A Narrative Review of Salivary Gland Extracellular Matrix and Sjögren’s Syndrome: Research Status and Future Prospects
Abstract
1. Introduction
2. Composition and Function of SG ECM
3. Pathological Changes in SG ECM in Sjögren’s Syndrome
3.1. Dysregulation of SG MMPs
3.1.1. Inflammation-Induced MMP Dysregulation
3.1.2. Senescence-Induced MMP Dysregulation
3.1.3. Hyperosmolarity-Induced MMP Dysregulation
3.1.4. Epigenetic Regulation-Mediated MMP Dysregulation
3.1.5. Impact of MMP Dysregulation on SG Structure and Function
3.2. SG Fibrosis
4. Potential Therapeutic Approaches for Repairing SG ECM
4.1. Targeting Matrix Metalloproteinases
4.2. Targeting TGF-β
4.2.1. Inhibiting TGF-β Activation
4.2.2. Directly Targeting TGF-β
4.2.3. Targeting TGF-β Receptors
4.2.4. Targeting SMAD Signaling
4.3. Stem Cell Therapy
4.4. Tissue Engineering Approaches
4.5. Therapeutic Strategies
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SS | Sjögren’s syndrome |
| SGs | Salivary glands |
| ECM | Extracellular matrix |
| MMPs | Matrix metalloproteinases |
| DMARDs | Disease-modifying antirheumatic drugs |
| SGECs | Salivary gland epithelial cells |
| TIMPs | Tissue inhibitors of metalloproteinases |
| PRRs | Pattern recognition receptors |
| IFN | Interferon |
| TGF | Transforming growth factor |
| IL | Interleukin |
| BAFF | B-cell activating factor |
| HA | Hyaluronic acid |
| HC | Heavy chain |
| IαI | Inter-alpha-inhibitor |
| SASP | Senescence-associated secretory phenotype |
| TNF | Tumor necrosis factor |
| ROS | Reactive oxygen species |
| AQP | Aquaporins |
| DNMTs | DNA methyltransferases |
| HATs | Histone acetyltransferases |
| HDACs | Histone deacetylases |
| HDACis | Histone deacetylase inhibitors |
| DAMPs | Damage-associated molecular patterns |
| EMT | Epithelial–mesenchymal transition |
| IPF | Idiopathic pulmonary fibrosis |
| PBC | Primary biliary cholangitis |
| TSP-1 | Thrombospondin-1 |
| LSKL | Leu-Ser-Lys-Leu |
| MMT | Mesothelial-to-mesenchymal transition |
| MRSS | Modified Rodnan skin scores |
| GRK2 | G protein-coupled receptor kinase 2 |
| MSCs | Mesenchymal stem cells |
| SSDAI | Decreased SS disease activity index |
| VAS | Visual analog scale |
| EVs | Extracellular vesicles |
| hUC-MSCs | Human umbilical cord mesenchymal stem cells |
| dECM | Decellularized extracellular matrix |
| pDSG-gel | Porcine submandibular gland |
References
- Wei, L.; Zhifei, X.; Xiaoran, N.; Meilu, L.; Yang, L.; Yixuan, L.; Xiuying, R.; Yashuang, S.; Jingjing, C.; Shaoying, G.; et al. Patients with Early-Onset Primary Sjögren’s Syndrome Have Distinctive Clinical Manifestations and Circulating Lymphocyte Profiles. Rheumatology 2022, 61, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Walma, D.A.C.; Yamada, K.M. The Extracellular Matrix in Development. Development 2020, 147, dev175596. [Google Scholar] [CrossRef]
- Iozzo, R.V.; Schaefer, L. Proteoglycan Form and Function: A Comprehensive Nomenclature of Proteoglycans. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Gelse, K. Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Gray, W.R.; Sandberg, L.B.; Foster, J.A. Molecular Model for Elastin Structure and Function. Nature 1973, 246, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Campbell, I.D. Structure and Function of Fibronectin Modules. Matrix Biol. 1996, 15, 313–320. [Google Scholar] [CrossRef]
- Domogatskaya, A.; Rodin, S.; Tryggvason, K. Functional Diversity of Laminins. Annu. Rev. Cell Dev. Biol. 2012, 28, 523–553. [Google Scholar] [CrossRef]
- Pozzi, A.; Yurchenco, P.D.; Iozzo, R.V. The Nature and Biology of Basement Membranes. Matrix Biol. 2017, 57–58, 1–11. [Google Scholar] [CrossRef]
- Daley, W.P.; Gervais, E.M.; Centanni, S.W.; Gulfo, K.M.; Nelson, D.A.; Larsen, M. ROCK1-Directed Basement Membrane Positioning Coordinates Epithelial Tissue Polarity. Development 2012, 139, 411–422. [Google Scholar] [CrossRef]
- Sutherland, T.E.; Dyer, D.P.; Allen, J.E. The Extracellular Matrix and the Immune System: A Mutually Dependent Relationship. Science 2023, 379, eabp8964. [Google Scholar] [CrossRef]
- Hsu, J.C.; Yamada, K.M. Salivary Gland Branching Morphogenesis—Recent Progress and Future Opportunities. Int. J. Oral. Sci. 2010, 2, 117–126. [Google Scholar] [CrossRef]
- Nelson, D.A.; Kazanjian, I.; Melendez, J.A.; Larsen, M. Senescence and Fibrosis in Salivary Gland Aging and Disease. J. Oral. Biol. Craniofacial Res. 2024, 14, 231–237. [Google Scholar] [CrossRef]
- Marinkovic, M.; Tran, O.N.; Wang, H.; Abdul-Azees, P.; Dean, D.D.; Chen, X.-D.; Yeh, C.-K. Extracellular Matrix Turnover in Salivary Gland Disorders and Regenerative Therapies: Obstacles and Opportunities. J. Oral. Biol. Craniofacial Res. 2023, 13, 693–703. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 714–770. [Google Scholar] [CrossRef]
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A Guide to the Composition and Functions of the Extracellular Matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Nagel, H.; Laskawi, R.; Wahlers, A.; Hemmerlein, B. Expression of Matrix Metalloproteinases MMP-2, MMP-9 and Their Tissue Inhibitors TIMP-1, -2, and -3 in Benign and Malignant Tumours of the Salivary Gland. Histopathology 2004, 44, 222–231. [Google Scholar] [CrossRef]
- Patel, V.N.; Hoffman, M.P. Salivary Gland Development: A Template for Regeneration. Semin. Cell Dev. Biol. 2014, 25–26, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial–Immune Cell Interplay in Primary Sjögren Syndrome Salivary Gland Pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Tishler, M.; Yaron, I.; Shirazi, I.; Yaron, M. Salivary and Serum Hyaluronic Acid Concentrations in Patients with Sjögren’s Syndrome. Ann. Rheum. Dis. 1998, 57, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.R.; Kang, I.; Chan, C.K.; Barrow, K.A.; Kolstad, T.K.; White, M.P.; Ziegler, S.F.; Wight, T.N.; Debley, J.S. Asthmatic Bronchial Epithelial Cells Promote the Establishment of a Hyaluronan-Enriched, Leukocyte-Adhesive Extracellular Matrix by Lung Fibroblasts. Respir. Res. 2018, 19, 146. [Google Scholar] [CrossRef]
- Zhuo, L.; Kanamori, A.; Kannagi, R.; Itano, N.; Wu, J.; Hamaguchi, M.; Ishiguro, N.; Kimata, K. SHAP Potentiates the CD44-Mediated Leukocyte Adhesion to the Hyaluronan Substratum. J. Biol. Chem. 2006, 281, 20303–20314. [Google Scholar] [CrossRef]
- Matuska, B.; Comhair, S.; Farver, C.; Chmiel, J.; Midura, R.J.; Bonfield, T.; Lauer, M.E. Pathological Hyaluronan Matrices in Cystic Fibrosis Airways and Secretions. Am. J. Respir. Cell Mol. Biol. 2016, 55, 576–585. [Google Scholar] [CrossRef]
- Ma, D.; Feng, Y.; Lin, X. Immune and Non-Immune Mediators in the Fibrosis Pathogenesis of Salivary Gland in Sjögren’s Syndrome. Front. Immunol. 2024, 15, 1421436. [Google Scholar] [CrossRef]
- Bahr, J.C.; Li, X.-Y.; Feinberg, T.Y.; Jiang, L.; Weiss, S.J. Divergent Regulation of Basement Membrane Trafficking by Human Macrophages and Cancer Cells. Nat. Commun. 2022, 13, 6409. [Google Scholar] [CrossRef]
- Voisin, M.-B.; Woodfin, A.; Nourshargh, S. Monocytes and Neutrophils Exhibit Both Distinct and Common Mechanisms in Penetrating the Vascular Basement Membrane In Vivo. ATVB 2009, 29, 1193–1199. [Google Scholar] [CrossRef]
- Pérez, P.; Goicovich, E.; Alliende, C.; Aguilera, S.; Leyton, C.; Molina, C.; Pinto, R.; Romo, R.; Martinez, B.; González, M.-J. Differential Expression of Matrix Metalloproteinases in Labial Salivary Glands of Patients with Primary Sjögren’s Syndrome: Mechanisms of Exocrine Parenchyma Destruction. Arthritis Rheum. 2000, 43, 2807–2817. [Google Scholar] [CrossRef]
- Pérez, P.; Kwon, Y.; Alliende, C.; Leyton, L.; Aguilera, S.; Molina, C.; Labra, C.; Julio, M.; Leyton, C.; González, M. Increased Acinar Damage of Salivary Glands of Patients with Sjögren’s Syndrome Is Paralleled by Simultaneous Imbalance of Matrix Metalloproteinase 3/Tissue Inhibitor of Metalloproteinases 1 and Matrix Metalloproteinase 9/Tissue Inhibitor of Metalloproteinases 1 Ratios. Arthritis Rheum. 2005, 52, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Herranz, N.; Gil, J. Mechanisms and Functions of Cellular Senescence. J. Clin. Investig. 2018, 128, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.E.; Humphry, M.; Bennett, M.R.; Clarke, M.C.H. Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α-Dependent Senescence-Associated Secretory Phenotype. Arter. Thromb. Vasc. Biol. 2015, 35, 1963–1974. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, K.; Ding, S.; Zhang, M. Cross-Talk of Inflammation and Cellular Senescence: A New Insight into the Occurrence and Progression of Osteoarthritis. Bone Res. 2024, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Hu, J.; Fan, X.; Su, H.; Li, M.; Zhang, L.; Ma, D. Salivary Gland Cell Senescence in Sjögren’s Syndrome: Current Research and Novel Therapeutic Directions. Immun. Ageing 2025, 22, 45. [Google Scholar] [CrossRef]
- Hirai, S.; Takahashi, H.; Tanaka, A. Examination of Age-Related Changes in the Submandibular Glands of Male Mice. Odontology 2024, 112, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ye, Y.; Wu, Y.; Li, L.; Hu, J.; Luo, D.; Li, Y.; Yang, J.; Gao, Y.; Hai, W.; et al. Alterations in Histology of the Aging Salivary Gland and Correlation with the Glandular Inflammatory Microenvironment. IScience 2023, 26, 106571. [Google Scholar] [CrossRef]
- Yoshida, K.; Wang, X.; Bhawal, U.K. Dec1 Deficiency Restores the Age-Related Dysfunctions of Submandibular Glands. J. Physiol. Pharmacol. 2021, 72, 571–581. [Google Scholar] [CrossRef]
- Tumer, M.K.; Cicek, M. Differential Immunohistochemical Expression of Type I Collagen and Matrix Metalloproteinase 2 among Major Salivary Glands of Young and Geriatric Mice. J. Appl. Oral. Sci. 2018, 26, e20170484. [Google Scholar] [CrossRef]
- Nassar, M.; Hiraishi, N.; Islam, M.S.; Otsuki, M.; Tagami, J. Age-Related Changes in Salivary Biomarkers. J. Dent. Sci. 2014, 9, 85–90. [Google Scholar] [CrossRef]
- Barrera, M.-J.; Aguilera, S.; Castro, I.; Carvajal, P.; Jara, D.; Molina, C.; González, S.; González, M.-J. Dysfunctional Mitochondria as Critical Players in the Inflammation of Autoimmune Diseases: Potential Role in Sjögren’s Syndrome. Autoimmun. Rev. 2021, 20, 102867. [Google Scholar] [CrossRef]
- d’Adda Di Fagagna, F. Living on a Break: Cellular Senescence as a DNA-Damage Response. Nat. Rev. Cancer 2008, 8, 512–522. [Google Scholar] [CrossRef]
- Manganelli, P.; Fietta, P. Apoptosis and Sjögren Syndrome. Semin. Arthritis Rheum. 2003, 33, 49–65. [Google Scholar] [CrossRef]
- Sisto, M.; Lorusso, L.; Ingravallo, G.; Nico, B.; Ribatti, D.; Ruggieri, S.; Lofrumento, D.D.; Lisi, S. Abnormal Distribution of AQP4 in Minor Salivary Glands of Primary Sjögren’s Syndrome Patients. Autoimmunity 2017, 50, 202–210. [Google Scholar] [CrossRef]
- Steinfeld, S.; Cogan, E.; King, L.S.; Agre, P.; Kiss, R.; Delporte, C. Abnormal Distribution of Aquaporin-5 Water Channel Protein in Salivary Glands from Sjögren’s Syndrome Patients. Lab. Investig. 2001, 81, 143–148. [Google Scholar] [CrossRef]
- Beroukas, D.; Hiscock, J.; Jonsson, R.; Waterman, S.A.; Gordon, T.P. Subcellular Distribution of Aquaporin 5 in Salivary Glands in Primary Sjögren’s Syndrome. Lancet 2001, 358, 1875–1876. [Google Scholar] [CrossRef]
- Rivière, E.; Chivasso, C.; Pascaud, J.; Bechara, R.; Ly, B.; Delporte, C.; Mariette, X.; Nocturne, G. Hyperosmolar Environment and Salivary Gland Epithelial Cells Increase Extra-Cellular Matrix Remodeling and Lymphocytic Infiltration in Sjögren’s Syndrome. Clin. Exp. Immunol. 2023, 212, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Thabet, Y.; Le Dantec, C.; Ghedira, I.; Devauchelle, V.; Cornec, D.; Pers, J.-O.; Renaudineau, Y. Epigenetic Dysregulation in Salivary Glands from Patients with Primary Sjögren’s Syndrome May Be Ascribed to Infiltrating B Cells. J. Autoimmun. 2013, 41, 175–181. [Google Scholar] [CrossRef]
- Cole, M.B.; Quach, H.; Quach, D.; Baker, A.; Taylor, K.E.; Barcellos, L.F.; Criswell, L.A. Epigenetic Signatures of Salivary Gland Inflammation in Sjögren’s Syndrome. Arthritis Rheumatol. 2016, 68, 2936–2944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Zhang, Z.; Schluesener, H.J. MS-275, an Histone Deacetylase Inhibitor, Reduces the Inflammatory Reaction in Rat Experimental Autoimmune Neuritis. Neuroscience 2010, 169, 370–377. [Google Scholar] [CrossRef]
- Hannas, A.R.; Pereira, J.C.; Granjeiro, J.M.; Tjäderhane, L. The Role of Matrix Metalloproteinases in the Oral Environment. Acta Odontol. Scand. 2007, 65, 1–13. [Google Scholar] [CrossRef]
- Young, D.A.; Lakey, R.L.; Pennington, C.J.; Jones, D.; Kevorkian, L.; Edwards, D.R.; Cawston, T.E.; Clark, I.M. Histone Deacetylase Inhibitors Modulate Metalloproteinase Gene Expression in Chondrocytes and Block Cartilage Resorption. Arthritis Res. Ther. 2005, 7, R503. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Zhou, M.; Zhang, Q.; He, Y.; Wang, Y.; Xuan, J.; Shi, G.; Li, Y. Abnormal Histones Acetylation in Patients with Primary Sjögren’s Syndrome. Clin. Rheumatol. 2022, 41, 1465–1472. [Google Scholar] [CrossRef]
- Hagios, C.; Lochter, A.; Bissell, M.J. Tissue Architecture: The Ultimate Regulator of Epithelial Function? Phil. Trans. R. Soc. Lond. B 1998, 353, 857–870. [Google Scholar] [CrossRef]
- Yurchenco, P.D. Basement Membranes: Cell Scaffoldings and Signaling Platforms. Cold Spring Harb. Perspect. Biol. 2011, 3, a004911. [Google Scholar] [CrossRef]
- Goicovich, E.; Molina, C.; Pérez, P.; Aguilera, S.; Fernández, J.; Olea, N.; Alliende, C.; Leyton, C.; Romo, R.; Leyton, L.; et al. Enhanced Degradation of Proteins of the Basal Lamina and Stroma by Matrix Metalloproteinases from the Salivary Glands of Sjögren’s Syndrome Patients: Correlation with Reduced Structural Integrity of Acini and Ducts. Arthritis Rheum. 2003, 48, 2573–2584. [Google Scholar] [CrossRef]
- Castle, J.D.; Jamieson, J.D.; Palade, G.E. Radioautographic Analysis of the Secretory Process in the Parotid Acinar Cell of the Rabbit. J. Cell Biol. 1972, 53, 290–311. [Google Scholar] [CrossRef]
- Kiripolsky, J.; Romano, R.-A.; Kasperek, E.M.; Yu, G.; Kramer, J.M. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren’s Syndrome. Front. Immunol. 2019, 10, 2963. [Google Scholar] [CrossRef]
- Gao, R.; Tang, J.; Dong, Y.; Ming, B.; Yu, Z.; Zhong, J.; Dong, L. The Aberrant Levels of Decorin Induce Damages of Human Salivary Gland Epithelial Cells and Polarization of Macrophages. Mod. Rheumatol. 2023, 33, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Lafrenie, R.M.; Bernier, S.M.; Yamada, K.M. Adhesion to Fibronectin or Collagen I Gel Induces Rapid, Extensive, Biosynthetic Alterations in Epithelial Cells. J. Cell. Physiol. 1998, 175, 163–173. [Google Scholar] [CrossRef]
- Wu, A.J.; Lafrenie, R.M.; Park, C.; Apinhasmit, W.; Chen, Z.J.; Birkedal-Hansen, H.; Yamada, K.M.; Stetler-Stevenson, W.G.; Baum, B.J. Modulation of MMP-2 (Gelatinase A) and MMP-9 (Gelatinase B) by Interferon-γ in a Human Salivary Gland Cell Line. J. Cell. Physiol. 1997, 171, 117–124. [Google Scholar] [CrossRef]
- Zhang, X.; Yun, J.S.; Han, D.; Yook, J.I.; Kim, H.S.; Cho, E.S. TGF-β Pathway in Salivary Gland Fibrosis. IJMS 2020, 21, 9138. [Google Scholar] [CrossRef]
- Leehan, K.M.; Pezant, N.P.; Rasmussen, A.; Grundahl, K.; Moore, J.S.; Radfar, L.; Lewis, D.M.; Stone, D.U.; Lessard, C.J.; Rhodus, N.L.; et al. Minor Salivary Gland Fibrosis in Sjögren’s Syndrome Is Elevated, Associated with Focus Score and Not Solely a Consequence of Aging. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 112), 80–88. [Google Scholar]
- Yin, H.; Pranzatelli, T.J.F.; French, B.N.; Zhang, N.; Warner, B.M.; Chiorini, J.A.; NIDCD/NIDCR Genomics and Computational Biology Core. Sclerosing Sialadenitis Is Associated With Salivary Gland Hypofunction and a Unique Gene Expression Profile in Sjögren’s Syndrome. Front. Immunol. 2021, 12, 699722. [Google Scholar] [CrossRef]
- Sequeira, S.J.; Larsen, M.; DeVine, T. Extracellular Matrix and Growth Factors in Salivary Gland Development. Front. Oral. Biol. 2010, 14, 48–77. [Google Scholar] [CrossRef] [PubMed]
- Porola, P.; Mackiewicz, Z.; Laine, M.; Baretto, G.; Stegaev, V.; Takakubo, Y.; Takagi, M.; Ainola, M.; Konttinen, Y.T. Laminin Isoform Profiles in Salivary Glands in Sjögren’s Syndrome. Adv. Clin. Chem. 2011, 55, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Lorusso, L.; Tamma, R.; Ingravallo, G.; Ribatti, D.; Lisi, S. Interleukin-17 and -22 Synergy Linking Inflammation and EMT-Dependent Fibrosis in Sjögren’s Syndrome. Clin. Exp. Immunol. 2019, 198, 261–272. [Google Scholar] [CrossRef]
- Sarrand, J.; Soyfoo, M.S. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. IJMS 2023, 24, 14481. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Sisto, M.; Lorusso, L.; Ingravallo, G.; Tamma, R.; Ribatti, D.; Lisi, S. The TGF-β1 Signaling Pathway as an Attractive Target in the Fibrosis Pathogenesis of Sjögren’s Syndrome. Mediat. Inflamm. 2018, 2018, 1965935. [Google Scholar] [CrossRef]
- Gieseck, R.L.; Ramalingam, T.R.; Hart, K.M.; Vannella, K.M.; Cantu, D.A.; Lu, W.-Y.; Ferreira-González, S.; Forbes, S.J.; Vallier, L.; Wynn, T.A. Interleukin-13 Activates Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis. Immunity 2016, 45, 145–158. [Google Scholar] [CrossRef]
- Borthwick, L.A.; Barron, L.; Hart, K.M.; Vannella, K.M.; Thompson, R.W.; Oland, S.; Cheever, A.; Sciurba, J.; Ramalingam, T.R.; Fisher, A.J.; et al. Macrophages Are Critical to the Maintenance of IL-13-Dependent Lung Inflammation and Fibrosis. Mucosal Immunol. 2016, 9, 38–55. [Google Scholar] [CrossRef]
- Nie, Y.-J.; Wu, S.-H.; Xuan, Y.-H.; Yan, G. Role of IL-17 Family Cytokines in the Progression of IPF from Inflammation to Fibrosis. Mil. Med. Res. 2022, 9, 21. [Google Scholar] [CrossRef]
- Huang, L. The Role of IL-17 Family Cytokines in Cardiac Fibrosis. Front. Cardiovasc. Med. 2024, 11, 1470362. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lodi, R.; Zhang, S.; Su, Z.; Wu, Y.; Xia, L. The Double-Edged Role of IL-22 in Organ Fibrosis. Immunopharmacol. Immunotoxicol. 2020, 42, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Ciccia, F.; Guggino, G.; Rizzo, A.; Ferrante, A.; Raimondo, S.; Giardina, A.; Dieli, F.; Campisi, G.; Alessandro, R.; Triolo, G. Potential Involvement of IL-22 and IL-22-Producing Cells in the Inflamed Salivary Glands of Patients with Sjogren’s Syndrome. Ann. Rheum. Dis. 2012, 71, 295–301. [Google Scholar] [CrossRef]
- Passalacqua, G.; Mincarini, M.; Colombo, D.; Troisi, G.; Ferrari, M.; Bagnasco, D.; Balbi, F.; Riccio, A.; Canonica, G.W. IL-13 and Idiopathic Pulmonary Fibrosis: Possible Links and New Therapeutic Strategies. Pulm. Pharmacol. Ther. 2017, 45, 95–100. [Google Scholar] [CrossRef]
- Liu, Y.; Munker, S.; Müllenbach, R.; Weng, H.-L. IL-13 Signaling in Liver Fibrogenesis. Front. Immunol. 2012, 3, 116. [Google Scholar] [CrossRef] [PubMed]
- Sosroseno, W.; Herminajeng, E. The Role of T Lymphocytes in Sjögren’s Syndrome. Asian Pac. J. Allergy Immunol. 1997, 15, 167–176. [Google Scholar]
- Scannevin, R.H.; Alexander, R.; Haarlander, T.M.; Burke, S.L.; Singer, M.; Huo, C.; Zhang, Y.-M.; Maguire, D.; Spurlino, J.; Deckman, I.; et al. Discovery of a Highly Selective Chemical Inhibitor of Matrix Metalloproteinase-9 (MMP-9) That Allosterically Inhibits Zymogen Activation. J. Biol. Chem. 2017, 292, 17963–17974. [Google Scholar] [CrossRef]
- Gieseck, R.L.; Wilson, M.S.; Wynn, T.A. Type 2 Immunity in Tissue Repair and Fibrosis. Nat. Rev. Immunol. 2018, 18, 62–76. [Google Scholar] [CrossRef]
- Chen, X.; Wu, C.; Tang, F.; Zhou, J.; Mo, L.; Li, Y.; He, J. The Immune Microenvironment: New Therapeutic Implications in Organ Fibrosis. Adv. Sci. 2025, 12, e05067. [Google Scholar] [CrossRef]
- Hinz, B. The Extracellular Matrix and Transforming Growth Factor-Β1: Tale of a Strained Relationship. Matrix Biol. 2015, 47, 54–65. [Google Scholar] [CrossRef]
- Meli, V.S.; Veerasubramanian, P.K.; Atcha, H.; Reitz, Z.; Downing, T.L.; Liu, W.F. Biophysical Regulation of Macrophages in Health and Disease. J. Leukoc. Biol. 2019, 106, 283–299. [Google Scholar] [CrossRef]
- Qi, W.; Tian, J.; Wang, G.; Yan, Y.; Wang, T.; Wei, Y.; Wang, Z.; Zhang, G.; Zhang, Y.; Wang, J. Advances in Cellular and Molecular Pathways of Salivary Gland Damage in Sjögren’s Syndrome. Front. Immunol. 2024, 15, 1405126. [Google Scholar] [CrossRef] [PubMed]
- Selmi, C.; Meroni, P.L.; Gershwin, M.E. Primary Biliary Cirrhosis and Sjögren’s Syndrome: Autoimmune Epithelitis. J. Autoimmun. 2012, 39, 34–42. [Google Scholar] [CrossRef]
- Granito, A.; Muratori, P.; Muratori, L.; Pappas, G.; Cassani, F.; Worthington, J.; Ferri, S.; Quarneti, C.; Cipriano, V.; de Molo, C.; et al. Antibodies to SS-A/Ro-52kD and Centromere in Autoimmune Liver Disease: A Clue to Diagnosis and Prognosis of Primary Biliary Cirrhosis. Aliment. Pharmacol. Ther. 2007, 26, 831–838. [Google Scholar] [CrossRef]
- Chin, L.-T.; Liu, K.-W.; Chen, Y.-H.; Hsu, S.-C.; Huang, L. Cell-Based Assays and Molecular Simulation Reveal That the Anti-Cancer Harmine Is a Specific Matrix Metalloproteinase-3 (MMP-3) Inhibitor. Comput. Biol. Chem. 2021, 94, 107556. [Google Scholar] [CrossRef]
- Joshi, H.; Bhushan, S.; Dimri, T.; Sharma, D.; Sak, K.; Chauhan, A.; Chauhan, R.; Haque, S.; Ahmad, F.; Kumar, M.; et al. Anti-Tumor Potential of Harmine and Its Derivatives: Recent Trends and Advancements. Discov. Onc 2025, 16, 189. [Google Scholar] [CrossRef] [PubMed]
- Gossage, D.L.; Cieslarová, B.; Ap, S.; Zheng, H.; Xin, Y.; Lal, P.; Chen, G.; Smith, V.; Sundy, J.S. Phase 1b Study of the Safety, Pharmacokinetics, and Disease-Related Outcomes of the Matrix Metalloproteinase-9 Inhibitor Andecaliximab in Patients With Rheumatoid Arthritis. Clin. Ther. 2018, 40, 156–165.e5. [Google Scholar] [CrossRef]
- Schreiber, S.; Siegel, C.A.; Friedenberg, K.A.; Younes, Z.H.; Seidler, U.; Bhandari, B.R.; Wang, K.; Wendt, E.; McKevitt, M.; Zhao, S.; et al. A Phase 2, Randomized, Placebo-Controlled Study Evaluating Matrix Metalloproteinase-9 Inhibitor, Andecaliximab, in Patients With Moderately to Severely Active Crohn’s Disease. J. Crohns Colitis 2018, 12, 1014–1020. [Google Scholar] [CrossRef]
- Shah, M.A.; Bodoky, G.; Starodub, A.; Cunningham, D.; Yip, D.; Wainberg, Z.A.; Bendell, J.; Thai, D.; He, J.; Bhargava, P.; et al. Phase III Study to Evaluate Efficacy and Safety of Andecaliximab With mFOLFOX6 as First-Line Treatment in Patients With Advanced Gastric or GEJ Adenocarcinoma (GAMMA-1). JCO 2021, 39, 990–1000. [Google Scholar] [CrossRef]
- Peng, Z.; Nguyen, T.T.; Song, W.; Anderson, B.; Wolter, W.R.; Schroeder, V.A.; Hesek, D.; Lee, M.; Mobashery, S.; Chang, M. Selective MMP-9 Inhibitor (R.)-ND-336 Alone or in Combination with Linezolid Accelerates Wound Healing in Infected Diabetic Mice. ACS Pharmacol. Transl. Sci. 2021, 4, 107–117. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, J.; Wu, Q.; Wang, B.; Hu, T.; Li, Y.; Yan, X.; Ma, L.; Tan, Z. A Dual Avβ1/Avβ6 Integrin Inhibitor Bexotegrast (PLN-74809) Ameliorates Organ Injury and Fibrogenesis in Fibrotic Kidney Disease. Eur. J. Pharmacol. 2024, 983, 176983. [Google Scholar] [CrossRef]
- Montesi, S.B.; Cosgrove, G.P.; Turner, S.M.; Zhou, I.Y.; Efthimiou, N.; Susnjar, A.; Catana, C.; Fromson, C.; Clark, A.; Decaris, M.; et al. Dual Avβ6 and Avβ1 Inhibition Over 12 Weeks Reduces Active Type 1 Collagen Deposition in Individuals with Idiopathic Pulmonary Fibrosis: A Phase 2, Double-Blind, Placebo-Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2025, 211, 1229–1240. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B.; Wei, M.; Hai, Z. In Situ Self-Assembled Peptide Nanoparticles Improve the Anti-Hepatic Fibrosis Effect. J. Mater. Chem. B 2025, 13, 4080–4084. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, Z.; Shao, X.; Jing, R.; Wang, C.; Fang, W.; Mou, S.; Ni, Z. Blockade of Thrombospondin-1 Ameliorates High Glucose-induced Peritoneal Fibrosis through Downregulation of TGF-β1/Smad3 Signaling Pathway. J. Cell. Physiol. 2020, 235, 364–379. [Google Scholar] [CrossRef]
- Trachtman, H.; Fervenza, F.C.; Gipson, D.S.; Heering, P.; Jayne, D.R.W.; Peters, H.; Rota, S.; Remuzzi, G.; Rump, L.C.; Sellin, L.K.; et al. A Phase 1, Single-Dose Study of Fresolimumab, an Anti-TGF-β Antibody, in Treatment-Resistant Primary Focal Segmental Glomerulosclerosis. Kidney Int. 2011, 79, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.M.; Padilla, C.M.; McLaughlin, S.R.; Mathes, A.; Ziemek, J.; Goummih, S.; Nakerakanti, S.; York, M.; Farina, G.; Whitfield, M.L.; et al. Fresolimumab Treatment Decreases Biomarkers and Improves Clinical Symptoms in Systemic Sclerosis Patients. J. Clin. Investig. 2015, 125, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; Tan, A.R.; Olencki, T.E.; Shapiro, G.I.; Dezube, B.J.; Reiss, M.; Hsu, F.J.; Berzofsky, J.A.; Lawrence, D.P. Phase I Study of GC1008 (Fresolimumab): A Human Anti-Transforming Growth Factor-Beta (TGFβ) Monoclonal Antibody in Patients with Advanced Malignant Melanoma or Renal Cell Carcinoma. PLoS ONE 2014, 9, e90353. [Google Scholar] [CrossRef] [PubMed]
- King, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef]
- Ko, I.-G.; Hwang, L.; Jin, J.-J.; Kim, S.-H.; Kim, C.-J.; Choi, Y.H.; Kim, H.Y.; Yoo, J.M.; Kim, S.J. Pirfenidone Improves Voiding Function by Suppressing Bladder Fibrosis in Underactive Bladder Rats. Eur. J. Pharmacol. 2024, 977, 176721. [Google Scholar] [CrossRef]
- Silva, T.A.; Thomas, D.; Siqueira-Neto, J.L.; Calvet, C.M. Pirfenidone Prevents Heart Fibrosis during Chronic Chagas Disease Cardiomyopathy. IJMS 2024, 25, 7302. [Google Scholar] [CrossRef]
- Yousefi, Z.; Nourbakhsh, M.; Sahebghadam Lotfi, A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol. 2025, 44, 109–124. [Google Scholar] [CrossRef]
- Cottin, V.; Koschel, D.; Günther, A.; Albera, C.; Azuma, A.; Sköld, C.M.; Tomassetti, S.; Hormel, P.; Stauffer, J.L.; Strombom, I.; et al. Long-Term Safety of Pirfenidone: Results of the Prospective, Observational PASSPORT Study. ERJ Open Res. 2018, 4, 00084–02018. [Google Scholar] [CrossRef]
- Chen, Z.; Yun, X.; Tian, J.; Li, F.; Zhang, Z.; Meng, J.; Li, N.; Bian, H.; Duan, S.; Zhang, L. Engineering Macrophage-Derived Exosome to Deliver Pirfenidone: A Novel Approach to Combat Silicotic Pulmonary Fibrosis. Adv. Healthc. Mater. 2025, 14, 2403227. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Yang, M.-S.; Kwon, T.K.; Kim, D.-W.; Park, C.-W. Inhaled Deep Eutectic Solvent Based-Nanoemulsion of Pirfenidone in Idiopathic Pulmonary Fibrosis. J. Control. Release 2022, 352, 570–585. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, S.; Lv, W.; Wang, X.; Yue, L.; Deng, C.; Wang, D.; Han, J.; Ye, T.; Lin, Y. Tetrahedral Framework Nucleic Acids Delivery of Pirfenidone for Anti-Inflammatory and Antioxidative Effects to Treat Idiopathic Pulmonary Fibrosis. ACS Nano 2024, 18, 26704–26721. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jiao, M.; Kou, Z.; Han, F.; Dong, L. SB431542 Partially Inhibits High Glucose-Induced EMT by Restoring Mitochondrial Homeostasis in RPE Cells. Cell Commun. Signal 2024, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Mahoney, C.M.; Cai, C.C.; Ichinose, R.; Stefani, R.M.; Marra, K.G.; Ateshian, G.A.; Shah, R.P.; Vunjak-Novakovic, G.; Hung, C.T. Sustained Delivery of SB-431542, a Type I Transforming Growth Factor Beta-1 Receptor Inhibitor, to Prevent Arthrofibrosis. Tissue Eng. Part A 2021, 27, 1411–1421. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Liu, Q.; Zhou, J.; Huang, H.; Huang, Y.; Zhang, Z.; Wu, T.; Tang, Q.; Huang, C.; et al. SB431542-Loaded Liposomes Alleviate Liver Fibrosis by Suppressing TGF-β Signaling. Mol. Pharm. 2020, 17, 4152–4162. [Google Scholar] [CrossRef]
- Fu, K.; Corbley, M.J.; Sun, L.; Friedman, J.E.; Shan, F.; Papadatos, J.L.; Costa, D.; Lutterodt, F.; Sweigard, H.; Bowes, S.; et al. SM16, an Orally Active TGF-β Type I Receptor Inhibitor Prevents Myofibroblast Induction and Vascular Fibrosis in the Rat Carotid Injury Model. ATVB 2008, 28, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Anscher, M.S.; Thrasher, B.; Zgonjanin, L.; Rabbani, Z.N.; Corbley, M.J.; Fu, K.; Sun, L.; Lee, W.-C.; Ling, L.E.; Vujaskovic, Z. Small Molecular Inhibitor of Transforming Growth Factor-β Protects Against Development of Radiation-Induced Lung Injury. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 829–837. [Google Scholar] [CrossRef]
- Petersen, M.; Thorikay, M.; Deckers, M.; Van Dinther, M.; Grygielko, E.T.; Gellibert, F.; De Gouville, A.C.; Huet, S.; Ten Dijke, P.; Laping, N.J. Oral Administration of GW788388, an Inhibitor of TGF-β Type I and II Receptor Kinases, Decreases Renal Fibrosis. Kidney Int. 2008, 73, 705–715. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, X.; Luo, D.; Wang, Y.; Gao, Y. The Role of Halofuginone in Fibrosis: More to Be Explored? J. Leukoc. Biol. 2017, 102, 1333–1345. [Google Scholar] [CrossRef]
- Bruck, R.; Genina, O.; Aeed, H.; Alexiev, R.; Nagler, A.; Avni, Y.; Pines, M. Halofuginone to Prevent and Treat Thioacetamide–Induced Liver Fibrosis in Rats. Hepatology 2001, 33, 379–386. [Google Scholar] [CrossRef]
- Mordechay, S.; Smullen, S.; Evans, P.; Genin, O.; Pines, M.; Halevy, O. Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. IJMS 2021, 22, 7063. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Z.; Li, Y.; Hu, Y.; Tang, J.; Xu, J.; Luo, Y.; Wu, F.; Sun, X.; Tang, Y.; et al. Theranostic Mesoporous Platinum Nanoplatform Delivers Halofuginone to Remodel Extracellular Matrix of Breast Cancer without Systematic Toxicity. Bioeng. Transla. Med. 2023, 8, e10427. [Google Scholar] [CrossRef]
- Li, J.; Qu, X.; Yao, J.; Caruana, G.; Ricardo, S.D.; Yamamoto, Y.; Yamamoto, H.; Bertram, J.F. Blockade of Endothelial-Mesenchymal Transition by a Smad3 Inhibitor Delays the Early Development of Streptozotocin-Induced Diabetic Nephropathy. Diabetes 2010, 59, 2612–2624. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Cao, J.; Zhang, S.; Sun, R.; Zhao, M.; Chen, K.; Su, S.B.; Yang, J.; Yang, T. SIS3, a Specific Inhibitor of Smad3, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Biochem. Biophys. Res. Commun. 2018, 503, 757–762. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Hu, M.; Dai, R.; Li, C.; Cao, Y. Specific Inhibitor of Smad3 (SIS3) Alleviated Submandibular Gland Fibrosis and Dysfunction after Dominant Duct Ligation in Mice. J. Dent. Sci. 2023, 18, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Zhou, Z.; Chu, R.; Guan, Q.; He, F.; Ge, M.; Guo, P.; Wu, H.; Yao, L.; Wei, W.; et al. G Protein-Coupled Receptor Kinase 2 as a Novel Therapeutic Target for Gland Fibrosis of Sjögren’s Syndrome. Acta Pharmacol. Sin. 2024, 45, 2611–2624. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wu, Z.; Zhao, X.; Zhu, X.; An, Q.; Wang, Y.; Zhao, J.; Su, Y.; Yang, B.; Xu, K.; et al. Immunomodulatory Effects of Umbilical Mesenchymal Stem Cell-Derived Exosomes on CD4+ T Cells in Patients with Primary Sjögren’s Syndrome. Inflammopharmacology 2023, 31, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Zheng, L.; Huang, W.; Pu, J.; Pan, S.; Liang, Y.; Wu, Z.; Tang, J. Murine Embryonic Mesenchymal Stem Cells Attenuated Xerostomia in Sjögren-like Mice via Improving Salivary Gland Epithelial Cell Structure and Secretory Function. Int. J. Clin. Exp. Pathol. 2020, 13, 954–963. [Google Scholar] [PubMed]
- Khalili, S.; Liu, Y.; Kornete, M.; Roescher, N.; Kodama, S.; Peterson, A.; Piccirillo, C.A.; Tran, S.D. Mesenchymal Stromal Cells Improve Salivary Function and Reduce Lymphocytic Infiltrates in Mice with Sjögren’s-Like Disease. PLoS ONE 2012, 7, e38615. [Google Scholar] [CrossRef]
- Ogata, K.; Matsumura-Kawashima, M.; Moriyama, M.; Kawado, T.; Nakamura, S. Dental Pulp-Derived Stem Cell-Conditioned Media Attenuates Secondary Sjögren’s Syndrome via Suppression of Inflammatory Cytokines in the Submandibular Glands. Regen. Ther. 2021, 16, 73–80. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Wang, S.; Guo, J.; Guo, J.; Fu, J.; Ren, L.; An, Y.; He, J.; Li, Z. Human Umbilical Cord Mesenchymal Stem Cells Confer Potent Immunosuppressive Effects in Sjögren’s Syndrome by Inducing Regulatory T Cells. Mod. Rheumatol. 2021, 31, 186–196. [Google Scholar] [CrossRef]
- Abughanam, G.; Elkashty, O.A.; Liu, Y.; Bakkar, M.O.; Tran, S.D. Mesenchymal Stem Cells Extract (MSCsE)-Based Therapy Alleviates Xerostomia and Keratoconjunctivitis Sicca in Sjogren’s Syndrome-Like Disease. IJMS 2019, 20, 4750. [Google Scholar] [CrossRef]
- Zhidu, S.; Ying, T.; Rui, J.; Chao, Z. Translational Potential of Mesenchymal Stem Cells in Regenerative Therapies for Human Diseases: Challenges and Opportunities. Stem Cell Res. Ther. 2024, 15, 266. [Google Scholar] [CrossRef]
- Carlander, A.-L.F.; Gundestrup, A.K.; Jansson, P.M.; Follin, B.; Hoeeg, C.; Kousholt, B.S.; Larsen, R.T.; Jakobsen, K.K.; Rimborg, S.; Fischer-Nielsen, A.; et al. Mesenchymal Stromal/Stem Cell Therapy Improves Salivary Flow Rate in Radiation-Induced Salivary Gland Hypofunction in Preclinical in Vivo Models: A Systematic Review and Meta-Analysis. Stem Cell Rev. Rep. 2024, 20, 1078–1092. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Liu, D.; Fan, Z.; Zhang, H.; Liu, O.; Ding, G.; Gao, R.; Zhang, C.; Ding, Y.; et al. Allogeneic Mesenchymal Stem Cell Treatment Alleviates Experimental and Clinical Sjögren Syndrome. Blood 2012, 120, 3142–3151. [Google Scholar] [CrossRef]
- Lozito, T.P.; Tuan, R.S. Mesenchymal Stem Cells Inhibit Both Endogenous and Exogenous MMPs via Secreted TIMPs. J. Cell. Physiol. 2011, 226, 385–396. [Google Scholar] [CrossRef]
- Elsaadany, B.A.; Zakaria, M.; Mousa, M. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells Preserve the Salivary Glands Structure after Head and Neck Radiation in Rats. Open Access Maced. J. Med. Sci. 2019, 7, 1588–1592. [Google Scholar] [CrossRef]
- Shin, H.-S.; Lee, S.; Kim, Y.-M.; Lim, J.-Y. Hypoxia-Activated Adipose Mesenchymal Stem Cells Prevents Irradiation-Induced Salivary Hypofunction by Enhanced Paracrine Effect Through Fibroblast Growth Factor 10. Stem Cells 2018, 36, 1020–1032. [Google Scholar] [CrossRef]
- Krampera, M.; Le Blanc, K. Mesenchymal Stromal Cells: Putative Microenvironmental Modulators Become Cell Therapy. Cell Stem Cell 2021, 28, 1708–1725. [Google Scholar] [CrossRef]
- Peng, B.; Guo, X.; Kang, J.; Pan, S.; Wei, L.; Wang, L.; Li, B.; Han, G.; Cheng, Y. Saliva-Derived Extracellular Vesicles: A Promising Therapeutic Approach for Salivary Gland Fibrosis. J. Transl. Med. 2025, 23, 593. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pei, M.; Li, Q.; Zhang, Y. Decellularized Extracellular Matrix Mediates Tissue Construction and Regeneration. Front. Med. 2022, 16, 56–82. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Koo, K.H.; Jeong, J.; Park, S.J.; Choi, D.J.; Ko, Y.-G.; Kwon, H. Three-Dimensional Culture of Salivary Gland Stem Cell in Orthotropic Decellularized Extracellular Matrix Hydrogels. Tissue Eng. Part A 2019, 25, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huang, Q.; Rao, Z.; Liu, F.; Su, X.; Zhai, X.; Ma, J.; Liang, Y.; Quan, D.; Liao, G.; et al. Injectable Decellularized Extracellular Matrix Hydrogel Promotes Salivary Gland Regeneration via Endogenous Stem Cell Recruitment and Suppression of Fibrogenesis. Acta Biomater. 2023, 169, 256–272. [Google Scholar] [CrossRef]
- Ogawa, M.; Oshima, M.; Imamura, A.; Sekine, Y.; Ishida, K.; Yamashita, K.; Nakajima, K.; Hirayama, M.; Tachikawa, T.; Tsuji, T. Functional Salivary Gland Regeneration by Transplantation of a Bioengineered Organ Germ. Nat. Commun. 2013, 4, 2498. [Google Scholar] [CrossRef]
- Sui, Y.; Zhang, S.; Li, Y.; Zhang, X.; Hu, W.; Feng, Y.; Xiong, J.; Zhang, Y.; Wei, S. Generation of Functional Salivary Gland Tissue from Human Submandibular Gland Stem/Progenitor Cells. Stem Cell Res. Ther. 2020, 11, 127. [Google Scholar] [CrossRef]
- Matsuno, E.; Tanaka, J.; Nakashima, K.; Wada, Y.; Ohnuma, S.; Masuda, R.; Mishima, K. Human iPSC-Derived Salivary Gland Cell Sheets Integrate with Injured Glands to Form Glandular Structures. Stem Cell Rep. 2025, 20, 102674. [Google Scholar] [CrossRef]
- Rosenbaum, E.; Zahurak, M.; Sinibaldi, V.; Carducci, M.A.; Pili, R.; Laufer, M.; DeWeese, T.L.; Eisenberger, M.A. Marimastat in the Treatment of Patients with Biochemically Relapsed Prostate Cancer: A Prospective Randomized, Double-Blind, Phase I/II Trial. Clin. Cancer Res. 2005, 11, 4437–4443. [Google Scholar] [CrossRef]
- Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The Design, Structure, and Clinical Update of Small Molecular Weight Matrix Metalloproteinase Inhibitors. CMC 2004, 11, 2911–2977. [Google Scholar] [CrossRef]
- Raeeszadeh-Sarmazdeh, M.; Coban, M.; Mahajan, S.; Hockla, A.; Sankaran, B.; Downey, G.P.; Radisky, D.C.; Radisky, E.S. Engineering of Tissue Inhibitor of Metalloproteinases TIMP-1 for Fine Discrimination between Closely Related Stromelysins MMP-3 and MMP-10. J. Biol. Chem. 2022, 298, 101654. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β Signaling in Health, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, G.L.; Irrera, N.; Pizzino, G.; Santoro, D.; Roberts, W.N.; Bagnato, G.; Pallio, G.; Vaccaro, M.; Squadrito, F.; Saitta, A.; et al. Dual Avβ3 and Avβ5 Blockade Attenuates Fibrotic and Vascular Alterations in a Murine Model of Systemic Sclerosis. Clin. Sci. 2018, 132, 231–242. [Google Scholar] [CrossRef]
- Ngo, M.A.; Müller, A.; Li, Y.; Neumann, S.; Tian, G.; Dixon, I.M.C.; Arora, R.C.; Freed, D.H. Human Mesenchymal Stem Cells Express a Myofibroblastic Phenotype in Vitro: Comparison to Human Cardiac Myofibroblasts. Mol. Cell Biochem. 2014, 392, 187–204. [Google Scholar] [CrossRef]
- Burk, J.; Sassmann, A.; Kasper, C.; Nimptsch, A.; Schubert, S. Extracellular Matrix Synthesis and Remodeling by Mesenchymal Stromal Cells Is Context-Sensitive. IJMS 2022, 23, 1758. [Google Scholar] [CrossRef]
- Tran, O.N.; Wang, H.; Li, S.; Malakhov, A.; Sun, Y.; Abdul Azees, P.A.; Gonzalez, A.O.; Cao, B.; Marinkovic, M.; Singh, B.B.; et al. Organ-Specific Extracellular Matrix Directs Trans-Differentiation of Mesenchymal Stem Cells and Formation of Salivary Gland-like Organoids in Vivo. Stem Cell Res. Ther. 2022, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.H.; Kim, H.K.; Jung, G.Y.; Jung, Y.J.; Lee, K.S.; Yun, Y.E.; Han, J.; Lee, J.; Kim, W.S.; Choi, J.S.; et al. Small Extracellular Vesicles from Human Adipose-Derived Stem Cells Attenuate Cartilage Degeneration. J. Extracell. Vesicles 2020, 9, 1735249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shen, X.; Yan, C.; Xiong, W.; Ma, Z.; Tan, Z.; Wang, J.; Li, Y.; Liu, J.; Duan, A.; et al. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Osteoarthritis of the Knee in Mice Model by Interacting with METTL3 to Reduce m6A of NLRP3 in Macrophage. Stem Cell Res. Ther. 2022, 13, 322. [Google Scholar] [CrossRef]
- Xiong, X.; Shi, X.; Chen, F. Human Adipose Tissue-derived Stem Cells Alleviate Radiation-induced Xerostomia. Int. J. Mol. Med. 2014, 34, 749–755. [Google Scholar] [CrossRef]
- Guo, X.; Liu, B.; Zhang, Y.; Cheong, S.; Xu, T.; Lu, F.; He, Y. Decellularized Extracellular Matrix for Organoid and Engineered Organ Culture. J. Tissue Eng. 2024, 15, 20417314241300386. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Su, H.; Tang, X.; Yang, S.; Hu, J.; Zhang, L.; Xu, K.; Ma, D. Prospects and Challenges of Salivary Gland Tissue Engineering in Sjögren’s Syndrome. Expert. Rev. Mol. Med. 2025, 1–44. [Google Scholar] [CrossRef]
- Park, H.-J.; Cho, J.; Oh, S.-J.; Kim, H.-S. Organoid-Based Modeling and Regenerative Strategies for Salivary Gland Dysfunction. Korean J. Physiol. Pharmacol. 2025, 29, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Freitas, B.L.S.; Jerônimo, L.S.; Pires, A.C.C.; Tanure, L.A.; Calderaro, D.C.; de Arruda, J.A.A.; Abreu, L.G.; Silva, T.A.; de Castro, M.A.A.; de Sousa, S.F. Shear Wave Elastography of the Salivary Glands in the Diagnosis of Sjögren Disease: A Systematic Review and Meta-Analysis. Dentomaxillofac. Radiol. 2025, twaf071. [Google Scholar] [CrossRef]
- Luo, Y.; Mo, Y.; Li, S.; Yao, J.; Huang, W.; Yang, H.; Tang, G.; Hao, S. Value of Combined Application of the OMERACT Scoring System and Shear Wave Elastography for Primary Sjögren’s Syndrome. Clin. Rheumatol. 2025, 44, 2367–2375. [Google Scholar] [CrossRef]
- Lee, K.-A.; Kim, Y.H.; Kim, H.-S. Diagnostic Concordance and Added Value of Doppler Ultrasound and Extended Histopathologic Features in Primary Sjögren Disease. Clin. Rheumatol. 2025. [Google Scholar] [CrossRef] [PubMed]


| Therapeutic Approach | Representative Drug/Material | Target | Research Stage | Efficacy and Challenges | References |
|---|---|---|---|---|---|
| Targeting MMPs | Harmine | MMP-3 | In vitro experiments | Demonstrates antitumor and anti-inflammatory activities, but exhibits poor water solubility and dose-dependent toxicity | [86,87] |
| Andecaliximab | MMP-9 | Phase II/III clinical trial | Demonstrates favorable safety but lacks established therapeutic significance in Crohn’s disease and advanced gastric cancer | [88,89,90] | |
| JNJ0966 | MMP-9 | In vivo experiments | Exhibits high selectivity and ameliorates disease severity in experimental autoimmune encephalomyelitis mice | [78] | |
| (R)-ND-336 | MMP-9 | In vivo experiments | Exhibits high selectivity with anti-inflammatory and pro-angiogenic activities, accelerating wound healing in diabetic mice | [91] | |
| Targeting TGF-β | Bexotegrast | αvβ1/αvβ6 | Phase II clinical trial | Demonstrates a favorable safety profile, alleviates symptoms in idiopathic pulmonary fibrosis (IPF) patients, and inhibits fibrotic progression | [92,93] |
| Leu-Ser-Lys-Leu (LSKL) | TSP-1 | In vivo experiments | Inhibits hepatic and peritoneal fibrosis but lacks clinical evidence | [94,95] | |
| Fresolimumab | TGF-β | Phase I clinical trial | Ameliorates cutaneous fibrosis but induces dermatological disorders, hemorrhage, and anemia | [96,97,98] | |
| Pirfenidone | TGF-β | Marketing approval | Demonstrates confirmed efficacy while eliciting transient gastrointestinal symptoms and cutaneous eruptions in subsets of patients | [99,100,101,102,103,104,105,106] | |
| SB431542 | TβRI | In vivo experiments | Inhibits retinal, articular, and hepatic fibrosis, but lacks clinical evidence | [107,108,109] | |
| SM16 | TβRI | In vivo experiments | Prevents vascular fibrosis and radiation-induced pulmonary fibrosis, but lacks clinical evidence | [110,111] | |
| GW788388 | TβRI/ II | In vivo experiments | Inhibits renal fibrosis but lacks clinical evidence | [112] | |
| Halofuginone | SMAD3 | In vivo experiments | Demonstrates efficacy in ameliorating multiorgan fibrotic pathologies, but exhibits marked toxicities that constrain clinical translation | [113,114,115,116] | |
| SIS3 | SMAD3 | In vivo experiments | Inhibits renal and pulmonary fibrosis, and suppresses structural disruption of SGs in a submandibular gland duct ligation mouse model | [117,118,119] | |
| Paroxetine | SMAD2/3 | In vivo experiments | Ameliorates glandular fibrosis and attenuates disease progression in a SS mouse model | [120] | |
| Stem Cell Therapy | Stem Cell | Phase I/II clinical trial | Possesses dual immunomodulatory and tissue-reparative capacities that restore damaged SG epithelial cells and extracellular matrix, but incurs high production costs with inherent risks of immune rejection | [121,122,123,124,125,126,127,128,129,130,131,132,133,134] | |
| Tissue Engineering Approaches | Decellularized extracellular matrix hydrogel | In vitro and in vivo experiments | Provides a native ECM microenvironment that enhances stem cell differentiation and tissue regeneration, suppresses fibrosis with functional restoration of SGs, though lacking commercially viable products targeting this specific organ | [135,136,137] | |
| Organoid | In vitro and in vivo experiments | Demonstrates great potential in modeling glandular functions and regenerative medicine, but still faces major challenges including immature structure/function and difficulties in integration with the body’s systems. | [138,139,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Su, H.; Fan, X.; Nie, C.; Tang, X.; Hu, J.; Xu, K.; Zhang, L.; Ma, D. A Narrative Review of Salivary Gland Extracellular Matrix and Sjögren’s Syndrome: Research Status and Future Prospects. Biomolecules 2026, 16, 72. https://doi.org/10.3390/biom16010072
Su H, Fan X, Nie C, Tang X, Hu J, Xu K, Zhang L, Ma D. A Narrative Review of Salivary Gland Extracellular Matrix and Sjögren’s Syndrome: Research Status and Future Prospects. Biomolecules. 2026; 16(1):72. https://doi.org/10.3390/biom16010072
Chicago/Turabian StyleSu, Haodong, Xinying Fan, Chunxia Nie, Xiaoyu Tang, Jingjin Hu, Ke Xu, Liyun Zhang, and Dan Ma. 2026. "A Narrative Review of Salivary Gland Extracellular Matrix and Sjögren’s Syndrome: Research Status and Future Prospects" Biomolecules 16, no. 1: 72. https://doi.org/10.3390/biom16010072
APA StyleSu, H., Fan, X., Nie, C., Tang, X., Hu, J., Xu, K., Zhang, L., & Ma, D. (2026). A Narrative Review of Salivary Gland Extracellular Matrix and Sjögren’s Syndrome: Research Status and Future Prospects. Biomolecules, 16(1), 72. https://doi.org/10.3390/biom16010072

