Next Article in Journal
Ellagitannins and Flavano-Ellagitannins: Red Wines Tendency in Different Areas, Barrel Origin and Ageing Time in Barrel and Bottle
Next Article in Special Issue
Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer Treatment
Previous Article in Journal
Cell Intrinsic and Extrinsic Mechanisms of Caveolin-1-Enhanced Metastasis
Previous Article in Special Issue
The Main Metabolites of Fluorouracil + Adriamycin + Cyclophosphamide (FAC) Are Not Major Contributors to FAC Toxicity in H9c2 Cardiac Differentiated Cells
Open AccessArticle

In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Laboratory of Physiology, Pharmacology & Environmental Health, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez 30050, Morocco
Authors to whom correspondence should be addressed.
Biomolecules 2019, 9(8), 315;
Received: 6 July 2019 / Revised: 22 July 2019 / Accepted: 23 July 2019 / Published: 29 July 2019
(This article belongs to the Special Issue Multidrug Combinations)
Propolis is a resin manufactured by bees through the mixture of plant exudates and waxes with secreted substances from their metabolism, resulting in a complex mixture of natural substances of which quality depends on the phytogeographic and climatic conditions around the hive. The present study investigated the contribution of phenolic compounds to the cytotoxic and anti-inflammatory activities of propolis. The phenolic composition was evaluated by liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (LC/DAD/ESI-MSn) analysis after phenolic extraction. The cytotoxicity of the extracts was checked using human tumor cell lines (MCF7- breast adenocarcinoma, NCI-H460- non-small cell lung carcinoma, HeLa- cervical carcinoma, HepG2- hepatocellular carcinoma, and MM127- malignant melanoma), as well as non-tumor cells (a porcine liver primary culture-PLP2). The anti-inflammatory activity was assessed using the murine macrophage (RAW 264.7) cell line. The results showed a composition rich in phenolic acids, such as caffeic and p-coumaric acid, as well as flavonoids, such as pinocembrin, pinobanksin, and pinobanksin-3-O-butyrate. Samples MP2 from Sefrou and MP3 from Moulay Yaâcoub presented a high concentration in phenolic compounds, while MP1 and MP4 from Boulemane and Immouzzer Mermoucha, respectively, showed similar composition with low bioactivity. The higher concentration of phenolic compound derivatives, which seems to be the most cytotoxic phenolic class, can explain the pronounced antitumor and anti-inflammatory activity observed for sample MP2. View Full-Text
Keywords: propolis; phenolic compounds; cytotoxicity; tumor cells; anti-inflammatory propolis; phenolic compounds; cytotoxicity; tumor cells; anti-inflammatory
Show Figures

Figure 1

MDPI and ACS Style

Falcão, S.I.; Calhelha, R.C.; Touzani, S.; Lyoussi, B.; Ferreira, I.C.F.R.; Vilas-Boas, M. In Vitro Interactions of Moroccan Propolis Phytochemical’s on Human Tumor Cell Lines and Anti-Inflammatory Properties. Biomolecules 2019, 9, 315.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop