Heterogeneous Folding Intermediates Govern the Conformational Pathway of the RNA Recognition Motif Domain of the Ewing Sarcoma Protein
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Dynamics
2.2. Fraction of Native Contacts
2.3. Free-Energy Landscape
2.4. Gaussian Mixture Model (GMM)-Based Clustering
3. Results and Discussion
3.1. Structural Dynamics of the RRM Domain of EWS
3.2. Solvent-Dependent Loss of Native Contacts
3.3. Time-Resolved Secondary Structure Loss in Urea and DMSO
3.4. Free-Energy Landscape of EWS–RRM Unfolding
3.5. FEL Mapping of Hydrogen Bonds
3.6. GMM Clustering of Conformational Landscapes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Nguyen, P.T.; Shim, H.S.; Hyeon, S.J.; Im, H.; Choi, M.H.; Chung, S.; Kowall, N.W.; Lee, S.B.; Ryu, H. EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1938–1945. [Google Scholar] [CrossRef] [PubMed]
- Paronetto, M.P. Ewing sarcoma protein: A key player in human cancer. Int. J. Cell Biol. 2013, 2013, 642853. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.Y.; Manley, J.L. The TET family of proteins: Functions and roles in disease. J. Mol. Cell Biol. 2009, 1, 82–92. [Google Scholar] [CrossRef]
- Morohoshi, F.; Ootsuka, Y.; Arai, K.; Ichikawa, H.; Mitani, S.; Munakata, N.; Ohki, M. Genomic structure of the human RBP56/hTAFII68 and FUS/TLS genes. Gene 1998, 221, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.C.; Cech, T.R.; Parker, R.R. Biochemical Properties and Biological Functions of FET Proteins. Annu. Rev. Biochem. 2015, 84, 355–379. [Google Scholar] [CrossRef]
- Springhower, C.E.; Rosen, M.K.; Chook, Y.M. Karyopherins and condensates. Curr. Opin. Cell Biol. 2020, 64, 112–123. [Google Scholar] [CrossRef]
- Kovar, H. Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2011, 2011, 837474. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Wang, X.; Podell, E.R.; Cech, T.R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 2013, 5, 918–925. [Google Scholar] [CrossRef]
- Sohn, E.J.; Sojitra, K.A.; Rodrigues, L.; Xu, X.; Frost, B.; Mittal, J.; Libich, D.S. Molecular basis of EWS interdomain self-association and its role in condensate formation. Protein Sci. 2025, 34, e70316. [Google Scholar] [CrossRef]
- Ticozzi, N.; Vance, C.; Leclerc, A.L.; Keagle, P.; Glass, J.D.; McKenna-Yasek, D.; Sapp, P.C.; Silani, V.; Bosco, D.A.; Shaw, C.E.; et al. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 285–290. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Neumann, M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res. 2012, 1462, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Merner, N.D.; Girard, S.L.; Catoire, H.; Bourassa, C.V.; Belzil, V.V.; Riviere, J.B.; Hince, P.; Levert, A.; Dionne-Laporte, A.; Spiegelman, D.; et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am. J. Hum. Genet. 2012, 91, 313–319. [Google Scholar] [CrossRef]
- Svetoni, F.; Frisone, P.; Paronetto, M.P. Role of FET proteins in neurodegenerative disorders. RNA Biol. 2016, 13, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Riggi, N.; Suva, M.L.; Stamenkovic, I. Ewing’s Sarcoma. N. Engl. J. Med. 2021, 384, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.S.; Harrell, L.M.; Wieland, D.R.; Lay, M.A.; Thompson, V.F.; Schwartz, J.C. Fusion protein EWS-FLI1 is incorporated into a protein granule in cells. RNA 2021, 27, 920–932. [Google Scholar] [CrossRef]
- Johnson, C.N.; Sojitra, K.A.; Sohn, E.J.; Moreno-Romero, A.K.; Baudin, A.; Xu, X.; Mittal, J.; Libich, D.S. Insights into Molecular Diversity within the FUS/EWS/TAF15 Protein Family: Unraveling Phase Separation of the N-Terminal Low-Complexity Domain from RNA-Binding Protein EWS. J. Am. Chem. Soc. 2024, 146, 8071–8085. [Google Scholar] [CrossRef]
- Jaishankar, S.; Zhang, J.; Roussel, M.F.; Baker, S.J. Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene 1999, 18, 5592–5597. [Google Scholar] [CrossRef]
- Ng, K.P.; Potikyan, G.; Savene, R.O.; Denny, C.T.; Uversky, V.N.; Lee, K.A. Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc. Natl. Acad. Sci. USA 2007, 104, 479–484. [Google Scholar] [CrossRef]
- Nosella, M.L.; Tereshchenko, M.; Pritisanac, I.; Chong, P.A.; Toretsky, J.A.; Lee, H.O.; Forman-Kay, J.D. O-Linked-N-Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. J. Am. Chem. Soc. 2021, 143, 11520–11534. [Google Scholar] [CrossRef]
- Chong, S.; Dugast-Darzacq, C.; Liu, Z.; Dong, P.; Dailey, G.M.; Cattoglio, C.; Heckert, A.; Banala, S.; Lavis, L.; Darzacq, X.; et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 2018, 27, 361. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, G.; Massett, M.; Cheng, J.; Guo, Z.; Wang, L.; Gao, Y.; Li, R.; Huang, X.; Li, P.; et al. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 2021, 12, 1491. [Google Scholar] [CrossRef]
- Kim, Y.R.; Joo, J.; Lee, H.J.; Kim, C.; Park, J.C.; Yu, Y.S.; Kim, C.R.; Lee, D.H.; Cha, J.; Kwon, H.; et al. Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma. Nat. Commun. 2024, 15, 6569. [Google Scholar] [CrossRef]
- Martin, E.W.; Thomasen, F.E.; Milkovic, N.M.; Cuneo, M.J.; Grace, C.R.; Nourse, A.; Lindorff-Larsen, K.; Mittag, T. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res. 2021, 49, 2931–2945. [Google Scholar] [CrossRef]
- Murthy, A.C.; Tang, W.S.; Jovic, N.; Janke, A.M.; Seo, D.H.; Perdikari, T.M.; Mittal, J.; Fawzi, N.L. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat. Struct. Mol. Biol. 2021, 28, 923–935. [Google Scholar] [CrossRef]
- Wake, N.; Weng, S.L.; Zheng, T.; Wang, S.H.; Kirilenko, V.; Mittal, J.; Fawzi, N.L. Expanding the molecular grammar of polar residues and arginine in FUS phase separation. Nat. Chem. Biol. 2025, 21, 1076–1088. [Google Scholar] [CrossRef]
- Chong, S.; Graham, T.G.W.; Dugast-Darzacq, C.; Dailey, G.M.; Darzacq, X.; Tjian, R. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 2022, 82, 2084–2097.e2085. [Google Scholar] [CrossRef]
- Alex, D.; Lee, K.A. RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains. Nucleic Acids Res. 2005, 33, 1323–1331. [Google Scholar] [CrossRef]
- Li, K.K.; Lee, K.A. Transcriptional activation by the Ewing’s sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain. J. Biol. Chem. 2000, 275, 23053–23058. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.F.; Chang, H.Y.; Hou, S.C.; Liou, G.G.; Way, T.D.; James Shen, C.K. The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat. Commun. 2012, 3, 766. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Wahiduzzaman; Prakash, A.; Tomar, A.K.; Srivastava, A.; Kundu, B.; Lynn, A.M.; Imtaiyaz Hassan, M. Exploring the aggregation-prone regions from structural domains of human TDP-43. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Mompean, M.; Buratti, E.; Guarnaccia, C.; Brito, R.M.; Chakrabartty, A.; Baralle, F.E.; Laurents, D.V. “Structural characterization of the minimal segment of TDP-43 competent for aggregation”. Arch. Biochem. Biophys. 2014, 545, 53–62. [Google Scholar] [CrossRef]
- Wang, Y.T.; Kuo, P.H.; Chiang, C.H.; Liang, J.R.; Chen, Y.R.; Wang, S.; Shen, J.C.; Yuan, H.S. The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J. Biol. Chem. 2013, 288, 9049–9057. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.A.; Janke, A.M.; Rhine, C.L.; Fawzi, N.L. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. Mol. Cell 2015, 60, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Lee, H.O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M.Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T.M.; et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lim, L.; Song, J. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils. Sci. Rep. 2017, 7, 1043. [Google Scholar] [CrossRef]
- Zinszner, H.; Sok, J.; Immanuel, D.; Yin, Y.; Ron, D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J. Cell Sci. 1997, 110, 1741–1750. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, V.; Banerjee, A.; Lynn, A.M.; Prasad, R. Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): Clue to amyotrophic lateral sclerosis. J. Biomol. Struct. Dyn. 2021, 39, 357–367. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, V.; Meena, N.K.; Hassan, M.I.; Lynn, A.M. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). J. Biomol. Struct. Dyn. 2019, 37, 178–194. [Google Scholar] [CrossRef]
- Agrawal, S.; Kuo, P.H.; Chu, L.Y.; Golzarroshan, B.; Jain, M.; Yuan, H.S. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci. Rep. 2019, 9, 6171. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, P.; Idrees, D.; Prakash, A.; Lynn, A.M. Delineating the effect of mutations on the conformational dynamics of N-terminal domain of TDP-43. Biophys. Chem. 2019, 250, 106174. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, V.; Meena, N.K.; Lynn, A.M. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv. 2018, 8, 19835–19845. [Google Scholar] [CrossRef]
- Li, R.; Singh, R.; Kashav, T.; Yang, C.; Sharma, R.D.; Lynn, A.M.; Prasad, R.; Prakash, A.; Kumar, V. Computational Insights of Unfolding of N-Terminal Domain of TDP-43 Reveal the Conformational Heterogeneity in the Unfolding Pathway. Front. Mol. Neurosci. 2022, 15, 822863. [Google Scholar] [CrossRef]
- Sun, Z.; Diaz, Z.; Fang, X.; Hart, M.P.; Chesi, A.; Shorter, J.; Gitler, A.D. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011, 9, e1000614. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Santoro, J.; Di Biasi, L.; Marrafino, F.; Piotto, S. YAMACS: A graphical interface for GROMACS. Bioinformatics 2022, 38, 4645–4646. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Yu, Y.; Krämer, A.; Venable, R.M.; Brooks, B.R.; Klauda, J.B.; Pastor, R.W. CHARMM36 Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Phosphatidylethanolamine, Phosphatidylglycerol, and Ether Lipids. J. Chem. Theory Comput. 2021, 17, 1581–1595. [Google Scholar] [CrossRef]
- Bhowmik, D.; Sharma, R.D.; Prakash, A.; Kumar, D. Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL(pro) and PL(pro). J. Mol. Struct. 2021, 1233, 130094. [Google Scholar] [CrossRef]
- Croitoru, A.; Park, S.J.; Kumar, A.; Lee, J.; Im, W.; MacKerell, A.D., Jr.; Aleksandrov, A. Additive CHARMM36 Force Field for Nonstandard Amino Acids. J. Chem. Theory Comput. 2021, 17, 3554–3570. [Google Scholar] [CrossRef]
- Wei, E.; Mitanoska, A.; O’Brien, Q.; Porter, K.; Molina, M.; Ahsan, H.; Jung, U.; Mills, L.; Kyba, M.; Bosnakovski, D. Pharmacological targeting of P300/CBP reveals EWS::FLI1-mediated senescence evasion in Ewing sarcoma. Mol. Cancer 2024, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Bagchi, B. Comparative study of protein unfolding in aqueous urea and dimethyl sulfoxide solutions: Surface polarity, solvent specificity, and sequence of secondary structure melting. J. Phys. Chem. B 2014, 118, 5691–5697. [Google Scholar] [CrossRef]
- Das, A.; Mukhopadhyay, C. Atomistic mechanism of protein denaturation by urea. J. Phys. Chem. B 2008, 112, 7903–7908. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Meena, N.K.; Das, T.; Sharma, R.D.; Prakash, A.; Lynn, A.M. Delineating the conformational dynamics of intermediate structures on the unfolding pathway of β-lactoglobulin in aqueous urea and dimethyl sulfoxide. J. Biomol. Struct. Dyn. 2019, 38, 5027–5036. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Naiyer, A.; Kumar, P.; Parkash, A. Mechanism of folding and stability of Met80Gly mutant of cytochrome-c. J. Mol. Liq. 2024, 408, 125131. [Google Scholar] [CrossRef]
- Prakash, A.; Dixit, G.; Meena, N.K.; Singh, R.; Vishwakarma, P.; Mishra, S.; Lynn, A.M. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J. Biomol. Struct. Dyn. 2018, 36, 2391–2406. [Google Scholar] [CrossRef]
- Day, R.; Bennion, B.J.; Ham, S.; Daggett, V. Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 2002, 322, 189–203. [Google Scholar] [CrossRef]
- Daggett, V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 2002, 35, 422–429. [Google Scholar] [CrossRef]
- Herrera-Rodríguez, A.M.; Miletić, V.; Aponte-Santamaría, C.; Gräter, F. Molecular Dynamics Simulations of Molecules in Uniform Flow. Biophys. J. 2019, 116, 1579–1585. [Google Scholar] [CrossRef]
- Pandey, P.; Meena, N.K.; Prakash, A.; Kumar, V.; Lynn, A.M.; Ahmad, F. Characterization of heterogeneous intermediate ensembles on the guanidinium chloride-induced unfolding pathway of β-lactoglobulin. J. Biomol. Struct. Dyn. 2020, 38, 1042–1053. [Google Scholar] [CrossRef]
- Hekkelman, M.L.; Salmoral, D.; Perrakis, A.; Joosten, R.P. DSSP 4: FAIR annotation of protein secondary structure. Protein Sci. 2025, 34, e70208. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Hummer, G.; Eaton, W.A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. USA 2013, 110, 17874–17879. [Google Scholar] [CrossRef]
- Brown, B.P.; Stein, R.A.; Meiler, J.; McHaourab, H.S. Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations. J. Chem. Theory Comput. 2024, 20, 1434–1447. [Google Scholar] [CrossRef]
- Hirsch, M.; Habeck, M. Mixture models for protein structure ensembles. Bioinformatics 2008, 24, 2184–2192. [Google Scholar] [CrossRef]
- Tendulkar, A.V.; Ogunnaike, B.; Wangikar, P.P. Protein local conformations arise from a mixture of Gaussian distributions. J. Biosci. 2007, 32, 899–908. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, C.X.; Chang, H.; Bian, J.; Zhang, J. Machine Learning Based Clustering and Modeling for 6G UAV-to-Ground Communication Channels. IEEE Trans. Veh. Technol. 2024, 73, 14113–14126. [Google Scholar] [CrossRef]
- Roumestand, C.; Dudas, E.; Puglisi, R.; Calió, A.; Barthe, P.; Temussi, P.A.; Pastore, A. Understanding the Relationship between Pressure and Temperature Unfolding of Proteins. JACS Au 2025, 5, 1940–1955. [Google Scholar] [CrossRef]
- Frauenfelder, H.; Fenimore, P.W.; Chen, G.; McMahon, B.H. Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 2006, 103, 15469–15472. [Google Scholar] [CrossRef] [PubMed]
- Bennion, B.J.; Daggett, V. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA 2003, 100, 5142–5147. [Google Scholar] [CrossRef]
- Dingfelder, F.; Macocco, I.; Benke, S.; Nettels, D.; Faccioli, P.; Schuler, B. Slow Escape from a Helical Misfolded State of the Pore-Forming Toxin Cytolysin A. JACS Au 2021, 1, 1217–1230. [Google Scholar] [CrossRef]
- Lobanov, M.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701–706. [Google Scholar] [CrossRef]
- Mi, T.; Gao, Z.; Mituta, Z.; Burgess, K. Dual-Capped Helical Interface Mimics. J. Am. Chem. Soc. 2024, 146, 10331–10341. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, M.; Dobson, C.M. Towards complete descriptions of the free-energy landscapes of proteins. Philos. Trans. A Math. Phys. Eng. Sci. 2005, 363, 433–450; discussion 450–432. [Google Scholar] [CrossRef]
- Maisuradze, G.G.; Liwo, A.; Scheraga, H.A. Relation between free energy landscapes of proteins and dynamics. J. Chem. Theory Comput. 2010, 6, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Scaletti, C.; Russell, P.P.S.; Hebel, K.J.; Rickard, M.M.; Boob, M.; Danksagmüller, F.; Taylor, S.A.; Pogorelov, T.V.; Gruebele, M. Hydrogen bonding heterogeneity correlates with protein folding transition state passage time as revealed by data sonification. Proc. Natl. Acad. Sci. USA 2024, 121, e2319094121. [Google Scholar] [CrossRef] [PubMed]







| Temp. | RMSD (nm) | Rg (nm) | Native Contacts (%) | SASA (nm2) |
|---|---|---|---|---|
| RRM of EWS, Water | ||||
| 300 K | 0.11 ± 0.02 | 1.22 ± 0.01 | 96.01% | 50.47 ± 0.59 |
| RRM of EWS, Urea [8 M] | ||||
| 300 K | 0.16 ± 0.28 | 1.23 ± 0.01 | 95.6% | 50.28 ± 0.66 |
| 350 K | 0.17 ± 0.53 | 1.23 ± 0.01 | 92.66% | 50.73 ± 0.88 |
| 400 K | 0.37 ± 0.99 | 1.25 ± 0.03 | 71.3% | 52.48 ± 1.31 |
| 450 K | 1.55 ± 0.73 | 1.80 ± 0.52 | 25.14% | 56.92 ± 2.18 |
| 500 K | 2.02 ± 0.47 | 2.18 ± 0.44 | 09.85% | 58.99 ± 1.67 |
| RRM of EWS, DMSO [8 M] | ||||
| 300 K | 0.12 ± 0.02 | 1.23 ± 0.01 | 95.3% | 50.22 ± 0.57 |
| 350 K | 0.25 ± 0.04 | 1.24 ± 0.01 | 89.69% | 51.05 ± 0.64 |
| 400 K | 0.72 ± 0.36 | 1.43 ± 0.15 | 61.2% | 52.10 ± 1.20 |
| 450 K | 1.22 ± 0.48 | 1.55 ± 0.21 | 29.6% | 55.56 ± 2.15 |
| 500 K | 1.65 ± 0.34 | 1.82 ± 0.30 | 13.42% | 56.90± 1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kataria, P.; Chaudhary, V.; Mishra, C.B.; Kumar, V.; Sharma, R.D.; Prakash, A. Heterogeneous Folding Intermediates Govern the Conformational Pathway of the RNA Recognition Motif Domain of the Ewing Sarcoma Protein. Biomolecules 2026, 16, 33. https://doi.org/10.3390/biom16010033
Kataria P, Chaudhary V, Mishra CB, Kumar V, Sharma RD, Prakash A. Heterogeneous Folding Intermediates Govern the Conformational Pathway of the RNA Recognition Motif Domain of the Ewing Sarcoma Protein. Biomolecules. 2026; 16(1):33. https://doi.org/10.3390/biom16010033
Chicago/Turabian StyleKataria, Priyanka, Vishakha Chaudhary, Chandra Bhushan Mishra, Vijay Kumar, Ravi Datta Sharma, and Amresh Prakash. 2026. "Heterogeneous Folding Intermediates Govern the Conformational Pathway of the RNA Recognition Motif Domain of the Ewing Sarcoma Protein" Biomolecules 16, no. 1: 33. https://doi.org/10.3390/biom16010033
APA StyleKataria, P., Chaudhary, V., Mishra, C. B., Kumar, V., Sharma, R. D., & Prakash, A. (2026). Heterogeneous Folding Intermediates Govern the Conformational Pathway of the RNA Recognition Motif Domain of the Ewing Sarcoma Protein. Biomolecules, 16(1), 33. https://doi.org/10.3390/biom16010033

