Microbial Enzymes with Special Characteristics for Biotechnological Applications
Abstract
:1. Enzymes from Microbial Sources
2. Enzymes with Special Characteristics
3. Enzymes with Special Characteristics in Biotechnology
3.1. Protease
3.2. Keratinases
3.3. Amylase
3.4. Xylanase
3.5. Laccase/Ligninase
3.6. Cellulase
3.7. Miscellaneous Enzymes in Biotechnology
Enzyme | Properties | Producer Microbes- | Applications | Reference |
---|---|---|---|---|
PROTEASE (Proteolytic activity) | Acidic, Neutral, Alkaline, Thermophilic, Active in presence of inhibitory compounds | Bacilli; Pseudomonas; Clostridium; Rhizopus; Penicillium; Aspergillus | Washing Powders; Detergents; Tannery; Food Industry; Leather processing; Pharmaceuticals; Molecular Biology; Peptide synthesis | [1,3,11,12,13,14,15,16,17,18,19,34] |
KERATINASE (Keratin-hydrolysing activity) | Specific Proteolytic Activity for Insoluble & Fibrous Proteins in furs, feathers, wool, hair; Thermophilic; Alkalophilic; Oxidation-Resistant | Bacteria; Actinomycetes; Fungi | Animal Feed Production; Textile Processing; Detergent Formulation; Leather Manufacturing; Medicine | [1,20,21,22,23,24,25,34] |
AMYLASE (Starch-hydrolyzing activity) | Thermotolerant, Thermostable, Alkali-resistant-Exo-, endo-, de-branching, cyclodextrin-producing enzymes | Bacillus sp.; Geobacillus | Starch industry (for liquefaction); Paper, Food industry (Glucose & Maltose syrups, High Fructose Corn syrups, clarified fruit-juices); Pharmaceutical industries (Digestive aid); Brewing Industry (Starch-processing); Textile industry (Warp-sizing of fibers); Baking industry (delayed staling) | [1,26,27,28,29,30,31,32,33,34] |
XYLANASE (Xylan–Pentose polymer hydrolyzing activity) | Extremophilic characteristics–Alkalophilic, Thermophilic & Thermostable | Thermoactinomyces thalophilus; Bacillus sp.; Humicola insolens. Bispora (acidophilic fungus) | Pentose production - Bioconversion of hemicellulose for fuel & Chemicals; Fruit-juice clarification; Improving rumen digestion; Paper industry- selective removals of xylans from kraft-pulp; Brewing industry | [1,34,35,36,37,38,39,40,41,42,43,44,45,46] |
LIGNINASE (Ligninolytic-Complex-enzyme) | Oxidative properties in Lignin peroxidase, Manganese peroxidase & Laccase; Thermophilic | Basidiomycetes strains—Steccherinum ochraceum, Polyporus versicolor, Panus tigrinus | Denim washing; Bio-sensors; Bio-bleaching of Kraft-pulp; Bioremediation; Pollution-control; Treatment of recalcitrant chemicals in Textile and Industrial effluents | [1,34,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] |
CELLULASE (Cellulolytic-complex enzyme) | Saccahrification of crystalline & amorphous cellulose; Thermophilic; Thermostable | Basidiomycetes strains Polyporus sp.; Pleurotus sp.; Trichoderma sp.; Aspergillus sp. | Glucose feedstock from cellulose; Bio-refinery; Bio-ethanol; Paper-pulp industry | [1,34,66,67,68,69,70] |
LIPASE (Lipolytic activity) | Fat- splitting; Stereoselectivity; Racemic-Resolution activity; Solvents-resistant; Thermotolerant | Yeasts and Fungal strains-Candida sp., Aspergillus sp, Penicillium sp., Rhizopus, Mucor | Detergents; Dairy Industry-oils, fats, Butter, Cream, Fat-Spreads; Feed supplement; Therapeutic agent | [1,34,71,72,73,74,75] |
4. Conclusions
Conflicts of Interest
References
- Pandey, A.; Selvakumar, P.; Soccol, C.R.; Nigam, P. Solid-state fermentation for the production of industrial enzymes. Curr. Sci. 1999, 77, 149–162. [Google Scholar]
- Chirumamilla, R.R.; Muralidhar, R.; Marchant, R.; Nigam, P. Improving the quality of industrially important enzymes by directed evolution. Mol. Cell. Biochem. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Kumar, C.G.; Takagi, H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 1999, 17, 561–594. [Google Scholar] [CrossRef]
- Ahmed, S.; Riaz, S.; Jamil, A. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 2009, 84, 19–35. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Watanabe, T.; Shigemori, Y.; Mikawa, T.; Okajima, T.; Mao, L.Q.; Ohsaka, T. A glucose/o-2 biofuel cell using recombinant thermophilic enzymes. Int. J. Electrochem. Sci. 2012, 7, 1071–1078. [Google Scholar]
- Banat, I.M.; Nigam, P.; Marchant, R. Isolation of a thermotolerant, fermentative yeasts growing at 52 °C and producing ethanol at 45 °C & 50 °C. World J. Microbiol. Biotechnol. 1992, 8, 259–263. [Google Scholar] [CrossRef]
- Wati, L.; Dhamija, S.S.; Singh, D.; Nigam, P.; Marchant, R. Characterisation of genetic control of thermotolerance in mutants of Saccharomyces cerevisiae. Genet. Eng. Biotechnol. 1996, 16, 19–26. [Google Scholar]
- Zhang, S.B.; Wu, Z.L. Identification of amino acid residuesresponsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresour. Technol. 2011, 102, 2093–2096. [Google Scholar] [CrossRef]
- Berka, R.M.; Grigoriev, I.V.; Otillar, R.; Salamov, A.; Grimwood, J.; Reid, I.; Ishmael, N.; John, T.; Darmond, C.; Moisan, M.C.; et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi. Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 2011, 29, 922–927. [Google Scholar] [CrossRef]
- Cai, H.; Shi, P.; Bai, Y.; Huang, H.; Yuan, T.; Yang, P.; Luo, H.; Meng, K.; Yao, B. A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem. 2011, 46, 2341–2346. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Adhikari, H.; Rai, S.K. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrical grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. J. Biochem. Eng. 2008, 39, 353–361. [Google Scholar] [CrossRef]
- Rahman, R.N.Z.R.A.; Basri, M.; Salleh, A.B. Thermostable alkaline protease from Bacillus stearothermophilus F1; Nutritional factors affecting protease production. Ann. Microbiol. 2003, 53, 199–210. [Google Scholar]
- Chudasama, C.J.; Jani, S.A.; Jajda, H.M.; Pate, H.N. Optimization and production of alkaline protease from Bacillus thuringiensis CC7. J. Cell Tissue Res. 2010, 10, 2257–2262. [Google Scholar]
- Genckal, H.; Tari, C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzym. Microb. Technol. 2006, 39, 703–710. [Google Scholar] [CrossRef]
- Gupta, R.; Beg, Q.K.; Lorenz, P. Bacterial alkaline proteases: Molecular approaches and Industrial Applications. Appl. Microbiol. Biotechnol. 2002, 59, 15–32. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Venkat Kumar, S.; Thankamani, V. Optimization and cultural characterization of Bacillus RV.B2.90 producing alkalophilic thermophilic protease. Res. J. Biotechnol. 2011, 6, 26–32. [Google Scholar]
- Gupta, A.; Joseph, B.; Mani, A.; Thomas, G. Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J. Microbiol. Biotechnol. 2008, 24, 237–243. [Google Scholar] [CrossRef]
- Johnvesly, B.; Naik, G.K. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemical defined medium. Process Biochem. 2001, 37, 139–144. [Google Scholar] [CrossRef]
- Hadj-Ali, N.E.; Rym, A.; Basma, G.F.; Alya, S.K.; Safia, K.; Moncef, N. Biochemical and molecular characterization of a detergent stable alkaline serineprotease from a newly isolated Bacillus licheniformis NH1. Enzym. Microb. Technol. 2007, 40, 515–523. [Google Scholar] [CrossRef]
- Gushterova, A.; Vasileva-Tonkova, E.; Dimova, E.; Nedkov, P.; Haertle, T. Keratinase production by newly isolated Antarctic actinomycete strains. World J. Microbiol. Biotechnol. 2005, 21, 831–834. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Riffel, A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010, 85, 1735–1750. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, R.; Beg, Q.K. Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 2013, 33, 216–228. [Google Scholar] [CrossRef]
- Baihong, L.; Juan, Z.; Zhen, F.; Lei, G.; Xiangru, L.; Guocheng, D.; Jian, C. Enhanced thermostability of keratinase by computational design and empirical mutation. J. Ind. Microbiol. Biotechnol. 2013, 40, 697–704. [Google Scholar] [CrossRef]
- Indhuja, S.; Shiburaj, S.; Pradeep, N.S.; Thankamani, V.; Abraham, T.K. Extracellular keratinolytic proteases from an Alkalophilic Streptomyces albidoflavus TBG-S13A5: Enhanced production and characterization. J. Pure Appl. Microbiol. 2012, 6, 1599–1607. [Google Scholar]
- Liu, B.; Zhang, J.; Li, B.; Liao, X.; Du, G.; Chen, J. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J. Microbiol. Biotechnol. 2013, 29, 825–832. [Google Scholar] [CrossRef]
- Nigam, P.; Singh, D. Enzyme and microbial systems involved in starch processing. Enzym. Microb. Technol. 1995, 17, 770–778. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Nigam, P. Biotechnological potential of agro-industrial residues, II-Cassava Bagasse. Bioresour. Technol. 2000, 74, 81–87. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Soccol, C.R.; Pandey, A. α-amylases from microbial sources – An overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184. [Google Scholar]
- Kumar, J.; Dahiya, J.S.; Singh, D.; Nigam, P. Production of endo-1, 4- β-glucanase by a biocontrol fungus Cladorrhinum foecundissimum. Bioresour. Technol. 2000, 75, 95–97. [Google Scholar] [CrossRef]
- Singh, D.; Dahiya, J.S.; Nigam, P. Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae. J. Basic Microbiol. 1995, 35, 117–121. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in Microbial Amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. [Google Scholar] [CrossRef]
- Li, Y.; Niu, D.; Zhang, L.; Wang, Z.; Shi, G. Purification, characterization and cloning of a thermotolerant isoamylase produced from Bacillus sp. CICIM 304. J. Ind. Microbiol. Biotechnol. 2013, 40, 437–446. [Google Scholar] [CrossRef]
- Gurumurthy, D.M.; Neelagund, S.E. Molecular characterization of industrially viable extreme thermostable novel alpha-amylase of geobacillus sp Iso5 Isolated from geothermal spring. J. Pure Appl. Microbiol. 2012, 6, 1759–1773. [Google Scholar]
- Nigam, P.; Pandey, A. (Eds.) Biotechnology for Agro-Industrial Residues Utilisation; Springer Science Business Media B.V., 2009; pp. 1–466.
- Polizeli, M.L.; Rizzatti, A.C.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Srinivasan, M.C.; Rele, M.V. Cellulase free xylanase from microorganisms and their applications to pulp and paper biotechnology: An overview. Indian J. Microbiol. 1995, 35, 93–101. [Google Scholar]
- Garg, A.P.; Roberts, J.C.; McCarthy, A. Bleach boosting effect of cellulase free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood Kraft pulp. Enzym. Microb. Biotechnol. 1998, 22, 594–598. [Google Scholar] [CrossRef]
- Kohli, U.; Nigam, P.; Singh, D.; Chaudhary, K. Thermostable, alkalophilic and cellulase free xylanase production by Thermonoactinomyces thalophilus subgroup C. Enzym. Microb. Technol. 2001, 28, 606–610. [Google Scholar] [CrossRef]
- Marques, S.; Alves, L.; Ribeiro, S.; Girio, F.M.; Amaralcollaco, M.T. Characterisation of a thermotolerant and alkalotolerant xylanase from a Bacillus sp. Appl. Biochem. Biotechnol. A 1998, 73, 159–172. [Google Scholar] [CrossRef]
- Jhamb, K.; Sahoo, D.K. Production of soluble recombinant proteins in Escherichia coli: Effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 2012, 123, 135–143. [Google Scholar] [CrossRef]
- Prade, R.A. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 1996, 13, 100–131. [Google Scholar] [CrossRef]
- Luo, H.; Wang, K.; Huang, H.; Shi, P.; Yang, P.; Yao, B. Gene cloning, expression and biochemical characterization of an alkali-tolerant b-mannanase from Humicola insolens Y1. J. Ind. Microbiol. Biotechnol. 2012, 39, 547–555. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.; Yang, J.; Wang, H.; Yang, Y.; Huang, H.; Shi, P.; Yuan, T.; Fan, Y.; Yao, B. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 2009, 13, 849–857. [Google Scholar] [CrossRef]
- Mamo, G.; Thunnissen, M.; Hatti-Kaul, R.; Mattiasson, B. An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 2009, 91, 1187–1196. [Google Scholar] [CrossRef]
- Du, Y.; Shi, P.; Huang, H.; Zhang, X.; Luo, H.; Wang, Y.; Yao, B. Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour. Technol. 2013, 130, 161–167. [Google Scholar] [CrossRef]
- Nigam, P.; Pandey, A.; Prabhu, K.A. Cellulase and ligninase production by Basidiomycetes culture in solid-state fermentation. Biol. Wastes 1987a, 20, 1–9. [Google Scholar] [CrossRef]
- Nigam, P.; Pandey, A.; Prabhu, K.A. Ligninolytic activity of two Basidiomycetes moulds in the decomposition of bagasse. Biol. Wastes 1987b, 21, 1–10. [Google Scholar] [CrossRef]
- Dahiya, J.S.; Singh, D.; Nigam, P. Characterisation of laccase produced by Coniotherium minitans. J. Basic Microbiol. 1998, 38, 349–359. [Google Scholar] [CrossRef]
- Robinson, T.; Chandran, B.; Nigam, P. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzym. Microb. Technol. 2001, 29, 575–579. [Google Scholar] [CrossRef]
- Robinson, T.; Chandran, B.; Nigam, P. Studies on the decolourisation of an artificial effluent through lignolytic enzyme production by white-rot fungi in N-rich and N-limited media. Appl. Microbiol. Biotechnol. 2001b, 57, 810–813. [Google Scholar] [CrossRef]
- Robinson, T.; Nigam, P. Remediation of textile dye-waste water using a white rot fungus Bjerkandera adusta through solid state fermentation (SSF). Appl. Biochem. Biotechnol. 2008, 151, 618–628. [Google Scholar] [CrossRef]
- Dahiya, J.; Singh, D.; Nigam, P. Decolourisation of synthetic and spentwash-melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour. Technol. 2001, 78, 95–98. [Google Scholar] [CrossRef]
- Dwivedi, P.; Vivikanand, V.; Pareek, N.; Sharma, A.; Singh, R.P. Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl. Biochem. Biotechnol. 2010, 160, 255–268. [Google Scholar] [CrossRef]
- Gali, N.K.; Kotteazeth, S. Biophysical characterization of thermophilic laccase from the xerophytes: Cereus pterogonus and Opuntia vulgaris. Cellulose 2013, 20, 115–125. [Google Scholar] [CrossRef]
- Gali, N.K.; Kotteazeth, S. Isolation, purification and characterization of thermophilic laccase from xerophyte Cereus pterogonus. Chem. Nat. Compd. 2012, 48, 451–456. [Google Scholar] [CrossRef]
- Kumar, G.N.; Srikumar, K. Thermophilic laccase from xerophyte species Opuntia vulgaris. Biomed. Chromatogr. 2011, 25, 707–711. [Google Scholar] [CrossRef]
- Kumar, G.N.; Srikumar, K. Characterization of xerophytic thermophilic laccase exhibiting metal ion-dependent dye decolorization potential. Appl. Biochem. Biotechnol. 2012, 167, 662–676. [Google Scholar] [CrossRef]
- Quaratino, D.; Federici, F.; Petruccioli, M.; Fenice, M.; D’Annibale, A. Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Anton. Leeuw. Int J.G. 2007, 91, 57–69. [Google Scholar]
- Uthandi, S.; Saad, B.; Humbard, M.A.; Maupin-Furlow, J.A. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl. Environ. Microbiol. 2010, 76, 733–743. [Google Scholar] [CrossRef]
- Papinutti, L.; Dimitriu, P.; Forchiassin, F. Stabilization studies of Fomes sclerodermeus laccases. Bioresour. Technol. 2008, 99, 419–424. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochem. Eng. J. 2009, 46, 252–256. [Google Scholar] [CrossRef]
- Chernykh, A.; Myasoedova, N.; Kolomytseva, M.; Ferraroni, M.; Briganti, F.; Scozzafava, A.; Golovleva, L. Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J. Appl. Microbiol. 2008, 105, 2065–2075. [Google Scholar] [CrossRef]
- Nigam, P.; Prabhu, K.A. The effects of some added carbohydrates on cellulases and ligninase and decomposition of bagasse. Agric. Wastes 1986, 17, 293–299. [Google Scholar] [CrossRef]
- Wongwilaiwalin, S.; Rattanachomsri, U.; Laothanachareon, T.; Eurwilaichitr, L.; Igarashi, Y.; Champreda, V. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym. Microb. Technol. 2010, 47, 283–290. [Google Scholar] [CrossRef]
- Hardiman, E.; Gibbs, M.; Reeves, R.; Bergquist, P. Directed Evolution of a thermophilic beta-glucosidase for Cellulosic Bioethanol Production. Appl. Biochem. Biotechnol. 2010, 161, 301–312. [Google Scholar] [CrossRef]
- Nigam, P.; Prabhu, K.A. Thermal activation and stability of cellulases derived from two Basidiomycetes. Biotechnol. Lett. 1988, 10, 919–920. [Google Scholar] [CrossRef]
- Nigam, P.; Prabhu, K.A. Effect of cultural factors on cellulase biosynthesis in submerged bagasse fermentation by basidiomycetes cultures. J. Basic Microbiol. 1991, 31, 285–292. [Google Scholar] [CrossRef]
- Nigam, P.; Prabhu, K.A. Isolation and recovery of cellulase and ligninase from crude enzymes produced by two basidiomycetes cultures in submerged bagasse fermentation. Sharkara 1988, 27, 40–46. [Google Scholar]
- Nigam, P.; Prabhu, K.A. Microbial degradation of bagasse: Isolation and cellulolytic properties of Basidiomycetes Spp. from biomanure from a biogas plant. Agric. Wastes 1985, 12, 273–285. [Google Scholar] [CrossRef]
- Reddivari, M.; Chirumamilla, R.; Nigam, P. Understanding lipase stereoselectivity. World J. Microbiol. Biotechnol. 2002, 18, 81–97. [Google Scholar] [CrossRef]
- Muralidhar, R.; Chirumamilla, R.R.; Nigam, P. Resolution of proglumide using lipase from Candida cylindraceae. Bioorg. Med. Chem. 2002, 10, 1471–1475. [Google Scholar] [CrossRef]
- Muralidhar, R.; Chirumamilla, R.R.; Marchant, R.; Nigam, P. A response surface approach for the comparison of lipase production by Candida cylindraceae using two different carbon sources. Biochem. Eng. J. 2001, 9, 17–23. [Google Scholar] [CrossRef]
- Pandey, A.; Benzamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N.; Soccol, V.T. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 1999, 29, 119–131. [Google Scholar]
- Muralidhar, R.; Chirumamilla, C.; Marchant, R.; Nigam, P. Lipases in racemic resolutions. J. Chem. Technol. Biotechnol. 2001, 76, 3–8. [Google Scholar] [CrossRef]
- Sunnotel, O.; Nigam, P. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World J. Microbiol. Biotechnol. 2002, 18, 835–839. [Google Scholar] [CrossRef]
- Zhou, D.M.; Nigam, P.; Marchant, R.; Jones, J. Production of salicylate hydroxylase from Pseudomonas putida UUC-1 and its application in the construction of biosensor. J. Chem. Technol. Biotechnol. 1995, 64, 331–338. [Google Scholar] [CrossRef]
- Banat, I.M.; Marchant, A.; Nigam, P.; Gaston, S.J.S.; Kelly, B.; Marchant, R. Production, partial characterization and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzym. Microb. Technol. 1994, 16, 665–670. [Google Scholar] [CrossRef]
- Nigam, P.; Marchant, R. Production of enzyme dihydrofolate reductase by methotrexate-resistant bacteria isolated from soil. J. Chem. Technol. Biotechnol. 1993, 56, 35–40. [Google Scholar] [CrossRef]
- Nigam, P.; Banat, I.M.; Kelly, B.; Marchant, R. Dihydrofolate reductase synthesis in continuous culture using methotrexate-resistant Escherichia coli. Enzym. Microb. Technol. 1993, 15, 652–656. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Huisman, G.W.; Kazlausaks, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194. [Google Scholar] [CrossRef]
- Trincone, A. Angling for uniqueness in enzymatic preparation of glycosides. Biomolecules 2013, 3, 334–350. [Google Scholar] [CrossRef]
- Riva, S. 1983–2013: The long wave of biocatalysis. Trends Biotechnol. 2013, 31, 120–121. [Google Scholar] [CrossRef]
- Trincone, A. Potential biocatalysts originating from sea environments. J. Mol. Catal. B-Enzym. 2010, 66, 241–256. [Google Scholar] [CrossRef]
- Dumon, C.; Songa, L.; Bozonneta, S.; Fauréa, R.; O’Donohue, M.J. Progress and future prospects for pentose-specific biocatalysts in biorefining. Proc. Biochem. 2012, 47, 346–357. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nigam, P.S. Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules 2013, 3, 597-611. https://doi.org/10.3390/biom3030597
Nigam PS. Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules. 2013; 3(3):597-611. https://doi.org/10.3390/biom3030597
Chicago/Turabian StyleNigam, Poonam Singh. 2013. "Microbial Enzymes with Special Characteristics for Biotechnological Applications" Biomolecules 3, no. 3: 597-611. https://doi.org/10.3390/biom3030597
APA StyleNigam, P. S. (2013). Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules, 3(3), 597-611. https://doi.org/10.3390/biom3030597