; Riman, E.; Rinne, U.K. Parkinson’s disease treated with Sinemet or Madopar. A controlled multicenter trial. Acta Neurol. Scand. 1976, 53, 376–385. [Google Scholar] [CrossRef]
- Filograna, R.; Beltramini, M.; Bubacco, L.; Bisaglia, M. Anti-Oxidants in Parkinson’s Disease Therapy: A Critical Point of View. Curr. Neuropharmacol. 2016, 14, 260–271. [Google Scholar] [CrossRef]
- Park, H.J.; Kang, J.K.; Lee, M.K. 1-O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019, 24, 867. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.X.; Fernandez, H.H. Dopamine agonist withdrawal syndrome: A comprehensive review. J. Neurol. Sci. 2017, 374, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Walkinshaw, G.; Waters, C.M. Induction of apoptosis in catecholaminergic PC12 cells by l-DOPA. Implications for the treatment of Parkinson’s disease. J. Clin. Investig. 1995, 95, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
- Borovac, J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med. 2016, 89, 37–47. [Google Scholar] [PubMed]
- Stowe, R.L.; Ives, N.J.; Clarke, C.; van Hilten, J.; Ferreira, J.; Hawker, R.J.; Shah, L.; Wheatley, K.; Gray, R. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst. Rev. 2008, CD006564. [Google Scholar] [CrossRef] [PubMed]
- Hubble, J.P.; Koller, W.C.; Cutler, N.R.; Sramek, J.J.; Friedman, J.; Goetz, C.; Ranhosky, A.; Korts, D.; Elvin, A. Pramipexole in patients with early Parkinson’s disease. Clin. Neuropharmacol. 1995, 18, 338. [Google Scholar] [CrossRef]
- Pezzoli, G.; Martignoni, E.; Pacchetti, C.; Angeleri, V.A.; Lamberti, P.; Muratorio, A.; Bonuccelli, U.; De Mari, M.; Foschi, N.; Cossutta, E.; et al. Pergolide compared with bromocriptine in Parkinson’s disease: A multicenter, crossover, controlled study. Mov. Disord. 1994, 9, 431. [Google Scholar] [CrossRef]
- Mirapex (pramipexole dihydrochloride) [product monograph]; Boehringer Ingelheim (Canada) Ltd.: Burlington, ON, Canada, 2019; Available online: https://www.boehringer-ingelheim.ca/sites/ca/files/documents/mirapexpmen.pdf (accessed on 14 August 2019).
- Kassubek, J.; Abler, B.; Pinkhardt, E.H. Neural reward processing under dopamine agonists: Imaging. J. Neurol. Sci. 2011, 310, 36–39. [Google Scholar] [CrossRef]
- Schilling, J.C.; Adamus, W.S.; Palluk, R. Neuroendocrine and side effect profile of pramipexole, a new dopamine receptor agonist, in humans. Clin. Pharm. 1992, 51, 541. [Google Scholar] [CrossRef]
- Tholfsen, L.K.; Larsen, J.P.; Schulz, J.; Tysnes, O.B.; Gjerstad, M.D. Development of excessive daytime sleepiness in early Parkinson disease. Neurology 2015, 85, 162–168. [Google Scholar] [CrossRef]
- Rabinak, C.A.; Nirenberg, M.J. Dopamine agonist withdrawal syndrome in Parkinson disease. Arch. Neurol. 2010, 67, 58. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Garcia, X.; Mohammad, M.E.; Yu, X.X.; Vlastaris, K.; O’Donnell, K.; Sutton, K.; Fernandez, H.H. Dopamine agonist withdrawal syndrome (DAWS) in a tertiary Parkinson’s disease center. Mov. Disord. 2016, 379, 308–311. [Google Scholar]
- Zanettini, R.; Antonini, A.; Gatto, G.; Gentile, R.; Tesei, S.; Pezzoli, G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N. Engl. J. Med. 2007, 356, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Parkinson Study Group. DATATOP: A multicenter controlled clinical trial in early Parkinson’s disease. Arch. Neurol. 1989, 46, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Olanow, C.W.; Rascol, O.; Hauser, R.; Feigin, P.D.; Jankovic, J.; Lang, A.; Langston, W.; Melamed, E.; Poewe, W.; Stocchi, F.; et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N. Engl. J. Med. 2009, 361, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Crosby, N.; Deane, K.H.; Clarke, C.E. Amantadine in Parkinson’s disease. Cochrane Database Syst. Rev. 2003, CD003468. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.S.; Bhatia, K.P.; Lang, A.E. Dystonia and Parkinson’s disease: What is the relationship? Neurobiol. Dis. 2019, 132, 104462. [Google Scholar] [CrossRef] [PubMed]
- Niemann, N.; Jankovic, J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Park. Relat. Disord. 2019. [Google Scholar] [CrossRef]
- Davie, C.A. A Review of Parkinson’s disease. Br. Med. Bull. 2008, 86, 109–127. [Google Scholar] [CrossRef]
- Borges, N. Tolcapone in Parkinson’s disease: Liver toxicity and clinical efficacy. Expert Opin. Drug Saf. 2005, 4, 69–73. [Google Scholar] [CrossRef]
- Warre, C. Tolcapone and Hepatotoxic effects. Arch. Neurol. 2000, 57, 263–267. [Google Scholar]
- Koller, W.C.; Hutton, J.T.; Tolosa, E.; Capilldeo, R. Immediate-release and controlled-release carbidopa/levodopa in PD: A 5-year randomized multicenter study. Carbidopa/Levodopa Study Group. Neurology 1999, 53, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, H.; Kuoppama, M.; Leinonen, M.; Schapira, A.H. Early versus delayed initiation of entacapone in levodopa-treated patients with Parkinson_s disease: A long-term, retrospective analysis. Eur. J. Neurol. 2009, 16, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Less, A.J.; Ferrera, J.; Poewe, W.; Rocha, J.F.; McCrory, M.; Soares-da-Silva, P.; BIPARK-2 Study Investigators. Opicapone as adjunct to levodopa therapy in patients with Parkinson’s disease and motor fluctuation: A randomized clinical trial. JAMA Neurol. 2017, 74, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Rascol, O.; Oertel, W.; Poewe, W.; Stocchi, F.; Tolosa, E.; LARGO study group. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): A randomised, double-blind, parallel-group trial. Lancet 2005, 365, 947–954. [Google Scholar] [CrossRef]
- Parkinson Study Group. Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann. Neurol. 1996, 40, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ives, N.J.; Stowe, R.L.; Marro, J.; Counsell, C.; Macleod, A.; Clarke, C.E.; Gray, R.; Wheatley, K. Monoamine oxidase type B inhibitors in early Parkinson’s disease: Meta-analysis of 17 randomised trials involving 3525 patients. BMJ 2004, 329, 593. [Google Scholar] [CrossRef] [PubMed]
- Borgohain, R.; Szasz, J.; Stanzione, P.; Meshram, C.; Bhatt, M.; Chirilineau, D.; Stocchi, F.; Lucini, V.; Giuliani, R.; Forrest, E.; et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov. Disord. 2014, 29, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, F.; Arnold, G.; Onofrj, M.; Kwiecinski, H.; Szczudlik, A.; Thomas, A.; Bonuccelli, U.; Van Dijk, A.; Cattaneo, C.; Sala, P.; et al. Improvement of motor function in early Parkinson’s disease by safinamide. Neurology 2004, 63, 746–748. [Google Scholar] [CrossRef]
- Chung, K.A.; Lobb, B.M.; Nutt, J.G.; Horak, F.B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 2010, 75, 1263–1269. [Google Scholar] [CrossRef] [Green Version]
- Henderson, E.J.; Lord, S.R.; Brodie, M.A.; Gaunt, D.M.; Lawrence, A.D.; Close, J.C.; Whone, A.L.; Ben-Shlomo, Y. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2016, 15, 249–258. [Google Scholar] [CrossRef]
- Jankovic, J. Treatment of dystonia. Lancet Neurol. 2006, 5, 864–872. [Google Scholar] [CrossRef]
- Albanese, A.; Asmus, F.; Bhatia, K.P.; Elia, A.E.; Elibol, B.; Filippini, G.; Gasser, T.; Krauss, J.K.; Nardocci, N.; Newton, A.; et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur. J. Neurol. 2011, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litvan, I.; Aarsland, D.; Adler, C.H.; Goldman, J.G.; Kulisevsky, J.; Mollenhauer, B.; Rodriguez-Oroz, M.C.; Tröster, A.I.; Weintraub, D. MDS task force on mild cognitive impairment in Parkinson’s disease: Critical review of PD-MCI. Mov. Disord. 2011, 26, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.; Tang, M.X.; Louis, E.D.; Côté, L.J.; Alfaro, B.; Mejia, H.; Stern, Y.; Marder, K. The association of incident dementia with mortality in, P.D. Neurology 2002, 59, 1708–1713. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, M.; Fox, C.; Maidment, I.; McShane, R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst. Rev. 2012, CD006504. [Google Scholar] [CrossRef] [PubMed]
- Mamikonyan, E.; Xie, S.X.; Melvin, E.; Weintraub, D. Rivastigmine for mild cognitive impairment in Parkinson disease: A placebo-controlled study. Mov. Disord. 2015, 30, 912–918. [Google Scholar] [CrossRef]
- Pagano, G.; Rengo, G.; Pasqualetti, G.; Femminella, G.D.; Monzani, F.; Ferrara, N.; Tagliati, M. Cholinesterase inhibitors for Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 767–773. [Google Scholar] [CrossRef]
- Ondo, W.G.; Shinawi, L.; Davidson, A.; Lai, D. Memantine for non-motor features of Parkinson’s disease: A double-blind placebo controlled exploratory pilot trial. Park. Relat. Disord. 2011, 17, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Emre, M.; Tsolaki, M.; Bonuccelli, U.; Destée, A.; Tolosa, E.; Kutzelnigg, A.; Ceballos-Baumann, A.; Zdravkovic, S.; Bladström, A.; Jones, R.; et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010, 9, 969–977. [Google Scholar] [CrossRef]
- Weintraub, D.; Hauser, R.A.; Elm, J.J.; Pagan, F.; Davis, M.D.; Choudhry, A.; MODERATO Investigators. Rasagiline for mild cognitive impairment in Parkinson’s disease: A placebo-controlled trial. Mov. Disord. 2016, 31, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Hanagasi, H.A.; Gurvit, H.; Unsalan, P.; Horozoglu, H.; Tuncer, N.; Feyzioglu, A.; Gunal, D.I.; Yener, G.G.; Cakmur, R.; Sahin, H.A.; et al. The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: A randomized, double-blind, placebo-controlled, multicenter study. Mov. Disord. 2011, 26, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Frakey, L.L.; Friedman, J.H. Cognitive Effects of Rasagiline in Mild-to-Moderate Stage Parkinson’s Disease Without Dementia. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 22–25. [Google Scholar] [CrossRef]
- Pagonabarraga, J.; Kulisevsky, J. Apathy in Parkinson’s Disease. Nonmotor Park. Hidden Face Many Hidden Faces 2017, 133, 657–678. [Google Scholar]
- Devos, D.; Moreau, C.; Maltete, D.; Lefaucheur, R.; Kreisler, A.; Eusebio, A.; Defer, G.; Ouk, T.; Azulay, J.P.; Krystkowiak, P.; et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s disease: A double-blind, placebo-controlled, randomised clinical trial. J. Neurol. Neurosurg. Psychiatry 2013, 85, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Ravina, B.; Marder, K.; Fernandez, H.H.; Friedman, J.H.; McDonald, W.; Murphy, D.; Aarsland, D.; Babcock, D.; Cummings, J.; Endicott, J.; et al. Diagnostic criteria for psychosis in Parkinson’s disease: Report of an NINDS, NIMH work group. Mov. Disord. 2007, 22, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.O.; Fernandez, H.H. Current understanding of psychosis in Parkinson’s disease. Curr. Psychiatry Rep. 2016, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- Onofrj, M.; Carrozzino, D.; D’Amico, A.; Di Giacomo, R.; Delli Pizzi, S.; Thomas, A.; Onofrj, V.; Taylor, J.P.; Bonanni, L. Psychosis in parkinsonism: An unorthodox approach. Neuropsychiatr. Dis. Treat. 2017, 13, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Marshall, E.; Kerwin, J.; Smith, C.J.; Jabeen, S.; Cheng, A.V.; Perry, R. Evidence of a monoaminergic-cholinergic imbalance related to visual hallucinations in Lewy body dementia. J. Neurochem. 1990, 55, 1454–1456. [Google Scholar] [CrossRef] [PubMed]
- Llinas, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García Ruiz, P.J.; Sesar Ignacio, A.; Ares Pensado, B.; Castro García, A.; Alonso Frech, F.; Alvarez López, M.; Arbelo González, J.; Baiges Octavio, J.; Burguera Hernández, J.A.; Calopa Garriga, M.; et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations. Mov. Disord. 2008, 23, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Borgemeester, R.W.; Drent, M.; van Laar, T. Motor and non-motor outcomes of continuous apomorphine infusion in 125 Parkinson’s disease patients. Park. Relat. Disord. 2016, 23, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Perry, R.; Larsen, J.P.; McKeith, I.G.; O’Brien, J.T.; Perry, E.K.; Burn, D.; Ballard, C.G. Neuroleptic sensitivity in Parkinson’s disease and parkinsonian dementias. J. Clin. Psychiatry 2005, 66, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Eng, M.L.; Welty, T.E. Management of hallucinations and psychosis in Parkinson’s disease. Am. J. Geriatr. Pharmacother. 2010, 8, 316–330. [Google Scholar] [CrossRef]
- Tuunainen, A.; Wahlbeck, K.; Gilbody, S. Newer atypical antipsychotic medication in comparison to clozapine: A systematic review of randomized trials. Schizophr. Res. 2002, 56, 1–10. [Google Scholar] [CrossRef]
- Maust, D.T.; Kim, H.M.; Seyfried, L.S.; Chiang, C.; Kavanagh, J.; Schneider, L.S.; Kales, H.C. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: Number needed to harm. JAMA Psychiatry 2015, 72, 438–445. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Mills, R.; Revell, S.; Williams, H.; Johnson, A.; Bahr, D.; Friedman, J.H. Pimavanserin, a Serotonin2A Receptor Inverse Agonist, for the Treatment of Parkinson’s Disease Psychosis. Neuropsychopharmacology 2009, 35, 881–892. [Google Scholar] [CrossRef]
- Cummings, J.; Isaacson, S.; Mills, R.; Williams, H.; Chi-Burris, K.; Corbett, A.; Dhall, R.; Ballard, C. Pimavanserin for patients with Parkinson’s disease psychosis: A randomised, placebo-controlled phase 3 trial. Lancet 2014, 383, 533–540. [Google Scholar] [CrossRef]
- Combs, B.L.; Cox, A.G. Update on the treatment of Parkinson’s disease psychosis: Role of pimavanserin. Neuropsychiatr. Dis. Treat. 2017, 13, 737–744. [Google Scholar] [CrossRef]
- Zoldan, J.; Friedberg, G.; Livneh, M.; Melamed, E. Psychosis in advanced Parkinson’s disease: Treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 1995, 45, 1305–1308. [Google Scholar] [CrossRef] [PubMed]
- Khundakar, A.A.; Hanson, P.S.; Erskine, D.; Lax, N.Z.; Roscamp, J.; Karyka, E.; Tsefou, E.; Singh, P.; Cockell, S.J.; Gribben, A.; et al. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathol. Commun. 2016, 4, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minett, T.; Thomas, A.; Wilkinson, L.M.; Daniel, S.L.; Sanders, J.; Richardson, J.; Littlewood, E.; Myint, P.; Newby, J.; McKeith, I.G. What happens when donepezil is suddenly withdrawn? An open label trial in dementia with Lewy bodies and Parkinson’s disease with dementia. Int. J. Geriatr. Psychiatry 2003, 18, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Riederer, P.; Lange, K.W.; Kornhuber, J.; Danielczyk, W. Pharmacotoxic psychosis after memantine in Parkinson’s disease. Lancet 1991, 338, 1022–1023. [Google Scholar] [CrossRef]
- Suttrup, I.; Warnecke, T. Dysphagia in Parkinson’s Disease. Dysphagia 2015, 31, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Leow, L.; Huckabee, M.L.; Frampton, C.; Anderson, T. A pilot study of respiration and swallowing integration in Parkinson’s disease: “on” and “off” levodopa. Dysphagia 2008, 23, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Isono, C.; Sakamoto, H.; Ueno, S.; Kusunoki, S.; Nakamura, Y. Rotigotine Transdermal Patch Improves Swallowing in Dysphagic Patients with Parkinson’s Disease. Dysphagia 2015, 30, 452–456. [Google Scholar] [CrossRef]
- Kremens, D.; Lew, M.; Claassen, D.; Goodman, B.P. Adding droxidopa to fludrocortisone or midodrine in a patient with neurogenic orthostatic hypotension and Parkinson disease. Clin. Auton. Res. 2017, 27, 29–31. [Google Scholar] [CrossRef]
- Wu, C.K.; Hohler, A.D. Management of orthostatic hypotension in patients with Parkinson’s disease. Pract. Neurol. 2014, 15, 100–104. [Google Scholar] [CrossRef]
- Hauser, R.A.; Biaggioni, I.; Hewitt, L.A.; Vernino, S. Integrated Analysis of Droxidopa for the Treatment of Neurogenic Orthostatic Hypotension in Patients with Parkinson Disease. Mov. Disord. Clin. Pract. 2018, 5, 627–634. [Google Scholar] [CrossRef]
- Biaggioni, I.; Freeman, R.; Mathias, C.J.; Low, P.; Hewitt, L.A.; Kaufmann, H.; Droxidopa 302 Investigators. Randomized Withdrawal Study of Patients with Symptomatic Neurogenic Orthostatic Hypotension Responsive to Droxidopa—Novelty and Significance. Hypertension 2014, 65, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Yeo, L.; Singh, R.; Gundeti, M.; Barua, J.M.; Masood, J. Urinary tract dysfunction in Parkinson’s disease: A review. Int. Urol. Nephrol. 2011, 44, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Madhuvrata, P.; Cody, J.D.; Ellis, G.; Herbison, G.P.; Hay-Smith, E.J. Which anticholinergic drug for overactive bladder symptoms in adults. Cochrane Database Syst. Rev. 2012, 1, CD005429. [Google Scholar] [CrossRef] [PubMed]
- Winge, K.; Fowler, C.J. Bladder dysfunction in Parkinsonism: Mechanisms, prevalence, symptoms, and management. Mov. Disord. 2006, 21, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Chapple, C.R. Mirabegron for the treatment of overactive bladder: A review of efficacy, safety and tolerability with a focus on male, elderly and antimuscarinic poor-responder populations, and patients with OAB in Asia. J. Expert Rev. Clin. Pharmacol. 2017, 10, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Mirabegron: A Review in Overactive Bladder Syndrome. Drugs 2018, 78, 833–844. [Google Scholar] [CrossRef]
- Rossanese, M.; Novara, G.; Challacombe, B.; Iannetti, A.; Dasgupta, P.; Ficarra, V. Critical analysis of phase II and III randomised control trials (RCTs) evaluating efficacy and tolerability of a β3-adrenoceptor agonist (Mirabegron) for overactive bladder (OAB). BJU Int. 2015, 115, 32–40. [Google Scholar] [CrossRef]
- Palma, J.A.; Kaufmann, H. Treatment of Autonomic Dysfunction in Parkinson Disease and Other Synucleinopathies. Mov. Disord. 2018, 33, 372–390. [Google Scholar] [CrossRef]
- Dewey, R.B., Jr. Management of motor complications in Parkinson’s disease. Neurology 2004, 62 (Suppl. 4), S3–S7. [Google Scholar] [CrossRef]
- Freitas, M.E.; Hess, C.W.; Fox, S.H. Motor Complications of Dopaminergic Medications in Parkinson’s Disease. Semin. Neurol. 2017, 37, 147–157. [Google Scholar] [CrossRef]
- Morgan, J.C.; Fox, S.H. Treating the Motor Symptoms of Parkinson Disease. Continuum 2016, 22, 1064–1085. [Google Scholar] [CrossRef] [PubMed]
- Cabreira, V.; Soares-da-Silva, P.; Massano, J. Contemporary Options for the Management of Motor Complications in Parkinson’s Disease: Updated Clinical Review. Drugs 2019, 79, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Trosch, R.M.; Silver, D.; Bottini, P.B. Intermittent subcutaneous apomorphine therapy for ‘off’ episodes in Parkinson’s disease: A 6-month open-label study. CNS Drugs 2008, 22, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Papuć, E.; Trzciniecka, O.; Rejdak, K. Continuous subcutaneous apomorphine monotherapy in Parkinson’s disease. Ann. Agric. Environ. Med. 2019, 26, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Katzenschlager, R.; Poewe, W.; Rascol, O.; Trenkwalder, C.; Deuschl, G.; Chaudhuri, R.; Henriksen, T.; van Laar, T.; Spivey, K.; Vel, S.; et al. Double-blind, randomized, placebo-controlled, Phase III study (TOLEDO) to evaluate the efficacy of apomorphine subcutaneous infusion in reducing OFF time in Parkinson’s disease patients with motor fluctuations not well controlled on optimized medical treatment. Neurology 2017, 89, E98–E99. [Google Scholar]
- Martinez-Martin, P.; Reddy, P.; Antonini, A.; Henriksen, T.; Katzenschlager, R.; Odin, P.; Todorova, A.; Naidu, Y.; Tluk, S.; Chandiramani, C.; et al. Chronic subcutaneous infusion therapy with apomorphine in advanced Parkinson’s disease compared to conventional therapy: A real life study of non motor effect. J. Park. Dis. 2011, 1, 197–203. [Google Scholar]
- Fernández-Pajarín, G.; Sesar, Á.; Ares, B.; Castro, A. Evaluating the efficacy of nocturnal continuous subcutaneous apomorphine infusion in sleep disorders in advanced parkinson’s disease: The APO-NIGHT study. J. Park. Dis. 2016, 6, 787–792. [Google Scholar] [CrossRef]
- Gancher, S.T.; Woodward, W.R.; Boucher, B.; Nutt, J.G. Peripheral pharmacokinetics of apomorphine in humans. Ann. Neurol. 1989, 26, 232–238. [Google Scholar] [CrossRef]
- Chen, J.J.; Obering, C. A review of intermittent subcutaneous apomorphine injections for the rescue management of motor fluctuations associated with advanced Parkinson’s disease. Clin. Ther. 2005, 27, 1710–1724. [Google Scholar] [CrossRef]
- Hughes, A.J.; Bishop, S.; Kleedorfer, B.; Turjanski, N.; Fernandez, W.; Lees, A.J.; Stern, G.M. Subcutaneous apomorphine in Parkinson’s disease: Response to chronic administration for up to five years. Mov. Disord. 1993, 8, 165–170. [Google Scholar] [CrossRef]
- Rodrigues, F.B.; Ferreira, J.J. Opicapone for the treatment of Parkinson’s disease. Expert Opin. Pharm. 2017, 18, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.; Lees, A.; Rocha, J.F.; Poewe, W.; Rascol, O.; Soares-da-Silva, P. Long-term efficacy of opicapone in fluctuating Parkinson’s disease patients: A pooled-analysis of data from two Phase 3 clinical trials and their open-label extensions. Eur. J. Neurol. 2019, 26. [Google Scholar] [CrossRef] [PubMed]
- Obeso, J.A.; Rodriguez-Oroz, M.; Marin, C.; Alonso, F.; Zamarbide, I.; Lanciego, J.L.; Rodriguez-Diaz, M. The origin of motor fluctuations in Parkinson’s disease: Importance of dopaminergic innervation and basal ganglia circuits. Neurology 2004, 62 (Suppl. 1), S17–S30. [Google Scholar] [CrossRef]
- LeWitt, P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord. 2015, 30, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Odin, P. Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Park. Relat. Disord. 2009, 15, S97–S100. [Google Scholar] [CrossRef]
- Freitas, M.E.; Ruiz-Lopez, M.; Fox, S.H. Novel Levodopa Formulations for Parkinson’s Disease. CNS Drugs 2016, 30, 1079–1095. [Google Scholar] [CrossRef]
- Hauser, R.A.; Isaacson, S.H.; Ellenbogen, A.; Safirstein, B.E.; Truong, D.D.; Komjathy, S.F.; Kegler-Ebo, D.M.; Zhao, P.; Oh, C. Orally inhaled levodopa (CVT-301) for early morning OFF periods in Parkinson’s disease. Park. Relat Disord. 2019. [Google Scholar] [CrossRef]
- LeWitt, P.A.; Hauser, R.A.; Pahwa, R.; Isaacson, S.H.; Fernandez, H.H.; Lew, M.; Saint-Hilaire, M.; Pourcher, E.; Lopez-Manzanares, L.; Waters, C.; et al. Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson’s disease: A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol. 2019, 18, 145–154. [Google Scholar] [CrossRef]
- Timpka, J.; Mundt-Petersen, U.; Odin, P. Continuous dopaminergic stimulation therapy for Parkinson’s disease–recent advances. Curr. Opin. Neurol. 2016, 29, 474–479. [Google Scholar] [CrossRef]
- Antonini, A.; Fung, V.S.; Boyd, J.T.; Slevin, J.T.; Hall, C.; Chatamra, K.; Eaton, S.; Benesh, J.A. Effect of levodopa-carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov. Disord. 2016, 31, 530–537. [Google Scholar] [CrossRef]
- Olanow, C.W.; Kieburtz, K.; Odin, P.; Espay, A.J.; Standaert, D.G.; Fernandez, H.H.; Vanagunas, A.; Othman, A.A.; Widnell, K.L.; Robieson, W.Z.; et al. Double-blind, double-dummy, randomized study of continuous intrajejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease. Lancet Neurol. 2014, 13, 141. [Google Scholar] [CrossRef]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Barton, B.; de Bie, R.M.A.; Seppi, K.; Coelho, M.; Sampaio, C.; Movement Disorder Society Evidence-Based Medicine Committee. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2018, 33, 1248–1266. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, B.; Spalluto, G.; Federico, S. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: Are They Still an Interesting Challenge? Mini Rev. Med. Chem. 2018, 18, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safinamide for Parkinson’s disease. Aust. Prescr. 2019, 42, 78–79.
- Tran, T.N.; Vo, T.N.N.; Frei, K.; Truong, D.D. Levodopa-induced dyskinesia: Clinical features, incidence, and risk factors. J. Neural Transm. 2018, 125, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Aquino, C.C.; Fox, S.H. Clinical spectrum of levodopa-induced complications. Mov. Disord. 2015, 30, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Dragašević-Mišković, N.; Petrović, I.; Stanković, I.; Kostić, V.S. Chemical management of levodopa-induced dyskinesia in Parkinson’s disease patients. Expert Opin. Pharmacother. 2019, 20, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, D.; Jankovic, J. Drug-Induced Dyskinesia, Part 1: Treatment of Levodopa-Induced Dyskinesia. Drugs 2016, 76, 759–777. [Google Scholar] [CrossRef]
- Lin, M.M.; Laureno, R. Less Pulsatile Levodopa Therapy (6 Doses Daily) Is associated with a Reduced Incidence of Dyskinesia. J. Mov. Disord. 2019, 12, 37–42. [Google Scholar] [CrossRef]
- Calabresi, P.; Di Filippo, M.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurol. 2010, 9, 1106–1117. [Google Scholar] [CrossRef]
- Sawada, H.; Oeda, T.; Kuno, S.; Nomoto, M.; Yamamoto, K.; Yamamoto, M.; Hisanaga, K.; Kawamura, T.; Amantadine Study Group. Amantadine for dyskinesias in Parkinson’s disease: A randomized controlled trial. PLoS ONE 2010, 5, e15298. [Google Scholar] [CrossRef] [PubMed]
- Del Dotto, P.; Pavese, N.; Gambaccini, G.; Bernardini, S.; Metman, L.V.; Chase, T.N.; Bonuccelli, U. Intravenous amantadine improves levadopa-induced dyskinesias: An acute double-blind placebo-controlled study. Mov. Disord. 2001, 16, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Iacono, D.; Luciano, A.L.; Armellino, K.; Di Iorio, A.; Onofrj, M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2004, 75, 141–143. [Google Scholar] [PubMed]
- Dashtipour, K.; Tafreshi, A.R.; Pahwa, R.; Lyons, K.E. Extended-Release Amantadine for Levodopa-Induced Dyskinesia. Expert Rev. Neurother. 2019, 19, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Isaacson, S.H.; Nausieda, P.A.; Truong, D.D.; Agarwal, P.; Hull, K.L.; Lyons, K.E.; Johnson, R. ADS-5102 (Amantadine) Extended-Release Capsules for Levodopa-Induced Dyskinesia in Parkinson Disease (EASE LID Study): A Randomized Clinical Trial. JAMA Neurol. 2017, 74, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Trenkwalder, C.; Stocchi, F.; Poewe, W.; Dronamraju, N.; Kenney, C.; Shah, A.; von Raison, F.; Graf, A. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies. Mov. Disord. 2016, 31, 1054–1058. [Google Scholar] [CrossRef]
- Freitas, M.E.; Fox, S.H. Nondopaminergic treatments for Parkinson’s disease: Current and future prospects. Neurodegener. Dis. Manag. 2016, 6, 249–268. [Google Scholar] [CrossRef]
- Wong, K.K.; Alty, J.E.; Goy, A.G.; Raghav, S.; Reutens, D.C.; Kempster, P.A. A randomized, double-blind, placebo-controlled trial of levetiracetam for dyskinesia in Parkinson’s disease. Mov. Disord. 2011, 26, 1552–1555. [Google Scholar] [CrossRef]
- Stathis, P.; Konitsiotis, S.; Tagaris, G.; Peterson, D.; VALID-PD Study Group. Levetiracetam for the management of levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord. 2011, 26, 264–270. [Google Scholar] [CrossRef]
- Mizuno, Y.; Kondo, T.; Japanese Istradefylline Study Group. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov. Disord. 2013, 28, 1138–1141. [Google Scholar] [CrossRef]
- Schwarzschild, M.A.; Agnati, L.; Fuxe, K.; Chen, J.F.; Morelli, M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci. 2006, 29, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.H.; Greeley, D.R.; Zweig, R.M.; Wojcieszek, J.; Mori, A.; Sussman, N.M.; 6002-US-051 Study Group. Istradefylline as monotherapy for Parkinson disease: Results of the 6002-US-051 trial. Park. Relat. Disord. 2010, 16, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Rosenblad, C.; Af Edholm Arvidsson, K.; Wictorin, K.; Keywood, C.; Shankar, B.; Lowe, D.A.; Björklund, A.; Widner, H. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: A dose-finding study. Brain 2015, 138 Pt 4, 963–973. [Google Scholar] [CrossRef]
- Onofrj, M.; Thomas, A. Acute akinesia in Parkinson disease. Neurology 2005, 64, 1162–1629. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Onofrj, M. Akinetic crisis, acute akinesia, neuroleptic malignant-like syndrome, Parkinsonism-hyperpyrexia syndrome, and malignant syndrome are the same entity and are often independent of treatment withdrawal. Mov. Disord. 2005, 20, 1671–1672. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; Capasso, M.; Nasuti, M.; Bonanni, L.; Onofrj, M.; Thomas, A. Dopamine transporter single- photon emission computerized tomography supports diagnosis of akinetic crisis of parkinsonism and of neuroleptic malignant syndrome. Medicine 2015, 94, e649. [Google Scholar] [CrossRef] [PubMed]
- Eggers, C.; Kahraman, D.; Fink, G.R.; Schmidt, M.; Timmermann, L. Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT single photon emission computed tomography. Mov. Disord. 2011, 26, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Danielczyk, W. Twenty-five years of amantadine therapy in Parkinson’s Disease. J. Neural Transm. Suppl. 1995, 46, 399–409. [Google Scholar] [PubMed]
- Stacy, M.; Factor, S. Rapid treatment of “off” episodes. Will this change Parkinson disease therapy? Neurology 2004, 62 (Suppl. 4), S1–S2. [Google Scholar] [CrossRef]
- Dafotakis, M.; Sparing, R.; Juzek, A.; Block, F.; Kosinski, C.M. Transdermal dopaminergic stimulation with rotigotine in Parkinsonian akinetic crisis. J. Clin. Neurosci. 2009, 16, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Capasso, M.; De Angelis, M.V.; Di Muzio, A.; Anzellotti, F.; Bonanni, L.; Thomas, A.; Onofrj, M. Critical Illness Neuromyopathy Complicating Akinetic Crisis in Parkinsonism: Report of 3 Cases. Medicine 2015, 94, e1118. [Google Scholar] [CrossRef] [PubMed]
- Elkouzi, A.; Vedam-Mai, V.; Eisinger, R.S.; Okun, M.S. Emerging therapies in Parkinson disease—Repurposed drugs and new approaches. Nat. Rev. Neurol. 2019, 15, 204–223. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.J.; Borasio, G.D.; Caraceni, A.; de Visser, M.; Grisold, W.; Lorenzl, S.; Veronese, S.; Voltz, R. A consensus review on the development of palliative care for patients with chronic and progressive neurological disease. Eur. J. Neurol. 2016, 23, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Van der Marck, M.A.; Kalf, J.G.; Sturkenboom, I.H.; Nijkrake, M.J.; Munneke, M.; Bloem, B.R. Multidisciplinary care for patients with Parkinson’s disease. Park. Relat. Disord. 2009, 15 (Suppl. 3), S219–S223. [Google Scholar] [CrossRef]
- Radder, D.L.M.; de Vries, N.M.; Riksen, N.P.; Diamond, S.J.; Gross, D.; Gold, D.R.; Heesakkers, J.; Henderson, E.; Hommel, A.L.A.J.; Lennaerts, H.H.; et al. Multidisciplinary care for people with Parkinson’s disease: The new kids on the block! Expert Rev. Neurother. 2019, 19, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, M.J.; Smeyne, R.J. Exercise: Is it a neuroprotective and if so, how does it work? Park. Relat. Disord. 2014, 20 (Suppl. 1), S123–S127. [Google Scholar] [CrossRef]
- Uc, E.Y.; Doerschug, K.C.; Magnotta, V.; Dawson, J.D.; Thomsen, T.R.; Kline, J.N.; Rizzo, M.; Newman, S.R.; Mehta, S.; Grabowski, T.J.; et al. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology 2014, 83, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Cruickshank, T.M.; Reyes, A.R.; Ziman, M.R. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine 2015, 94, e411. [Google Scholar] [CrossRef]
- Shulman, L.M.; Katzel, L.I.; Ivey, F.M.; Sorkin, J.D.; Favors, K.; Anderson, K.E.; Smith, B.A.; Reich, S.G.; Weiner, W.J.; Macko, R.F. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 2013, 70, 183–190. [Google Scholar] [CrossRef]
- Deane, K.H.; Whurr, R.; Playford, E.D.; Ben-Shlomo, Y.; Clarke, C.E. Speech and language therapy for dysarthria in Parkinson’s disease. Cochrane Database Syst. Rev. 2001, CD002812. [Google Scholar] [CrossRef]
- Mahler, L.A.; Ramig, L.O.; Fox, C. Evidence-based treatment of voice and speech disorders in Parkinson disease. Curr. Opin. Otolaryngol. Head Neck Surg. 2015, 23, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kalia, S.K.; Sankar, T.; Lozano, A.M. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr. Opin. Neurol. 2013, 26, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J., Jr.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Grabli, D.; Karachi, C.; Folgoas, E.; Monfort, M.; Tande, D.; Clark, S.; Civelli, O.; Hirsch, E.C.; François, C. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: A tale of two systems. J. Neurosci. 2013, 33, 11986–11993. [Google Scholar] [CrossRef]
- Jenkinson, N.; Nandi, D.; Miall, R.C.; Stein, J.F.; Aziz, T.Z. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport 2004, 15, 2621–2624. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.; Walach, M.; Meisner, C.; Fritz, M.; Scholten, M.; Breit, S.; Plewnia, C.; Bender, B.; Gharabaghi, A.; Wächter, T.; et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 2013, 136 Pt 7, 2098–2108. [Google Scholar] [CrossRef]
- Gilat, M.; Lígia Silva de Lima, A.; Bloem, B.R.; Shine, J.M.; Nonnekes, J.; Lewis, S.J.G. Freezing of gait: Promising avenues for future treatment. Park. Relat. Disord. 2018, 52, 7–16. [Google Scholar] [CrossRef]
- Kim, M.S.; Chang, W.H.; Cho, J.W.; Youn, J.; Kim, Y.K.; Kim, S.W.; Kim, Y.H. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson’s disease. Restor. Neurol. Neurosci. 2015, 33, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Broeder, S.; Nackaerts, E.; Heremans, E.; Vervoort, G.; Meesen, R.; Verheyden, G.; Nieuwboer, A. Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects. Neurosci. Biobehav. Rev. 2015, 57, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Valentino, F.; Cosentino, G.; Brighina, F.; Pozzi, N.G.; Sandrini, G.; Fierro, B.; Savettieri, G.; D’Amelio, M.; Pacchetti, C. Transcranial direct current stimulation for treatment of freezing of gait: A cross-over study. Mov. Disord. 2014, 29, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Dagan, M.; Herman, T.; Harrison, R. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov. Disord. 2018, 33, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, R.D.; Menza, M.; Allen, L.A.; Gara, M.A.; Mark, M.H.; Tiu, J.; Bienfait, K.L.; Friedman, J. Cognitive-behavioral therapy for depression in Parkinson’s disease: A randomized, controlled trial. Am. J. Psychiatry 2011, 168, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Marsh, L. Anxiety in Parkinson’s disease: Identification and management. Adv. Neurol. Disord. 2014, 7, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, A.K.; Dorn, M.E.; Roheger, M.; Maassen, M.; Koerts, J.; Tucha, O.; Altgassen, M.; Sack, A.T.; Smit, D.; Haarmann, L.; et al. Cognitive Stimulation for Individuals with Parkinson’s Disease Dementia Living in Long-Term Care: Preliminary Data from a Randomized Crossover Pilot Study. Park. Dis. 2018, 2018, 8104673. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.A.; Vatter, S.; Carter, L.A.; Smith, S.J.; Orgeta, V.; Poliakoff, E.; Silverdale, M.A.; Raw, J.; Ahearn, D.J.; Taylor, C.; et al. Parkinson’s-adapted cognitive stimulation therapy: Feasibility and acceptability in Lewy body spectrum disorders. J. Neurol. 2019, 266, 1756–1770. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.; Katzenschlager, R.; Bloem, B.R.; Bonuccelli, U.; Burn, D.; Deuschl, G.; Dietrichs, E.; Fabbrini, G.; Friedman, A.; Kanovsky, P.; et al. Summary of the recommendations of the EFNS/MDS-ES reviewon therapeutic management of Parkinson’s disease. Eur. J. Neurol. 2013, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Daniele, A.; Albanese, A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 2012, 11, 429–442. [Google Scholar] [CrossRef]
- Biundo, R.; Weis, L.; Fiorenzato, E.; Gentile, G.; Giglio, M.; Schifano, R.; Campo, M.C.; Marcon, V.; Martinez-Martin, P.; Bisiacchi, P.; et al. Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients with Mild Cognitive Impairment Receiving Cognitive Training. Brain Stimul. 2015, 8, 1223–1225. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for idiopathic Parkinson’s disease. Cochrane Database Syst. Rev. 2016, 7, CD010916. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Stacy, M. Disease-Modifying Drugs in Parkinson’s Disease. Drugs 2015, 75, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E.; Espay, A.J. Disease Modification in Parkinson’s Disease: Current Approaches, Challenges, and Future Considerations. Mov. Disord. 2018, 33, 660–677. [Google Scholar] [CrossRef]
- Beal, M.F.; Oakes, D.; Shoulson, I.; Henchcliffe, C.; Galpern, W.R.; Haas, R.; Juncos, J.L.; Nutt, J.G.; Voss, T.S.; Ravina, B.; et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit. JAMA Neurol. 2014, 71, 543–552. [Google Scholar]
- Writing Group for the NINDS Exploratory Trials in Parkinson Disease (NET-PD) Investigators; Kieburtz, K.; Tilley, B.C.; Elm, J.J.; Babcock, D.; Hauser, R.; Ross, G.W.; Augustine, A.H.; Augustine, E.U.; Aminoff, M.J.; et al. Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: A randomized clinical trial. JAMA 2015, 313, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.B.; Koller, M.; Ness, D.K.; Griffith, S.G.; Grundman, M.; Zago, W.; Soto, J.; Atiee, G.; Ostrowitzki, S.; Kinney, G.G. First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov. Disord. 2017, 32, 211–218. [Google Scholar] [CrossRef]
- Karuppagounder, S.S.; Brahmachari, S.; Lee, Y.; Dawson, V.L.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep. 2014, 4, 4874. [Google Scholar] [CrossRef]
- McNeill, A.; Magalhaes, J.; Shen, C.; Chau, K.Y.; Hughes, D.; Mehta, A.; Foltynie, T.; Cooper, J.M.; Abramov, A.Y.; Gegg, M.; et al. Ambroxol improves lyso- somal biochemistry in glucocerebrosidase mutation-linked Parkin-son disease cells. Brain 2014, 137, 1481–1495. [Google Scholar] [CrossRef]
- Zhao, H.T.; John, N.; Delic, V.; Ikeda-Lee, K.; Kim, A.; Weihofen, A.; Swayze, E.E.; Kordasiewicz, H.B.; West, A.B.; Volpicelli-Daley, L.A. LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson’s Disease Mouse Model. Mol. Ther. Nucleic Acids 2017, 8, 508–519. [Google Scholar] [CrossRef]
- Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnera-bility in Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Simuni, T. A phase 3 study of isradipine as a disease-modifying agent in patients with early Parkinson’s disease (STEADY-PD III): Final study results. In Proceedings of the 2019 American Academy of Neurology Annual Meeting, Philadelphia, PA, USA, 4–10 May 2019. [Google Scholar]
- Mann, V.M.; Cooper, J.M.; Daniel, S.E.; Srai, K.; Jenner, P.; Marsden, C.D.; Schapira, A.H. Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann. Neurol. 1994, 36, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; et al. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1664–1675. [Google Scholar] [CrossRef]
- Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) recep-tor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov. Today 2016, 21, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Anang, J.; Pelletier, A.; Joseph, L.; Moscovich, M.; Grimes, D.; Furtado, S.; Munhoz, R.P.; Appel-Cresswell, S.; Moro, A.; et al. Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): A randomized trial. Neurology 2017, 89, 1795–1803. [Google Scholar] [CrossRef]
- Carroll, C.B.; Wyse, R.K.H. Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson’s Disease: Rationale for Clinical Trial, and Current Progress. J. Park. Dis. 2017, 7, 545–568. [Google Scholar] [CrossRef]
- Quik, M.; Parameswaran, N.; McCallum, S.E.; Bordia, T.; Bao, S.; McCormack, A.; Kim, A.; Tyndale, R.F.; Langston, J.W.; Di Monte, D.A. Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J. Neurochem. 2006, 98, 1866–1875. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
Early Stage | |
Motor Symptoms | l-dopa Non-Ergot Dopamine agonists (DA) (Pramipexole, Ropinirole, and Rotigotine) Ergot-derived Dopamine agonists (Bromocriptine, Cabergoline, Pergolide, and Lisuride) Monoamine oxidase inhibitors (Selegiline, Rasagiline) Anticholinergics (Triphexyphenidil) Amantadine |
REM Sleep Behavior Disorder (RBD) | Clonazepam Melatonin |
Constipation | Prebiotic fibers and probiotics Macrogol Lubiprostone |
Anxiety | Benzodiazepines Buspirone SSRIs Cognitive Behavioral Therapy |
Depression | SNRI (such as Venlafaxine) SSRIs |
Impulse Control Disorder | Dopamine agonists discontinuation l-dopa dose adjustment |
Advanced Stage | |
Motor Symptoms | COMT inhibitors with l-dopa Monoamine oxidase inhibitors with l-dopa Safinamide |
Cognitive deficits | Acetylcholinesterase inhibitors |
Apathy | Rivastigmine Dopamine agonists |
Psychotic disturbances | Atypical Antipsychotics (Clozapine, Quetiapine) Novel anti-serotonergic antipsychotics (Pimavanserin, eligibly Ondansetron) |
Orthostatic hypotension | Droxidopa Fludrocortisone Midodrine |
Urinary dysfunction | Overactive bladder: Anticholinergics (Oxybutynin, Tolterodine, and Solifenacin) and Mirabegron Nicturia: Desmopressin |
Complicated Stage | |
Motor fluctuations | Increased frequency of l-dopa administration Modified Release of l-dopa Apomorphine COMT inhibitors (Opicapone) l-dopa/Carbidopa intestinal gel |
Dyskinesia | Reducing doses of l-dopa and increasing frequency Amantadine Add-on therapies (DAs, MAOB-Is, COMT-Is) |
Super-off | Naso-gastric administration of l-dopa or Dopamine agonists Endovenous Amantadine Apomorphine Transdermal Rotigotine |
Drug | Mechanism of Action | Endpoints | Clinical Evidences | Comments |
---|---|---|---|---|
Coenzyme Q10 | CoQ10 is a component of electron transport chain, which is responsible for mitochondrial adenosine triphosphate generation. It is an antioxidant that leads to decrease free radical generation. CoQ10 levels and redox status have been shown to be altered in PD patients | Change in total UPDRS score (Parts I–III) from baseline | Neither treatment groups (1200 mg/d of CoQ10 and 2400 mg/d of CoQ10) have shown any benefit compared with the placebo group | CoQ10 is safe and well tolerated, but there is no evidence of its clinical benefit |
Creatine | Creatine is converted to phosphocreatine, which can transfer a phosphoryl group to adenosine diphospate (ADP) to make adenosine triphosphate (ATP) | Difference in clinical decline from baseline to 5-year follow-up in two compared groups (placebo and 10 g/dL of Creatine monohydrate) | Creatine has failed to slow the clinical progression of PD | These findings do not support the effectiveness of Creatine monohydrate in PD patients |
Prasinezumab (RO7046015/PRX002) | Anti-alpha-synuclein antibody therapy | Efficacy of intravenous Prasinezumab versus placebo over 52 weeks in early in PD patients. The effectiveness is evaluated through MDS-UPDRS (Parts I–III) | Results not yet available | Ongoing (Phase 2) |
BIIB054 | Anti-alpha-synuclein antibody therapy | Safety and biological effects of three dosages of BIIB054 compared to placebo | Results not yet available | Ongoing (Phase 2) |
Nilotinib | A c-abl inhibitor used in chronic myelocytic leukemia, which seems to decrease phosphorylation of both parkin and a-synuclein | Safety and tolerability of daily oral administration of Nilotinib | Results not yet available | Ongoing (Phase 2) |
LRRK2 (leucine rich repeat kinase 2) | LRRK2 mutation is involved in inherited PD | Use of LRRK2 antisense oligonucleotides (ASOs) to decrease endogenous levels of LRRK2 and therefore to reduce α-synuclein inclusion | Administration of LRRK2 ASOs reduces LRRK2 protein levels and fibril-induced α-syn inclusions | LRRK2 ASOs is a potential therapeutic strategy for preventing PD without causing potential adverse side effects |
Ambroxol | Glucocerebrosidase gene (GBA) mutations are the most common genetic risk factor for PD. Ambroxol is a secretolytic agent that seems to increase glucosylceramidase activity | Safety and tolerability of Ambroxol in PD patients | Results not yet available | Ongoing (Phase 2) |
Isradipine | Isradipine is a dihydropyridine calcium channel blocker | Change in UPDRS score (Parts I–III) to evaluate long-term benefits of this drug | STEADY-PD III study has recently shown that patients treated with Isradipine did not have any difference in motor symptoms compared to placebo | |
Inosine | Inosine is a urate precursor that increases plasma urate, which is the main plasma antioxidant | Rate of change in MDS-UPDRS I–III total score over 24 months | No evidence in slowing PD progression (SURE-PD 3, a phase 3 clinical trial) | |
Exenatide | A glucagon-like peptide-1 (GLP-1) receptor agonist. In a preclinical model of PD, it has shown to have neuroprotective and neurorestorative effects | Improvement in off-medication MDS-UPDRS score (Part III) at 60 weeks | It has recently been discovered to have beneficial effects on motor function in a randomized, placebo-controlled trial | The difference between the two groups (Exenatide versus placebo) at 60 weeks was the same UPDRS decrease at 12 weeks, suggesting a major symptomatic effect than a disease modification |
ND0612 | Liquid subcutaneous formulation of l-dopa/carbidopa delivered via a pump system | - Assess the long-term safety and tolerability -Assess efficacy on daily OFF time based on home ON/OFF diaries; on the motor score and activities OFF daily living (ADL) scores of the UPDRS | Reduced daily OFF time by 2.42 ± 2.62 h and 2.13 ± 2.24 h from baseline | Ongoing (Phases 2 and 3) |
CVT-301 | l-dopa inhalation powder | Change from Pre-dose in the UPDRS Part III Score at 30 min post-dose at 12 weeks for CVT-301 high dose versus placebo | UPDRS motor score change from pre-dose to 30 min post-dose was −5.91 (SE 1.50, 95% CI −8.86 to −2.96) for the placebo group and −9.83 (1.51; −12.79 to −6.87) for the CVT-301 84 mg group (between-group difference −3.92 (−6.84 to −1.00); p = 0.0088) | CVT-301 (Inbrija) is approved for the intermittent treatment of OFF episodes in PD patients treated with Carbidopa/Levodopa |
NCT00660387/LCIG | Levodopa-Carbidopa intestinal gel (LCIG), administered by continuous intra-intestinal infusion (Duodopa®) | - Change from baseline to week 12 in average daily normalized off-time - Change from baseline in average daily normalized on-time without troublesome dyskinesia at week 12 | Reduced OFF-time after 12 weeks by 4 h compared to baseline and 1.91 h compared to standard oral formulation. Reduced OFF time by 4.04 h in LDIG group vs. 2.14 h in the standard oral formulation group (p = 0.0015) Increase in on-time without troublesome dyskinesia (TSD) | Approved by FDA/EU No difference in UPDRS motor scores |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrarini, C.; Russo, M.; Dono, F.; Di Pietro, M.; Rispoli, M.G.; Di Stefano, V.; Ferri, L.; Barbone, F.; Vitale, M.; Thomas, A.; et al. A Stage-Based Approach to Therapy in Parkinson’s Disease. Biomolecules 2019, 9, 388. https://doi.org/10.3390/biom9080388
Carrarini C, Russo M, Dono F, Di Pietro M, Rispoli MG, Di Stefano V, Ferri L, Barbone F, Vitale M, Thomas A, et al. A Stage-Based Approach to Therapy in Parkinson’s Disease. Biomolecules. 2019; 9(8):388. https://doi.org/10.3390/biom9080388
Chicago/Turabian StyleCarrarini, Claudia, Mirella Russo, Fedele Dono, Martina Di Pietro, Marianna G. Rispoli, Vincenzo Di Stefano, Laura Ferri, Filomena Barbone, Michela Vitale, Astrid Thomas, and et al. 2019. "A Stage-Based Approach to Therapy in Parkinson’s Disease" Biomolecules 9, no. 8: 388. https://doi.org/10.3390/biom9080388