Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine
Abstract
:1. Introduction
2. Experimental
2.1. Molecular Modeling
2.2. Hapten Synthesis
2.3. Conjugation of Haptens
2.4. Antibody Production
2.5. ELISA Protocol
2.6. Cross-Reactivity Test
3. Results
3.1. Characterization of Hapten and Artificial Antigens
3.2. Production of Monoclonal Antibody
3.3. Development of ic-ELISA for Histamine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ordonez, J.L.; Troncoso, A.M.; Garcia-Parrilla, M.C.; Callejon, R.M. Recent trends in the determination of biogenic amines in fermented beverages—A review. Anal. Chim. Acta 2016, 939, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Veseli, A.; Vasjari, M.; Arbneshi, T.; Hajrizi, A.; Svorc, L.; Samphao, A.; Kalcher, K. Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sens. Actuators B. 2016, 228, 774–781. [Google Scholar] [CrossRef]
- Mattsson, L.; Jungmann, C.; Lieberzeit, P.A.; Preininger, C. Modified carbon black as label in a colorimetric on-chip immunoassay for histamine. Sens. Actuators B. 2017, 246, 1092–1099. [Google Scholar] [CrossRef]
- Morel, A.M.; Delaage, M.A. Immunoanalysis of histamine through a novel chemical derivatization. J. Allergy Clin. Immunol. 1988, 82, 646–654. [Google Scholar] [CrossRef]
- Guesdon, J.L.; Chevrier, D.; Fadel, R.; Avrameas, S. Immunoenzyme assay for histamine. Allergie et Immunologie. 1988, 20, 336–338, 340–342. [Google Scholar] [PubMed]
- Serrar, D.; Brebant, R.; Bruneau, S.; Denoyel, G.A. The development of a monoclonal antibody-based ELISA for the determination of histamine in food: Application to fishery products and comparison with the HPLC assay. Food Chem. 1995, 54, 85–91. [Google Scholar] [CrossRef]
- Claeys-Bruno, M.; Vandenabeele-Trambouze, O.; Sergent, M.; Geffard, M.; Bodet, D.; Dobrijevic, M.; Commeyras, A.; Phan Tan Luu, R. Methodological approaches for histamine quantification using derivatization by chloroethylnitrosourea and ELISA measurement. Part II: Optimisation of the derivatization step. Chemom. Intell. Lab. Syst. 2006, 80, 186–197. [Google Scholar] [CrossRef]
- Luo, L.; Xu, Z.-L.; Yang, J.-Y.; Xiao, Z.-L.; Li, Y.-J.; Beier, R.C.; Sun, Y.-M.; Lei, H.-T.; Wang, H.; Shen, Y.-D. Synthesis of Novel Haptens and Development of an Enzyme-Linked Immunosorbent Assay for Quantification of Histamine in Foods. J. Agric. Food Chem. 2014, 62, 12299–12308. [Google Scholar] [CrossRef] [PubMed]
- Hammar, E.; Berglund, A.; Hedin, A.; Norrman, A.; Rustas, K.; Ytterstrom, U.; Akerblom, E. An immunoassay for histamine based on monoclonal antibodies. J. Immunol. Methods. 1990, 128, 51–58. [Google Scholar] [CrossRef]
- Schneider, E.; Usleber, E.; Martlbauer, E. Production and Characterization of Antibodies Against Histamine. In Immunoassays for Residue Analysis: Food Safety; Beier, R.C., Stanker, L.H., Eds.; ACS Symposium Series 621; American Chemical Society: Washington, DC, USA, 1996; pp. 413–420. [Google Scholar]
- Kane, M.M.; Banks, J.N. Raising Antibodies. In Immunoassays: A Practical Approach; Gosling, J.P., Ed.; Oxford University Press: Oxford, UK, 2000; pp. 37–50. [Google Scholar]
- Chen, J.H.; Wang, L.T.; Lu, L.L.; Shen, X.; Huane, X.A.; Liu, Y.J.; Sun, X.L.; Wang, Z.H.; Eremin, S.A.; Sun, Y.M.; et al. Four Specific Hapten Conformations Dominating Antibody Specificity: Quantitative Structure-Activity Relationship Analysis for Quinolone Immunoassay. Anal. Chem. 2017, 89, 6740–6748. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, A.F.S.A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar] [CrossRef]
- Taylor, S.L. Histamine food poisoning: toxicology and clinical aspects. Crit. Rev. Toxicol. 1986, 17, 91–128. [Google Scholar] [CrossRef] [PubMed]
- Miki, M.; Ishikawa, T.; Okayama, H. An outbreak of histamine poisoning after ingestion of the ground saury paste in eight patients taking isoniazid in tuberculous ward. Intern Med. 2005, 44, 1133–1136. [Google Scholar] [CrossRef] [PubMed]
- Toro-Funes, N.; Bosch-Fuste, J.; Latorre-Moratalla, M.L.; Veciana-Nogues, M.T.; Vidal-Carou, M.C. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market. Food Chem. 2015, 173, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Matsumoto, K. Daily yogurt consumption in infancy is associated with reduced skin hypersensitivity to histamine. Allergy 2018, 73, 683. [Google Scholar]
- Shukla, S.; Khan, I.; Bajpai, V.K.; Lee, H.; Kim, T.; Upadhyay, A.; Huh, Y.S.; Han, Y.-K.; Tripathi, K.M. Sustainable Graphene Aerogel as an Ecofriendly Cell Growth Promoter and Highly Efficient Adsorbent for Histamine from Red Wine. ACS ACS Appl. Mater. Interfaces. 2019, 11, 18165–18177. [Google Scholar] [CrossRef] [PubMed]
- Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation. Org. Biomol. Chem. 2011, 9, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, W.; Shen, X.; Li, X.; Huang, X.-A.; Xu, Z.; Sun, Y.; Chan, S.-W.; Zeng, L.; Eremin, S.A.; et al. Four Hapten Spacer Sites Modulating Class Specificity: Nondirectional Multianalyte Immunoassay for 31 beta-Agonists and Analogues. Anal. Chem. 2018, 90, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Tsuchikama, K.; Janda, K.D. Modulating Cocaine Vaccine Potency through Hapten Fluorination. J. Am. Chem. Soc. 2013, 135, 2971–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Powers, K.; Hu, Y.; Raleigh, M.; Pentel, P.; Zhang, C.M. Engineering of a hybrid nanoparticle-based nicotine nanovaccine as a next-generation immunotherapeutic strategy against nicotine addiction: A focus on hapten density. Biomaterials 2017, 123, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Coating Antigen | ||||
---|---|---|---|---|
Antibody | Hapten B-OVA | HA-245-OVA | ||
Titerb (×103) | Inhibitionc (%) | Titer (×103) | Inhibition (%) | |
anti-Hapten B#1 | 4 | — | <1 | — |
anti-Hapten B#2 | 2 | — | <1 | — |
anti-Hapten B#3 | 4 | — | <1 | — |
anti-HA-245#1a | 16 | 89.8 | 128 | 26.6 |
anti-HA-245#2 | 16 | 95.1 | 128 | 37.5 |
anti-HA-245#3 | 32 | 92.3 | 256 | 31.8 |
Compound | Structure | IC50 (mg/L) | CR (%) |
---|---|---|---|
HA | | 0.21 | 100 |
Hapten-HA-245 | | 0.0012 | 39,583.3 |
L-histidine | | >5000 | <0.1 |
1-Methyl-histamine | | >5000 | <0.1 |
Tryptophan | | >5000 | <0.1 |
Tryptamine | | >5000 | <0.1 |
Tyramine | | >5000 | <0.1 |
Phenethylamine | | >5000 | <0.1 |
4-(aminomethyl)-benzoic acid | | >5000 | <0.1 |
Benzoic acid | | >5000 | <0.1 |
Sample | Spiked (mg /kg or mg/L) | Intra-Assay a | Inter-Assay b | ||||
---|---|---|---|---|---|---|---|
Measured (mg /kg or mg/L) | Recovery (%) | CV (%) | Measured (mg /kg or mg/L) | Recovery (%) | CV (%) | ||
Saury | 0 | 2.31 | — | 13.0 | 2.40 | — | 12.5 |
2.0 | 4.05 | 87.5 | 15.0 | 4.32 | 96.0 | 14.0 | |
5.0 | 6.72 | 88.4 | 10.4 | 7.27 | 97.4 | 11.1 | |
10.0 | 11.25 | 89.5 | 11.6 | 10.81 | 84.1 | 13.0 | |
Red Wine | 0 | 0.91 | — | 11.1 | 1.13 | — | 10.7 |
2.0 | 2.80 | 95.0 | 10.7 | 2.95 | 92.5 | 10.3 | |
5.0 | 6.44 | 106.8 | 7.8 | 6.36 | 105.2 | 7.9 | |
10.0 | 10.58 | 96.8 | 10.5 | 11.22 | 101.2 | 11.6 | |
Soy Sauce | 0 | 1.22 | — | 12.6 | 1.30 | — | 11.8 |
2.0 | 3.08 | 93.0 | 10.5 | 3.28 | 99.0 | 10.5 | |
5.0 | 6.35 | 102.6 | 13.2 | 6.24 | 98.8 | 12.1 | |
10.0 | 10.1 | 88.8 | 12.1 | 9.82 | 85.2 | 13.2 | |
Yoghurt | 0 | ND c | — | — | ND c | — | — |
2.0 | 1.92 | 96.0 | 10.2 | 2.16 | 108.5 | 12.6 | |
5.0 | 5.24 | 104.8 | 11.4 | 4.96 | 99.2 | 10.8 | |
10.0 | 9.76 | 97.6 | 13.6 | 10.24 | 102.4 | 11.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Wei, X.-Q.; Jia, B.-Z.; Yang, J.-Y.; Shen, Y.-D.; Hammock, B.; Dong, J.-X.; Wang, H.; Lei, H.-T.; Xu, Z.-L. Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine. Biomolecules 2019, 9, 597. https://doi.org/10.3390/biom9100597
Luo L, Wei X-Q, Jia B-Z, Yang J-Y, Shen Y-D, Hammock B, Dong J-X, Wang H, Lei H-T, Xu Z-L. Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine. Biomolecules. 2019; 9(10):597. https://doi.org/10.3390/biom9100597
Chicago/Turabian StyleLuo, Lin, Xiao-Qun Wei, Bao-Zhu Jia, Jin-Yi Yang, Yu-Dong Shen, Bruce Hammock, Jie-Xian Dong, Hong Wang, Hong-Tao Lei, and Zhen-Lin Xu. 2019. "Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine" Biomolecules 9, no. 10: 597. https://doi.org/10.3390/biom9100597
APA StyleLuo, L., Wei, X.-Q., Jia, B.-Z., Yang, J.-Y., Shen, Y.-D., Hammock, B., Dong, J.-X., Wang, H., Lei, H.-T., & Xu, Z.-L. (2019). Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine. Biomolecules, 9(10), 597. https://doi.org/10.3390/biom9100597