Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials
Abstract
:1. Introduction
2. Hydrolysis of Cellulose
3. Enzymes: Past to Present
4. The Bottleneck Enzyme: Beta-Glucosidase
GH3 active site signature: |
5. Beta-Glucosidases in Biomass Hydrolysis: The Challenges
Microorganism | Activity | Temp. | pH | Inhibition | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Substrate | Km (mM) | Vmax (U/mg) | Opt. (°C) | Opt. | Substrate | Inhibitor | Ki (mM) | ||
Aspergillus fumigatus Z5 | pNPG | 60 | 6.0 | [42] | |||||
Aspergillus niger NRRL 599 | pNPG | 3.11 | 20.83 | 60 | 4.8 | [63] | |||
Aspergillus saccharolyticus | pNPG | 1.9 | 45 | 58 | 4.2 | [38] | |||
Aspergillus terreus NRRL 265 | pNPG | 2.5 | 60 | 5.0 | pNPG | Glucose | 13.6 | [64] | |
Cellobiose | 3.7 | ||||||||
Daldinia eschscholzii | pNPG | 1.52 | 3.21 | 50 | 5.0 | pNPG | Glucose | 0.79 | [65] |
Fomitopsis palustris FFPRI 0507 | pNPG | 0.117 | 70 | 4.5 | pNPG | Glucose | 0.35 | [66] | |
Cellobiose | 4.81 | ||||||||
Fusarium solani | pNPG | 1 | 55.6 | 65 | 4.5 | [67] | |||
Humicola insolens | pNPG | 0.16 | 18.186.0 | 6.2 | [68] | ||||
Cellobiose | 0.51 | ||||||||
Neosartorya ficheri NRRL181 | pNPG | 68 | 886 | 40 | 6.0 | [69] | |||
Peniclillium funiculosum NCL1 | pNPG | 0.057 | 1920 | 60 | 4.0–5.0 | pNPG | Glucose | 1.5 | [70] |
Phoma sp. KCTC11825BP | pNPG | 0.3 | 60 | 4.5 | pNPG | Glucose | 1.7 | [71] | |
Cellobiose | 3.2 | ||||||||
Tolypocladium cylinndrosporum | pNPG | 0.85 | 85.23 | 60 | 2.4 | pNPG | Glucose | 39.5 | [72] |
Trichoderma koningii AS3.2774 | pNPG | 2.67 | 50 | 5.0 | [73] | ||||
Trichoderma reesei | pNPG | 70 | 5.0 | [74] |
6. New and Improved Beta-Glucosidases
7. Conclusions
Conflicts of Interest
References
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conver. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Knauf, M.; Moniruzzaman, M. Lignocellulosic biomass processing: A perspective. Int. Sugar J. 2004, 106, 147–150. [Google Scholar]
- Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.; Manheim, A. Top Value added Chemicals from Biomass, Volume 1: Results of screening for potential candidates from sugars and synthesis gas; U.S. Department of Energy: Oak Ridge, TN, USA, 2004. Available online: www.eere.energy.gov/biomass/pdfs/35523.pdf (access on 2 September 2013).
- U.S. Department of Energy, Biomass Feedstock Composition and Property Database. Available online: http://www.afdc.energy.gov/biomass/progs/search1.cgi (access on 30 August 2013).
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Beguin, P.; Aubert, J.P. The biological degradation of cellulose. FEMS Microbiol. Rev. 1994, 13, 25–58. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; W.H. Freeman and Company: New York, NY, USA, 2002. [Google Scholar]
- Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.Y. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Himmel, M.E.; Mielenz, J.R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 2006, 24, 452–481. [Google Scholar] [CrossRef]
- Kabel, M.A.; Bos, G.; Zeevalking, J.; Voragen, A.G.J.; Schols, H.A. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 2007, 98, 2034–2042. [Google Scholar] [CrossRef]
- Chang, V.S.; Holtzapple, M.T. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 2000, 84–86, 5–37. [Google Scholar] [CrossRef]
- Meyer, A.S.; Rosgaard, L.; Sorensen, H.R. The minimal enzyme cocktail concept for biomass processing. J. Cereal. Sci. 2009, 50, 337–344. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Lynd, L.R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 2004, 88, 797–824. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Dai, L.; Zhang, J.; Fang, X. The structural and biochemical basis for cellulose biodegradation. J. Chem. Technol. Biotechnol. 2013, 88, 491–500. [Google Scholar] [CrossRef]
- Harris, P.V.; Welner, D.; McFarland, K.C.; Re, E.; Poulsen, J.N.; Brown, K.; Salbo, R.; Ding, H.; Vlasenko, E.; Merino, S.; Xu, F.; Cherry, J.; Larsen, S; Leggio, L.L. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry (N Y ) 2010, 49, 3305–3316. [Google Scholar] [CrossRef]
- Langston, J.A.; Shaghasi, T.; Abbate, E.; Xu, F.; Vlasenko, E.; Sweeney, M.D. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. 2011, 77, 7007–7015. [Google Scholar] [CrossRef]
- Quinlan, R.J.; Sweeney, M.D.; lo Leggio, L.; Otten, H.; Poulsen, J.N.; Johansen, K.S.; Krogh, K.B.R.M.; Jørgensen, C.I.; Tovborg, M.; Anthonsen, A.; Tryfona, T.; Walter, C.P.; Dupree, P.; Xu, F.; Davies, G.J.; Walton, P.H. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. USA 2011, 108, 15079–15084. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Westereng, B.; Horn, S.J.; Liu, Z.; Zhai, H.; Sorlie, M.; Eijsink, V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330, 219–222. [Google Scholar] [CrossRef]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; Wyman, C.E. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar]
- Banerjee, G.; Scott-Craig, J.S.; Walton, J.D. Improving enzymes for biomass conversion: A basic research perspective. Bioenergy Res. 2010, 3, 82–92. [Google Scholar] [CrossRef]
- Kristensen, J.B.; Felby, C.; Jorgensen, H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2009, 2, 11. [Google Scholar] [CrossRef]
- Kaar, W.; Holtzapple, M. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 2000, 18, 189–199. [Google Scholar] [CrossRef]
- Kim, S.; Holtzapple, M. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 2005, 96, 1994–2006. [Google Scholar] [CrossRef]
- Kim, T.; Lee, Y. Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 2005, 124, 1119–1131. [Google Scholar] [CrossRef]
- Bura, R.; Chandra, R.; Saddler, J. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog. 2009, 25, 315–322. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Zhu, W.; OBryan, P.; Dien, B.S.; Tian, S.; Gleisner, R.; Pan, X.J. Ethanol production from SPORL-pretreated lodgepole pine: Preliminary evaluation of mass balance and process energy efficiency. Appl. Microbiol. Biotechnol. 2010, 86, 1355–1365. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Yong, Q.; Yu, S. Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour. Technol. 2011, 102, 4905–4908. [Google Scholar] [CrossRef]
- Murphy, L.; Bohlin, C.; Baumann, M.J.; Olsen, S.N.; Sorensen, T.H.; Anderson, L.; Borch, K.; Westh, P. Product inhibition of five Hypocrea jecorina cellulases. Enzyme Microb. Technol. 2013, 52, 163–169. [Google Scholar] [CrossRef]
- Shewale, J.G. Beta-Glucosidase - its role in cellulase synthesis and hydrolysis of cellulose. Int. J. Biochem. 1982, 14, 435–443. [Google Scholar] [CrossRef]
- Xiao, Z.Z.; Zhang, X.; Gregg, D.J.; Saddler, J.N. Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 2004, 113–116, 1115–1126. [Google Scholar]
- Peterson, R.; Nevalainen, H. Trichoderma reesei RUT-C30 - thirty years of strain improvement. Microbiology 2012, 158, 58–68. [Google Scholar] [CrossRef]
- Reczey, K.; Brumbauer, A.; Bollok, M.; Szengyel, Z.; Zacchi, G. Use of hemicellulose hydrolysate for beta-glucosidase fermentation. Appl. Biochem. Biotechnol. 1998, 70–72, 225–235. [Google Scholar] [CrossRef]
- Rahman, Z.; Shida, Y.; Furukawa, T.; Suzuki, Y.; Okada, H.; Ogasawara, W.; Morikawa, Y. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase I. Biosci. Biotechnol. Biochem. 2009, 73, 1083–1089. [Google Scholar] [CrossRef]
- Murray, P.; Aro, N.; Collins, C.; Grassick, A.; Penttila, M.; Saloheimo, M.; Tuohy, M. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expr. Purif. 2004, 38, 248–257. [Google Scholar]
- Merino, S.T.; Cherry, J. Progress and challenges in enzyme development for Biomass utilization. Biofuels 2007, 108, 95–120. [Google Scholar] [CrossRef]
- Sørensen, A.; Ahring, B.K.; Lübeck, M.; Ubhayasekera, W.; Bruno, K.S.; Culley, D.E.; Lübeck, P.S. Identifying and characterizing the most significant beta-glucosidase of the novel species Aspergillus saccharolyticus. Can. J. Microbiol. 2012, 58, 1035–1046. [Google Scholar] [CrossRef]
- Nakazawa, H.; Kawai, T.; Ida, N.; Shida, Y.; Kobayashi, Y.; Okada, H.; Tani, S.; Sumitani, J. Kawaguchi, T.; Morikawa, Y.; Ogasawara, W. Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion. Biotechnol. Bioeng. 2012, 109, 92–99. [Google Scholar]
- Dekker, R.F.H. Kinetic, inhibition, and stability properties of a commercial beta-D-glucosidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of lignocellulose. Biotechnol. Bioeng. 1986, 28, 1438–1442. [Google Scholar] [CrossRef]
- Krogh, K.B.R.; Morkeberg, A.; Jorgensen, H.; Frisvad, J.C.; Olsson, L. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 2004, 113–116, 389–401. [Google Scholar]
- Liu, D.; Zhang, R.; Yang, X.; Zhang, Z.; Song, S.; Miao, Y.; Shen, Q. Characterization of a thermostable beta-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb. Cell Factories 2012, 11, 25. [Google Scholar] [CrossRef]
- Gyalai-Korpos, M.; Mangel, R.; Alvira, P.; Dienes, D.; Ballesteros, M.; Reczey, K. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. J. Ind. Microbiol. Biotechnol. 2011, 38, 791–802. [Google Scholar] [CrossRef]
- Sørensen, A.; Teller, P.J.; Lübeck, P.S.; Ahring, B.K. Onsite enzyme production during bioethanol production from biomass: Screening for suitable fungal strains. Appl. Biochem. Biotechnol. 2011, 164, 1058–1070. [Google Scholar] [CrossRef]
- Herculano, P.N.; Porto, T.S.; Moreira, K.A.; Pinto, G.A.S.; Souza-Motta, C.M.; Porto, A.L.F. Cellulase production by Aspergillus japonicus URM5620 Using Waste from Castor Bean (Ricinus communis L.) Under Solid-State Fermentation. Appl. Biochem. Biotechnol. 2011, 165, 1057–1067. [Google Scholar] [CrossRef]
- Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res. 2000, 28, 304–305. [Google Scholar] [CrossRef]
- Eyzaguirre, J.; Hidalgo, M.; Leschot, A. Beta-Glucosidases from Filamentous Fungi: Properties, Structure, and Applications. In Handbook of Carbohydrate Engineering; Taylor and Francis Group, LLC: Boca Raton, FL 33487, USA, 2005; pp. 645–685. [Google Scholar]
- Henrissat, B. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar]
- Bairoch, A. Prosite - a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992, 20, 2013–2018. [Google Scholar] [CrossRef]
- Varghese, J.N.; Hrmova, M.; Fincher, G.B. Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 1999, 7, 179–190. [Google Scholar] [CrossRef]
- Yoshida, E.; Hidaka, M.; Fushinobu, S.; Koyanagi, T.; Minami, H.; Tamaki, H.; Kitaoka, M.; Katayama, T.; Kumagai, H. Purification, crystallization and preliminary X-ray analysis of beta-glucosidase from Kluyveromyces marxianus NBRC1777. Acta Crystallogr. Sect. F-Struct. Biol. Cryst. Commun. 2009, 65, 1190–1192. [Google Scholar] [CrossRef]
- Pozzo, T.; Pasten, J.L.; Karlsson, E.N.; Logan, D.T. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: A thermostable three-domain representative of glycoside hydrolase 3. J. Mol. Biol. 2010, 397, 724–739. [Google Scholar] [CrossRef]
- Nakatani, Y.; Cutfield, S.M.; Cowieson, N.P.; Cutfield, J.F. Structure and activity of exo-1,3/1,4- beta-glucanase from marine bacterium Pseudoalteromonas sp BB1 showing a novel C-terminal domain. Febs. J. 2012, 279, 464–478. [Google Scholar] [CrossRef]
- McAndrew, R.P.; Park, J.I.; Heins, R.A.; Reindl, W.; Friedland, G.D.; D’haeseleer, P.; Northen, T.; Sale, K.L.; Simmons, B.A.; Adams, P.D. From soil to structure, a novel dimeric beta-glucosidase belonging to the glycoside hydrolase family 3 isolated from compost using metagenomic analysis. J. Biol. Chem. 2013, 288, 14985–14992. [Google Scholar] [CrossRef]
- Suzuki, K.; Sumitani, J.; Nam, Y.; Nishimaki, T.; Tani, S.; Wakagi, T.; Kawaguchi, T.; Fushinobu, S. Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus. Biochem. J. 2013, 452, 211–221. [Google Scholar] [CrossRef]
- Jeya, M.; Joo, A.; Lee, K.; Tiwari, M.K.; Lee, K.; Kim, S.; Lee, J. Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl. Microbiol. Biotechnol. 2010, 86, 1473–1484. [Google Scholar] [CrossRef]
- Sinnott, M.L. Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 1990, 90, 1171–1202. [Google Scholar] [CrossRef]
- McCarter, J.D.; Withers, S.G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 1994, 4, 885–892. [Google Scholar] [CrossRef]
- Thongpoo, P.; McKee, L.S.; Araujo, A.C.; Kongsaeree, P.T.; Brumer, H. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28. Biochim. Biophys. Acta-Gen. 2013, 1830, 2739–2749. [Google Scholar] [CrossRef]
- Davies, G.; Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3, 853–859. [Google Scholar] [CrossRef]
- Davies, G.J.; Wilson, K.S.; Henrissat, B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 1997, 321, 557–559. [Google Scholar]
- Bhatia, Y.; Mishra, S.; Bisaria, V.S. Microbial beta-glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 2002, 22, 375–407. [Google Scholar] [CrossRef]
- Zahoor, S.; Javed, M.M.; Aftab, S.; Latif, F.; Ikram-ul-Haq. Metabolic engineering and thermodynamic characterization of an extracellular beta-glucosidase produced by Aspergillus niger. Afr. J. Biotechnol. 2011, 10, 8107–8116. [Google Scholar]
- Elshafei, A.M.; Hassan, M.M.; Morsi, N.M.; Elghonamy, D.H. Purification and some kinetic properties of beta-glucosidase from Aspergillus terreus NRRL 265. Afr. J. Biotechnol. 2011, 10, 19556–19569. [Google Scholar]
- Karnchanatat, A.; Petsom, A.; Sangvanich, P.; Piaphukiew, J.; Whalley, A.J.S.; Reynolds, C.D.; Sihanonth, P. Purification and biochemical characterization of an extracellular beta glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb. :Fr.) Rehm. FEMS Microbiol lett. 2007, 270, 162–170. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, K.; Cha, C. Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J. Microbiol. 2008, 46, 51–55. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Batool, S.; Afzal, N. Production and characterization of a novel beta-glucosidase from Fusarium solani. Int. J. Agric. Biol. 2013, 15, 140–144. [Google Scholar]
- Kalyani, D.; Lee, K.; Tiwari, M.K.; Ramachandran, P.; Kim, H.; Kim, I.; Jeya, M.; Lee, J. Characterization of a recombinant aryl beta-glucosidase from Neosartorya fischeri NRRL181. Appl. Microbiol. Biotechnol. 2012, 94, 413–423. [Google Scholar] [CrossRef]
- Moreira Souza, F.H.; Nascimento, C.V.; Rosa, J.C.; Masui, D.C.; Leone, F.A.; Jorge, J.A.; Furriel, R.P.M. Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated beta-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem. 2010, 45, 272–278. [Google Scholar] [CrossRef]
- Ramani, G.; Meera, B.; Vanitha, C.; Rao, M.; Gunasekaran, P. Production, purification, and characterization of a beta-glucosidase of Penicillium funiculosum NCL1. Appl. Biochem. Biotechnol. 2012, 167, 959–972. [Google Scholar] [CrossRef]
- Choi, J.; Park, A.; Kim, Y.J.; Kim, J.; Cha, C.; Yoon, J. Purification and characterization of an extracellular beta-glucosidase produced by Phoma sp KCTC11825BP isolated from rotten mandarin peel. J. Microbiol. Biotechnol. 2011, 21, 503–508. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Yuan, L.J.; Chen, Z.J.; Fu, L.; Lu, J.H.; Meng, Q.F.; He, H.; Yu, X.X.; Lin, F.; Teng, L.R. Purification and characterization of beta-glucosidase from a newly isolated strain Tolypocladium cylindrosporum Syzx4. Chem. Res. Chin. Univ. 2011, 27, 557–561. [Google Scholar]
- Lin, J.; Pillay, B.; Singh, S. Purification and biochemical characteristics of beta-D-glucosidase from a thermophilic fungus, Thermomyces lanuginosus SSBP. Biotechnol. Appl. Biochem. 1999, 30, 81–87. [Google Scholar]
- Chen, P.; Fu, X.Y.; Ng, T.B.; Ye, X.Y. Expression of a secretory beta-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnol. Lett. 2011, 33, 2475–2479. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhinina, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K.; Mukherjee, M.; Kredics, L.; Alcaraz, L.D.; Aerts, A.; Antal, Z.; Atanasova, L.; Cervantes-Badillo, M.G.; Challacombe, J.; Chertkov, O.; McCluskey, K.; Coulpier, F.; Deshpande, N.; von Döhren, H.; Ebbole, D.J.; Esquivel-Naranjo, E.U.; Fekete, E.; Flipphi, M.; Glaser, F.; Gómez-Rodríguez, E.Y.; Gruber, S.; Han, C.; Henrissat, B.; Hermosa, R.; Hernández-Oñate, M.; Karaffa, L.; Kosti, I.; Le Crom, S.; Lindquist, E.; Lucas, S.; Lübeck, M.; Lübeck, P.S.; Margeot, A.; Metz, B.; Misra, M.; Nevalainen, H.; Omann, M.; Packer, N.; Perrone, G.; Uresti-Rivera, E.E.; Salamov, A.; Schmoll, M.; Seiboth, B.; Shapiro, H.; Sukno, S.; Tamayo-Ramos, J.A.; Tisch, D.; Wiest, A.; Wilkinson, H.H.; Zhang, M.; Coutinho, P.M.; Kenerley, C.M.; Monte, E.; Baker, S.E; Grigoriev, I.V. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef]
- Yan, S.; Wu, G. Prediction of optimal pH in hydrolytic reaction of beta-glucosidase. Appl. Biochem. Biotechnol. 2013, 169, 1884–1894. [Google Scholar] [CrossRef]
- Banerjee, S.; Mudliar, S.; Sen, R.; Giri, B.; Satpute, D.; Chakrabarti, T.; Pandey, R.A. Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels Bioprod. Bioref. 2010, 4, 77–93. [Google Scholar] [CrossRef]
- Jeoh, T.; Michener, W.; Himmel, M.E.; Decker, S.R.; Adney, W.S. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 2008, 1, 10. [Google Scholar]
- Banerjee, G.; Car, S.; Scott-Craig, J.S.; Borrusch, M.S.; Bongers, M.; Walton, J.D. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresour. Technol. 2010, 101, 9097–9105. [Google Scholar] [CrossRef]
- Riou, C.; Salmon, J.M.; Vallier, M.J.; Gunata, Z.; Barre, P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 1998, 64, 3607–3614. [Google Scholar]
- Langston, J.; Sheehy, N.; Xu, F. Substrate specificity of Aspergillus oryzae family 3 beta-glucosidase. Biochim. Biophys. Acta-Proteins Proteomics 2006, 1764, 972–978. [Google Scholar] [CrossRef]
- Korotkova, O.G.; Semenova, M.V.; Morozova, V.V.; Zorov, I.N.; Sokolova, L.M.; Bubnova, T.M.; Okunev, O.N.; Sinitsyn, A.P. Isolation and properties of fungal beta-glucosidases. Biochemistry (Mosc) 2009, 74, 569–577. [Google Scholar] [CrossRef]
- Andric, P.; Meyer, A.S.; Jensen, P.A.; Dam-Johansen, K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol. Adv. 2010, 28, 308–324. [Google Scholar] [CrossRef]
- Dale, M.P.; Ensley, H.E.; Kern, K.; Sastry, K.A.R.; Byers, L.D. Reversible inhibitors of beta-glucosidase. Biochemistry (N Y) 1985, 24, 3530–3539. [Google Scholar] [CrossRef]
- Bohlin, C.; Praestgaard, E.; Baumann, M.J.; Borch, K.; Praestgaard, J.; Monrad, R.N.; Westh, P. A comparative study of hydrolysis and transglycosylation activities of fungal beta-glucosidases. Appl. Microbiol. Biotechnol. 2013, 97, 159–169. [Google Scholar] [CrossRef]
- Frutuoso, M.A.; Marana, S.R. A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by beta-glucosidases. Protein Peptide Lett. 2013, 20, 102–106. [Google Scholar] [CrossRef]
- McIntosh, L.P.; Hand, G.; Johnson, P.E.; Joshi, M.D.; Korner, M.; Plesniak, L.A.; Ziser, L.; Wakarchuk, W.W.; Withers, S.G. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: A C-13-NMR study of Bacillus circuluns xylanase. Biochemistry (N Y) 1996, 35, 9958–9966. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K.O. Thermostable enzymes as biocatalysts in the biofuel industry. Adv. Appl. Microbiol. 2010, 70, 1–55. [Google Scholar] [CrossRef]
- Berlin, A.; Balakshin, M.; Gilkes, N.; Kadla, J.; Maximenko, V.; Kubo, S.; Saddler, J. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 2006, 125, 198–209. [Google Scholar] [CrossRef]
- Yang, B.; Wyman, C.E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 2006, 94, 611–617. [Google Scholar] [CrossRef]
- Selig, M.J.; Hsieh, C.C.; Thygesen, L.G.; Himmel, M.E.; Felby, C.; Decker, S.R. Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol. Prog. 2012, 28, 1478–1490. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The fungal dimension of biodiversity - Magnitude, significance, and conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
- Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef]
- Mares, D.; Andreotti, E.; Maldonado, M.E.; Pedrini, P.; Colalongo, C.; Romagnoli, C. Three new species of Aspergillus from Amazonian forest soil (Ecuador). Curr. Microbiol. 2008, 57, 222–229. [Google Scholar] [CrossRef]
- De Vries, R.P.; Frisvad, J.C.; van de Vondervoort, P.J.I.; Burgers, K.; Kuijpers, A.F.A.; Samson, R.A.; Visser, J. Aspergillus vadensis, a new species of the group of black Aspergilli. Antonie Van Leeuwenhoek 2005, 87, 195–203. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.A.M.P.; Kuijpers, A.F.A.; Frank, J.M.; Frisvad, J.C. New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud. Mycol. 2004, 50, 45–61. [Google Scholar]
- Perrone, G.; Varga, J.; Susca, A.; Frisvad, J.C.; Stea, G.; Kocsube, S.; Tóth, B.; Kozakiewicz, Z.; Samson, R.A. Aspergillus uvarum sp nov., an uniseriate black Aspergillus species isolated from grapes in Europe. Int. J. Syst. Evol. Microbiol. 2008, 58, 1032–1039. [Google Scholar] [CrossRef]
- Noonim, P.; Mahakarnchanakul, W.; Varga, J.; Frisvad, J.C.; Samson, R.A. Two novel species of Aspergillus section Nigri from Thai coffee beans. Int. J. Syst. Evol. Microbiol. 2008, 58, 1727–1734. [Google Scholar] [CrossRef]
- Noonim, P.; Mahakarnchanakul, W.; Nielsen, K.F.; Frisvad, J.C.; Samson, R.A. Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int. J. Food Microbiol. 2008, 128, 197–202. [Google Scholar] [CrossRef]
- Varga, J.; Kocsube, S.; Toth, B.; Frisvad, J.C.; Perrone, G.; Susca, A.; Meijer, M.; Samson, R.A. Aspergillus brasiliensis sp nov., a biseriate black Aspergillus species with world-wide distribution. Int. J. Syst. Evol. Microbiol. 2007, 57, 1925–1932. [Google Scholar] [CrossRef]
- Serra, R.; Cabanes, F.J.; Perrone, G.; Castella, G.; Venancio, A.; Mule, G.; Kozakiewicz, Z. Aspergillus ibericus: A new species of section Nigri isolated from grapes. Mycologia 2006, 98, 295–306. [Google Scholar] [CrossRef]
- Sørensen, A.; Lubeck, P.S.; Lubeck, M.; Nielsen, K.F.; Ahring, B.K.; Teller, P.J.; Frisvad, J.C. Aspergillus saccharolyticus sp nov., a black Aspergillus species isolated in Denmark. Int. J. Syst. Evol. Microbiol. 2011, 61, 3077–3083. [Google Scholar] [CrossRef]
- Kim, S.; Lee, C.; Kim, M.; Yeo, Y.; Yoon, S.; Kang, H.; Koo, B. Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 2007, 17, 905–912. [Google Scholar]
- Jiang, C.; Ma, G.; Li, S.; Hu, T.; Che, Z.; Shen, P.; Yan, B.; Wu, B. Characterization of a novel beta-glucosidase-like activity from a soil metagenome. J. Microbiol. 2009, 47, 542–548. [Google Scholar] [CrossRef]
- Jiang, C.; Hao, Z.; Jin, K.; Li, S.; Che, Z.; Ma, G.; Wu, B. Identification of a metagenome-derived beta-glucosidase from bioreactor contents. J. Mol. Catal. B-Enzym. 2010, 63, 11–16. [Google Scholar] [CrossRef]
- Sternberg, D.; Vijayakumar, P.; Reese, E.T. Beta-glucosidase - microbial-production and effect on enzymatic-hydrolysis of cellulose. Can. J. Microbiol. 1977, 23, 139–147. [Google Scholar] [CrossRef]
- Sørensen, A.; Lübeck, P.S.; Lübeck, M.; Teller, P.J.; Ahring, B.K. Beta-Glucosidases from a new Aspergillus species can substitute commercial beta-glucosidases for saccharification of lignocellulosic biomass. Can. J. Microbiol. 2011, 57, 638–650. [Google Scholar] [CrossRef]
- Montenecourt, B.S.; Eveleigh, D.E. Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In Hydrolysis of Cellulose: Mechanisms of Enzymic and Acid Catalysis; Brown, R.D., Jurasek, L., Eds.; American Chemical Society: Washington DC, USA, 1979; pp. 289–301. [Google Scholar]
- Chirumamilla, R.R.; Muralidhar, R.; Marchant, R.; Nigam, P. Improving the quality of industrially important enzymes by directed evolution. Mol. Cell. Biochem. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Cherry, J.R.; Fidantsef, A.L. Directed evolution of industrial enzymes: An update. Curr. Opin. Biotechnol. 2003, 14, 438–443. [Google Scholar] [CrossRef]
- Tobin, M.B.; Gustafsson, C.; Huisman, G.W. Directed evolution: The ‘rational’ basis for ‘irrational’ design. Curr. Opin. Struct. Biol. 2000, 10, 421–427. [Google Scholar] [CrossRef]
- Antikainen, N.M.; Martin, S.F. Altering protein specificity: Techniques and applications. Bioorg. Med. Chem. 2005, 13, 2701–2716. [Google Scholar] [CrossRef]
- Gonzalez-Blasco, G.; Sanz-Aparicio, J.; Gonzalez, B.; Hermoso, J.A.; Polaina, J. Directed evolution of beta-glucosidase A from Paenibacillus polymyxa to thermal resistance. J. Biol. Chem. 2000, 275, 13708–13712. [Google Scholar]
- Arrizubieta, M.J.; Polaina, J. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. J. Biol. Chem. 2000, 275, 28843–28848. [Google Scholar] [CrossRef]
- Lebbink, J.H.G.; Kaper, T.; Bron, P.; van der Oost, J.; de Vos, W.M. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution. Biochemistry (N Y) 2000, 39, 3656–3665. [Google Scholar] [CrossRef]
- Pei, X.; Yi, Z.; Tang, C.; Wu, Z. Three amino acid changes contribute markedly to the thermostability of beta-glucosidase BglC from Thermobifida fusca. Bioresour. Technol. 2011, 102, 3337–3342. [Google Scholar] [CrossRef]
- Steiner, K.; Schwab, H. Recent Advances in rational approaches for enzyme engineering. Comput. Struct. Biotechnol. J. 2012, 2. [Google Scholar] [CrossRef]
- Lee, H.; Chang, C.; Jeng, W.; Wang, A.H.-J; Liang, P. Mutations in the substrate entrance region of beta-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng. Des. Sel. 2012, 25, 733–740. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sørensen, A.; Lübeck, M.; Lübeck, P.S.; Ahring, B.K. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules 2013, 3, 612-631. https://doi.org/10.3390/biom3030612
Sørensen A, Lübeck M, Lübeck PS, Ahring BK. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules. 2013; 3(3):612-631. https://doi.org/10.3390/biom3030612
Chicago/Turabian StyleSørensen, Annette, Mette Lübeck, Peter S. Lübeck, and Birgitte K. Ahring. 2013. "Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials" Biomolecules 3, no. 3: 612-631. https://doi.org/10.3390/biom3030612
APA StyleSørensen, A., Lübeck, M., Lübeck, P. S., & Ahring, B. K. (2013). Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules, 3(3), 612-631. https://doi.org/10.3390/biom3030612