Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies
Abstract
1. Introduction
2. Mitochondrial Vulnerability in AKI
3. Mechanism Involved in Mitochondrial Damage During AKI
4. Mitochondria as Immune Signaling Platforms During AKI
5. Acute Kidney Injury and Mitochondrial Dysfunction in Cancer Chemotherapy
6. Acute Kidney Injury and Mitochondrial Dysfunction During Immune Checkpoint Inhibitor Therapy
7. Mitochondrial Dysfunction and Acute Kidney Injury Following CAR T-Cell Therapy
8. Emerging Biomarkers of Mitochondrial Distress
9. Therapeutic Strategies Targeting Mitochondria
10. Future Prospectives
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIN | Acute Interstitial Nephritis |
| ATIN | Acute Tubulointerstitial Nephritis |
| ATN | Acute Tubular Necrosis |
| CKD | Chronic Kidney Disease |
| CRS | Cardio Renal Syndrome |
| DRP1 | Dynamin Related Protein 1 |
| DAMP | Damage Associated Molecular Pattern |
| ETC | Electron Transport Chain |
| GFR | Glomerular Filtration Rate |
| ICI | Immune Checkpoint Inhibitor |
| irAE | Immune Related Adverse Event |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| MAVS | Mitochondrial Antiviral Signaling Protein |
| MHC | Major Histocompatibility Complex |
| mtROS | Mitochondrial Reactive Oxygen Species |
| NGAL | Neutrophil Gelatinase-Associated Lipocalin |
| NSAID | Non-Steroidal Anti-Inflammatory Drug |
| PINK1 | PTEN-Induced Kinase 1 |
References
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Mehta, R.L.; Cerdá, J.; Burdmann, E.A.; Tonelli, M.; García-García, G.; Jha, V.; Susantitaphong, P.; Rocco, M.; Vanholder, R.; Sever, M.S. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet 2015, 385, 2616–2643. [Google Scholar]
- Hoste, E.A.; Schurgers, M. Epidemiology of acute kidney injury: How big is the problem? Crit. Care Med. 2008, 36, S146–S151. [Google Scholar] [CrossRef]
- Calças Marques, R.; Reis, M.; Pimenta, G.; Sala, I.; Chuva, T.; Coelho, I.; Ferreira, H.; Paiva, A.; Costa, J.M. Severe acute kidney injury in hospitalized cancer patients: Epidemiology and predictive model of renal replacement therapy and in-hospital mortality. Cancers 2024, 16, 561. [Google Scholar] [CrossRef]
- Casanova, A.G.; Tascón, J.; Del Barco, E.; Olivares, A.; Carretero, T.; Hijas, M.; Sánchez-Sierra, A.C.; Villanueva-Sánchez, E.; Pescador, M.; Prieto, M. Evaluating urinary biomarkers for early detection of kidney damage in immune checkpoint inhibitors-treated patients. Am. J. Nephrol. 2025. [Google Scholar] [CrossRef]
- Bihorac, A.; Chawla, L.S.; Shaw, A.D.; Al-Khafaji, A.; Davison, D.L.; DeMuth, G.E.; Fitzgerald, R.; Gong, M.N.; Graham, D.D.; Gunnerson, K. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am. J. Respir. Crit. Care Med. 2014, 189, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.A.; Wolf, M. Renal proximal tubule cells: Power and finesse. J. Clin. Investig. 2023, 133, e169607. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Huang, X.; Wei, X.; Zhao, D.; Jiang, L.; Zhao, X.; Du, Y. Advances in Understanding the Effects of Erythropoietin on Renal Fibrosis. Ren. Funct. Acute Chronic Kidney Dis. 2020, 7, 47. [Google Scholar]
- Zhang, X.; Agborbesong, E.; Li, X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef] [PubMed]
- Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxidative Med. Cell. Longev. 2019, 2019, 2105607. [Google Scholar] [CrossRef]
- Jin, J.-Y.; Wei, X.-X.; Zhi, X.-L.; Wang, X.-H.; Meng, D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol. Sin. 2021, 42, 655–664. [Google Scholar] [CrossRef]
- Chan, D.C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Attieh, R.M.; Nunez, B.; Copeland-Halperin, R.S.; Jhaveri, K.D. Cardiorenal impact of anti-cancer agents: The intersection of onco-nephrology and cardio-oncology. Cardiorenal Med. 2024, 14, 281–293. [Google Scholar]
- Banaei, S.; Rezagholizadeh, L. The role of hormones in renal disease and ischemia-reperfusion injury. Iran. J. Basic Med. Sci. 2019, 22, 469. [Google Scholar]
- Tang, C.; Livingston, M.J.; Safirstein, R.; Dong, Z. Cisplatin nephrotoxicity: New insights and therapeutic implications. Nat. Rev. Nephrol. 2023, 19, 53–72. [Google Scholar] [PubMed]
- Sandhu, G.; Adattini, J.; Gordon, E.A.; O’Neill, N.; Bagnis, C.; Chambers, P.; Martin, J.H.; Flynn, A.; Ibrahim, K.; Jardine, M.J. Aligning kidney function assessment in patients with cancer to global practices in internal medicine. EClinicalMedicine 2025, 82, 103102. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, Y.; Luo, Y.; Lai, J.; Ji, J.; Huang, J.; Chen, Y.; Liu, Z.; Liu, J. Cytosolic mtDNA–cGAS–STING axis contributes to sepsis-induced acute kidney injury via activating the NLRP3 inflammasome. Clin. Exp. Nephrol. 2024, 28, 375–390. [Google Scholar]
- Wu, L.; Feng, Y.; Huang, Y.; Feng, J.; Hu, Y.; Huang, H. CAR-T cell therapy: Advances in Kidney-Related diseases. Kidney Dis. 2024, 10, 143–152. [Google Scholar]
- Funk, J.A.; Schnellmann, R.G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2012, 302, F853–F864. [Google Scholar] [CrossRef]
- Zhan, M.; Brooks, C.; Liu, F.; Sun, L.; Dong, Z. Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 2013, 83, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; McDonough, A.A.; Thomson, S.C.; Skorecki, K.; Chertow, G.; Marsden, P. Metabolic basis of solute transport. In Brenner Rector’s Kidney; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1. [Google Scholar]
- Suomalainen, A.; Nunnari, J. Mitochondria at the crossroads of health and disease. Cell 2024, 187, 2601–2627. [Google Scholar] [CrossRef]
- Brooks, C.; Wei, Q.; Cho, S.-G.; Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Investig. 2009, 119, 1275–1285. [Google Scholar] [CrossRef]
- Tschopp, J.; Schroder, K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 2010, 10, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Zhao, X.; Xia, F.; Shi, M.; Zhao, D.; Li, L.; Jiang, H. Mitochondrial dysfunction and metabolic reprogramming in acute kidney injury: Mechanisms, therapeutic advances, and clinical challenges. Front. Physiol. 2025, 16, 1623500. [Google Scholar] [CrossRef]
- Lin, Q.; Li, S.; Jiang, N.; Jin, H.; Shao, X.; Zhu, X.; Wu, J.; Zhang, M.; Zhang, Z.; Shen, J. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2021, 17, 2975–2990. [Google Scholar] [CrossRef] [PubMed]
- Kusirisin, P.; Apaijai, N.; Noppakun, K.; Kuanprasert, S.; Chattipakorn, S.C.; Chattipakorn, N. Circulating mitochondrial dysfunction as an early biomarker for contrast media-induced acute kidney injury in chronic kidney disease patients. J. Cell. Mol. Med. 2023, 27, 2059–2070. [Google Scholar]
- Zhao, Y.; Lang, Y.; Zhang, M.; Liang, S.; Zhu, X.; Liu, Z. miR-125b disrupts mitochondrial dynamics via targeting Mitofusin 1 in cisplatin-induced acute kidney injury. Kidney Dis. 2022, 8, 137–147. [Google Scholar]
- Zhou, X.; Xu, C.; Dong, J.; Liao, L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes/Metab. Res. Rev. 2023, 39, e3596. [Google Scholar]
- Amador-Martínez, I.; Aparicio-Trejo, O.E.; Bernabe-Yepes, B.; Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J.; Tapia, E. Mitochondrial impairment: A link for inflammatory responses activation in the cardiorenal syndrome type 4. Int. J. Mol. Sci. 2023, 24, 15875. [Google Scholar] [CrossRef]
- Qin, L.; Xi, S. The role of mitochondrial fission proteins in mitochondrial dynamics in kidney disease. Int. J. Mol. Sci. 2022, 23, 14725. [Google Scholar] [CrossRef]
- Fontecha-Barriuso, M.; Martin-Sanchez, D.; Martinez-Moreno, J.M.; Monsalve, M.; Ramos, A.M.; Sanchez-Niño, M.D.; Ruiz-Ortega, M.; Ortiz, A.; Sanz, A.B. The role of PGC-1α and mitochondrial biogenesis in kidney diseases. Biomolecules 2020, 10, 347. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [Google Scholar] [CrossRef]
- Hepokoski, M.; Singh, P. Mitochondria as mediators of systemic inflammation and organ cross talk in acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2022, 322, F589–F596. [Google Scholar]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jia, Z.; Gong, W. Circulating mitochondrial DNA stimulates innate immune signaling pathways to mediate acute kidney injury. Front. Immunol. 2021, 12, 680648. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Sinha, S.C.; Amin, S.; Gan, L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol. Neurodegener. 2023, 18, 79. [Google Scholar]
- Paik, S.; Kim, J.K.; Shin, H.J.; Park, E.-J.; Kim, I.S.; Jo, E.-K. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell. Mol. Immunol. 2025, 22, 563–596. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, J.; Luan, Y.; Li, X.; Meng, X.; Liao, W.; Tang, J.; Wang, Z. cGAS-STING, inflammasomes and pyroptosis: An overview of crosstalk mechanism of activation and regulation. Cell Commun. Signal. 2024, 22, 22. [Google Scholar]
- Subramanian, N.; Natarajan, K.; Clatworthy, M.R.; Wang, Z.; Germain, R.N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 2013, 153, 348–361. [Google Scholar] [CrossRef]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36, 401–414. [Google Scholar] [CrossRef]
- Yu, J.-W.; Lee, M.-S. Mitochondria and the NLRP3 inflammasome: Physiological and pathological relevance. Arch. Pharmacal. Res. 2016, 39, 1503–1518. [Google Scholar]
- Zhang, Z.; Meszaros, G.; He, W.-T.; Xu, Y.; de Fatima Magliarelli, H.; Mailly, L.; Mihlan, M.; Liu, Y.; Puig Gámez, M.; Goginashvili, A. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J. Exp. Med. 2017, 214, 2671–2693. [Google Scholar] [CrossRef]
- Bakker, P.J.; Butter, L.M.; Claessen, N.; Teske, G.J.; Sutterwala, F.S.; Florquin, S.; Leemans, J.C. A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion. Am. J. Pathol. 2014, 184, 2013–2022. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, K.; Li, C.; Qi, C.; Fang, Y.; Zhu, N.; Bao, J.; Zhao, Z.; Yu, Q.; Wu, H. NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury. Cell Death Discov. 2021, 7, 324. [Google Scholar]
- Szeto, H.H.; Liu, S.; Soong, Y.; Wu, D.; Darrah, S.F.; Cheng, F.-Y.; Zhao, Z.; Ganger, M.; Tow, C.Y.; Seshan, S.V. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 2011, 22, 1041–1052. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, Z.; Mao, T.; Song, Y.; Qu, Y.; Chen, X.; Chen, K.; Liu, K.; Zhang, C. Magnoflorine ameliorates chronic kidney disease in high-fat and high-fructose-fed mice by promoting parkin/pink1-dependent mitophagy to inhibit nlrp3/caspase-1-mediated pyroptosis. J. Agric. Food Chem. 2024, 72, 12775–12787. [Google Scholar]
- Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019, 26, 101254. [Google Scholar] [CrossRef]
- Saad, A.; Herrmann, S.M.; Eirin, A.; Ferguson, C.M.; Glockner, J.F.; Bjarnason, H.; McKusick, M.A.; Misra, S.; Lerman, L.O.; Textor, S.C. Phase 2a clinical trial of mitochondrial protection (elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis. Circ. Cardiovasc. Interv. 2017, 10, e005487. [Google Scholar] [CrossRef]
- Kluck, V.; Jansen, T.; Janssen, M. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2 alpha trial . Lancet Rheumatol. 2020, 2, e388, Erratum in Lancet Rheumatol. 2020, 2, e270–e280. [Google Scholar] [CrossRef]
- Yadav, B.; Prasad, N.; Kushwaha, R.S.; Singh, A.; Yadav, D.; Bhadauria, D.S.; Kaul, A. Urinary Mitochondrial DNA Induces an Inflammatory Response in Peripheral Blood Mononuclear Cells. Indian J. Transplant. 2024, 18, 132–137. [Google Scholar] [CrossRef]
- Su, L.; Zhang, J.; Gomez, H.; Kellum, J.A.; Peng, Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 2023, 19, 401–414. [Google Scholar] [CrossRef]
- Pabla, N.; Dong, Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008, 73, 994–1007. [Google Scholar] [CrossRef]
- Mapuskar, K.A.; Pulliam, C.F.; Tomanek-Chalkley, A.; Rastogi, P.; Wen, H.; Dayal, S.; Griffin, B.R.; Zepeda-Orozco, D.; Sindler, A.L.; Anderson, C.M. The antioxidant and anti-inflammatory activities of avasopasem manganese in age-associated, cisplatin-induced renal injury. Redox Biol. 2024, 70, 103022. [Google Scholar] [CrossRef]
- Pervushin, N.V.; Yapryntseva, M.A.; Panteleev, M.A.; Zhivotovsky, B.; Kopeina, G.S. Cisplatin resistance and metabolism: Simplification of complexity. Cancers 2024, 16, 3082. [Google Scholar] [CrossRef]
- Ozkok, S.; Ozkok, A. Contrast-induced acute kidney injury: A review of practical points. World J. Nephrol. 2017, 6, 86. [Google Scholar] [CrossRef]
- Lyrio, R.M.D.C.; Rocha, B.R.A.; Corrêa, A.L.R.M.; Mascarenhas, M.G.S.; Santos, F.L.; Maia, R.D.H.; Segundo, L.B.; de Almeida, P.A.A.; Moreira, C.M.O.; Sassi, R.H. Chemotherapy-induced acute kidney injury: Epidemiology, pathophysiology, and therapeutic approaches. Front. Nephrol. 2024, 4, 1436896. [Google Scholar] [CrossRef]
- Heidari, R.; Ahmadi, A.; Mohammadi, H.; Ommati, M.M.; Azarpira, N.; Niknahad, H. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed. Pharmacother. 2018, 107, 834–840. [Google Scholar] [CrossRef]
- Gai, Z.; Gui, T.; Kullak-Ublick, G.A.; Li, Y.; Visentin, M. The role of mitochondria in drug-induced kidney injury. Front. Physiol. 2020, 11, 1079. [Google Scholar] [CrossRef]
- Latcha, S.; Gupta, M.; Lin, I.-H.; Jaimes, E.A. High dose methotrexate-induced acute kidney injury: Incidence, risk factors, and recovery. Kidney Int. Rep. 2023, 8, 360–364. [Google Scholar]
- Faught, L.N.; Greff, M.J.; Rieder, M.J.; Koren, G. Drug-induced acute kidney injury in children. Br. J. Clin. Pharmacol. 2015, 80, 901–909. [Google Scholar] [CrossRef]
- Hulin, A.; Gelé, T.; Fenioux, C.; Kempf, E.; Tournigand, C.; Ollero, M. Pharmacology of tyrosine kinase inhibitors: Implications for patients with kidney diseases. Clin. J. Am. Soc. Nephrol. 2024, 19, 927–938. [Google Scholar] [CrossRef]
- Lee, K.; Thompson, E.A.; Gharaie, S.; Patel, C.H.; Kurzhagen, J.T.; Pierorazio, P.M.; Arend, L.J.; Thomas, A.G.; Noel, S.; Slusher, B.S. T cell metabolic reprogramming in acute kidney injury and protection by glutamine blockade. JCI Insight 2023, 8, e160345. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Li, L.; Liu, S.; Wang, C.; Yuan, Y.; Yang, G.; Chen, Y.; Cheng, J.; Lu, Y. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021, 11, 1845. [Google Scholar]
- Cortazar, F.B.; Marrone, K.A.; Troxell, M.L.; Ralto, K.M.; Hoenig, M.P.; Brahmer, J.R.; Le, D.T.; Lipson, E.J.; Glezerman, I.G.; Wolchok, J. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016, 90, 638–647. [Google Scholar] [CrossRef]
- Al-Othman, Y.A.; Metcalf, B.D.; Kroneman, O.; Gold, J.M.; Zarouk, S.; Li, W.; Kanaan, H.D.; Zhang, P.L. Grading T Lymphocyte-Mediated Acute Interstitial Nephritis Following Checkpoint Inhibitor Therapy. Ann. Clin. Lab. Sci. 2025, 55, 172–178. [Google Scholar]
- Gormley, S.; McBride, W.T.; Armstrong, M.; McClean, E.; MacGowan, S.; Campalani, G.; McMurray, T. Plasma and urinary cytokine homeostasis and renal function during cardiac surgery without cardiopulmonary bypass. Cytokine 2002, 17, 61–65. [Google Scholar] [CrossRef]
- Kommer, A.; Stortz, M.; Kraus, D.; Weinmann-Menke, J. Immune Checkpoint Inhibitor-Associated Acute Kidney Injury: A Single-Center Experience of Biopsy-Proven Cases. J. Clin. Med. 2025, 14, 3231. [Google Scholar] [CrossRef]
- Wang, S.-M.; Li, N.; Qian, W.-W.; Liu, Q.; Xu, C.-H.; Tang, T.; Liu, B.-C.; Zhang, T.; Lv, L.-L. New insight into plasma and organelle membrane repair to guard against cell death in tubular epithelium after acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2025, 330. [Google Scholar] [CrossRef]
- Moncho-Francés, F.; Hernani, R.; Juan-García, I.; Benzaquén, A.; Solís-Salguero, M.Á.; Pérez-Martínez, A.; Navarro-González, J.F.; Piñana, J.L.; Hernández-Boluda, J.C.; Terol Casterá, M.J. Prospective evaluation of CAR-T cell therapy-related proteinuria and kidney dysfunction. Clin. Kidney J. 2025, 18, sfaf270. [Google Scholar]
- Ho, C.-W.; Kang, N.-W.; Yeh, T.-H.; Chuang, M.-H.; Tsai, W.-W.; Wang, H.-Y.; Wu, V.-C.; Pan, H.-C.; Chen, J.-Y. Immune checkpoint inhibitors-associated acute kidney injury: A systematic review and meta-analysis of incidence, kidney recovery, and recurrent risk. Cancer Immunol. Immunother. 2025, 74, 324. [Google Scholar] [CrossRef]
- Mzava, O.; Agun, G.F.; Loy, C.J.; Gonzalez-Bocco, I.H.; Djomnang Kounatse, L.-A.; Bliss, A.; Wells, S.L.; Lenz, J.; Belcher, E.; Chen, K. Urine Cell-Free RNA vs Plasma Cell-Free RNA for Monitoring of Kidney Injury and Immune Complications. Clin. Chem. 2025, 71, 1058–1066. [Google Scholar] [CrossRef]
- Cortazar, F.B.; Kibbelaar, Z.A.; Glezerman, I.G.; Abudayyeh, A.; Mamlouk, O.; Motwani, S.S.; Murakami, N.; Herrmann, S.M.; Manohar, S.; Shirali, A.C. Clinical features and outcomes of immune checkpoint inhibitor–associated AKI: A multicenter study. J. Am. Soc. Nephrol. 2020, 31, 435–446. [Google Scholar] [CrossRef]
- Perazella, M.A.; Shirali, A.C. Immune checkpoint inhibitor nephrotoxicity: What do we know and what should we do? Kidney Int. 2020, 97, 62–74. [Google Scholar] [CrossRef]
- Tian, R.; Liang, J.; Li, R.; Zhou, X. Acute kidney injury induced by immune checkpoint inhibitors. Kidney Dis. 2022, 8, 190–201. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Kwiatkowski, S.; Dziedziejko, V.; Tomasiewicz, I.; Domański, L. Renal microcirculation injury as the main cause of ischemic acute kidney injury development. Biology 2023, 12, 327. [Google Scholar] [CrossRef]
- Seethapathy, H.; Herrmann, S.M.; Rashidi, A. Immune checkpoint inhibitor–associated AKI: Debates in diagnosis, management, and rechallenge. In Seminars in Nephrology; Elsevier: Amsterdam, The Netherlands, 2022; p. 151346. [Google Scholar]
- Gupta, S.; Seethapathy, H.; Strohbehn, I.A.; Frigault, M.J.; O’Donnell, E.K.; Jacobson, C.A.; Motwani, S.S.; Parikh, S.M.; Curhan, G.C.; Reynolds, K.L. Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma. Am. J. Kidney Dis. 2020, 76, 63–71. [Google Scholar] [CrossRef]
- León-Román, J.; Esteves, A.; Iacoboni, G.; Soler, M.J. A current update of the development of Chimeric Antigen Receptor T-cell therapy and kidney disease. Curr. Opin. Nephrol. Hypertens. 2025, 34, 389–396. [Google Scholar]
- Renaghan, A.D. Kidney dysfunction after hematopoietic stem cell transplantation and CAR T-cell therapy. J. Onco-Nephrol. 2025, 23993693251398656. [Google Scholar] [CrossRef]
- Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative stress and acute kidney injury in critical illness: Pathophysiologic mechanisms—Biomarkers—Interventions, and future perspectives. Oxidative Med. Cell. Longev. 2017, 2017, 6193694. [Google Scholar] [CrossRef]
- Shin, I.S.; Kim, D.K.; An, S.; Gong, S.C.; Kim, M.H.; Rahman, M.H.; Kim, C.-S.; Sohn, J.H.; Kim, K.; Ryu, H. Biomarkers to Predict Multiorgan Distress Syndrome and Acute Kidney Injury in Critically Ill Surgical Patients. Medicina 2023, 59, 2054. [Google Scholar] [CrossRef]
- Boenzi, S.; Diodato, D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018, 62, 443–454. [Google Scholar] [CrossRef]
- Lin, P.-H.; Duann, P. Dyslipidemia in kidney disorders: Perspectives on mitochondria homeostasis and therapeutic opportunities. Front. Physiol. 2020, 11, 1050. [Google Scholar] [CrossRef]
- Patschan, D.; Patschan, S.; Matyukhin, I.; Ritter, O.; Dammermann, W. Metabolomics in acute kidney injury: The clinical perspective. J. Clin. Med. 2023, 12, 4083. [Google Scholar] [CrossRef]
- Mapuskar, K.A.; Vasquez-Martinez, G.; Mayoral-Andrade, G.; Tomanek-Chalkley, A.; Zepeda-Orozco, D.; Allen, B.G. Mitochondrial oxidative metabolism: An emerging therapeutic target to improve CKD outcomes. Biomedicines 2023, 11, 1573. [Google Scholar] [CrossRef]
- Stefaniak, E.; Cui, B.; Sun, K.; Yan, X.; Teng, X.; Ying, L. Therapeutic Peptide SS-31 Modulates Membrane Binding and Aggregation of α-Synuclein and Restores Impaired Mitochondrial Function. bioRxiv 2024, bioRxiv:11.603085. [Google Scholar]
- Xiao-Yan, G.; Yong, L.; Xiao-Ping, F. The Role of Mdivi-1 in Reducing Mitochondrial Fission via the NF-κB/JNK/SIRT3 Signaling Pathway in Acute Kidney Injury. Physiol. Res. 2025, 74, 79. [Google Scholar]
- Zanfardino, P.; Amati, A.; Perrone, M.; Petruzzella, V. The balance of MFN2 and OPA1 in mitochondrial dynamics, cellular homeostasis, and disease. Biomolecules 2025, 15, 433. [Google Scholar] [CrossRef]
- Tang, C.; Cai, J.; Yin, X.-M.; Weinberg, J.M.; Venkatachalam, M.A.; Dong, Z. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 2021, 17, 299–318. [Google Scholar]
- Zhang, D.; Jiang, H.; Yang, X.; Zheng, S.; Li, Y.; Liu, S.; Xu, X. Traditional Chinese Medicine and renal regeneration: Experimental evidence and future perspectives. Chin. Med. 2024, 19, 77. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; Abdallah, H.M.; El-Halawany, A.M.; Mohamed, G.A.; Alhaddad, A.A.; Samman, W.A.; Alqarni, A.A.; Rizq, A.T.; Ghazawi, K.F.; El-Dine, R.S. Natural reno-protective agents against cyclosporine A-induced nephrotoxicity: An overview. Molecules 2022, 27, 7771. [Google Scholar]
- Ye, L.; Fu, X.; Li, Q. Mitochondrial Quality Control in Health and Disease. MedComm 2025, 6, e70319. [Google Scholar] [CrossRef] [PubMed]
- Ewees, M.G.E.-D.; Mostafa-Hadeab, G.; Saber, S.; Abd El-Meguid, E.A.; Sree, H.T.A.; Rahman, F.E.-Z.S.A.; Mahmoud, N.I. Linagliptin mitigates cisplatin-induced kidney impairment via mitophagy regulation in rats, with emphasis on SIRT-3/PGC-1α, PINK-1 and Parkin-2. Toxicol. Appl. Pharmacol. 2024, 491, 117048. [Google Scholar]




| Aspect | Preclinical Evidence | Clinical Evidence | Limitations/Comments | References |
|---|---|---|---|---|
| T-cell metabolic reprogramming | Hyper-activated T cells switch from OXPHOS to aerobic glycolysis; ROS accumulation damages mtDNA | Human biopsies profile lymphocytes’ inflammatory infiltrates | Translational gap; need mitochondrial biomarkers in patient samples | [66] |
| Cytokine-mediated tubular injury | IFN-γ, TNF-α impairs ETC, increases ROS, induces Drp1-mediated fission, and impairs PINK1-Parkin mitophagy in tubular cells | Urinacytokines Kidney biopsies in ICI-AKI show ATIN and mitochondrial swelling | Small sample size; mostly case reports or single-center studies | [67,68] |
| Mitochondrial ROS and oxidative stress | ROS causes ETC dysfunction, mtDNA damage, and bioenergetic collapse, amplifying inflammation | Clinical data limited; indirect evidence from systemic oxidative stress markers | Lack of longitudinal ROS measurements in patients; heterogeneous regimens | [69] |
| Immune activation amplification | Upregulation of MHC, ICAM-1, and adhesion molecules enhances T-cell adhesion and tubular inflammation | Clinical correlation: histology shows increased lymphocyte infiltration and tubular injury | Mostly observational; mechanistic causality not confirmed | [70] |
| Incidence and risk factors | NA | ICI-AKI incidence 2–5%; risk factors: CKD, PPI/NSAID use, and ICI combination therapy | Limited prospective data; small cohorts, mostly retrospective | [68,71,72]. |
| Therapeutic Strategy | Mechanistic Rationale | Clinical Application | Current Clinical Evidence | Translational Limitations | References |
|---|---|---|---|---|---|
| Mitochondria-targeted antioxidants | Scavenge mtROS at the sources; stabilize respiration | IRI patients (cardiac patients), cisplatin therapy, and sepsis AKI | Small clinical studies show reduced oxidative biomarkers but limited AKI-specific trials | Optimal dosing unknown, no validated mitochondrial biomarkers; heterogenous patient cohorts | [52,54] |
| SS-31 (Elamipretide) | Stabilize cardiolipin and ETC super-complexes | High-risk surgical patients; chemotherapy recipients | Pilot studies report improved renal perfusion and reduced injury markers | Large RCTs lacking; cost and route of administration limit use | [87] |
| PGC-1α activator (Resveratrol SR-18292) | Enhances biogenesis and ATP renewal | Chemotherapy-AKI, ICI-AKI, metabolic AKI | Preclinical evidence is strong; no Phase II/III trials | Poor Pharmokinetics; unclear effect on critically ill patients | [24,90] |
| Drp1 inhibitor (Mdivi-1) | Block excessive fission, reduce apoptosis | Ischemic AKI, cisplatin nephrotoxicity | No human trials yet; strong preclinical nephroprotection | Concern regarding off-target effects and long-term safety | [11,88] |
| Mitophagy enhancers (Urolithin-A, Rapamycin | Clear damaged mitochondria; reduce inflammation | Post-IRI AKI, sepsis AKI | Early human safety data for Urolithin-A; no AKI-specific trials | Timing critical; risk of immunosuppression (rapamycin) | [33,91] |
| pathway inhibitors (TLR9 blockers, STING inhibitors, and NLRP3 inhibitors) | Reduced inflammation triggered by mt DNA, cardiolipin | ICI-AKI, CAR-T AKI, and ischemic AKI | Human-based data minimal; early-phase testing ongoing in inflammatory disease | Risk of impairing host defense; limited kidney-specific studies | [26,37,39] |
| Mitochondrial transfer/Stem-cell mitochondrial therapy | Replace damaged mitochondria; restore energetics | Pediatric AKI, chemotherapy nephrotoxicity | Limited to animal models | Ethical and technical challenges | [92] |
| Clinical Trial/Identifier | Condition/Population | Intervention/Target | Condition | Study Design/Phase | Status | Main Outcomes/Endpoints |
|---|---|---|---|---|---|---|
| NCT07018622 | Protecting the Kidney Proximal Tubules From Platinum-Based Chemotherapy Toxicity | Drug: Dapagliflozin Drug: Placebo | Solid tumors Cisplatin nephrotoxicity | Phase II | Ongoing | Renal function recovery, AKI severity, and safety |
| NCT07101913 | Occurrence of Acute Kidney Injury After CAR T-Cell Treatments in B-Cell Lymphoma | Biological: Incidence of acute kidney injury Describe risk factors in AKI occurrence Other: Focus on patients with chronic kidney disease at baseline | Acute kidney injury (AKI) Infusion of CD19 CAR T cell B-cell lymphoma | Observational | Ongoing | Incidence and severity of AKI, CRS-related renal outcomes |
| NCT06549634 | Biomarkers of AKI in Patients Receiving Daratumumab | Drug: Daratumumab | Acute kidney injury Multiple myeloma Light-chain nephropathy | Observational | Ongoing | Incidence and severity of AKI |
| NCT05640817 | Nephroprotective Effect of Pentoxifylline Against Cisplatin in Patients with Head and Neck Cancer | Drug: Pentoxifylline 400 mg SR tablets Drug: Cisplatin with standard hydration with normal saline | Pentoxifylline, reduced the oxidative stress and inflammation induced by cisplatin | Phase I/II | Unknown status | Safety, mitochondrial biomarkers, renal recovery |
| NCT01848457 | Preventing Nephrotoxicity and Ototoxicity from Osteosarcoma Therapy | Drug: Pantoprazole mitochondrial pump inhibitor Drug: High-dose methotrexate infusion duration | Protonic pump inhibitor | Phase II | Completed | Renal outcomes, inflammatory marker reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zaroon, Z.; D’Ambrosio, C.; de Nigris, F. Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies. Biomolecules 2026, 16, 120. https://doi.org/10.3390/biom16010120
Zaroon Z, D’Ambrosio C, de Nigris F. Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies. Biomolecules. 2026; 16(1):120. https://doi.org/10.3390/biom16010120
Chicago/Turabian StyleZaroon, Zaroon, Carlotta D’Ambrosio, and Filomena de Nigris. 2026. "Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies" Biomolecules 16, no. 1: 120. https://doi.org/10.3390/biom16010120
APA StyleZaroon, Z., D’Ambrosio, C., & de Nigris, F. (2026). Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies. Biomolecules, 16(1), 120. https://doi.org/10.3390/biom16010120

