Urolithiasis in Children—Clinical Picture, Pathogenesis, and Diagnostic Approach
Abstract
1. Introduction
2. Epidemiology
3. Types of Urolithiasis
- −
- Location—we refer to nephrolithiasis, i.e., the formation of stones in the upper urinary tract (usually on the renal papillae), and cystolithiasis, i.e., bladder stones. Over the past 100 years, the incidence of bladder stones has decreased in the developed world, primarily due to changes in dietary habits, including increased phosphate intake [8]. Bladder stones were found in only 2.5% of cases in a retrospective study of 300 Caucasian children between 2006 and 2017 [22].
- −
- Etiology—we distinguish between metabolic, infectious, and urolithiasis caused by environmental factors, e.g., drug-induced. A retrospective analysis of the medical records of children aged 0–3 years revealed that urinary tract defects and infections co-occurred with urolithiasis in more than 70% of the patients followed [23]. In contrast, other studies have detected metabolic abnormalities in 90% of children with urolithiasis [13,22,24]. Furthermore, it should be emphasized that it is often a combination of the factors mentioned above that predisposes individuals to urolithiasis [8].
- −
- Stone composition is considered to be the most crucial division. The deposits in the urinary tract consist of inorganic elements (crystals) and organic elements (matrix), which include proteins and carbohydrates [25]. Based on the chemical composition of the inorganic component, urinary tract deposits are divided into [8,26]: calcium oxalate and mixed calcium oxalate-phosphate lithiasis (70–80% in Poland and other European countries), uric acid stones (10–15%) struvite (magnesium-ammonium phosphate) stones (5–7%), carbonate apatite stones (4–6%) and other (brucite, cystine, xanthine) (1–2%).
4. Pathophysiology
- −
- increased urinary concentration of deposit components (promoters of crystallization, e.g., calcium, oxalate)
- −
- decreased urinary concentration of crystallization inhibitors
- −
- adequate urinary pH to promote crystallization
5. Excretory Disorders in Urolithiasis
5.1. Hypercalciuria
5.2. Hyperoxaluria
5.3. Cystinuria
5.4. Hyperuricosuria
5.5. Xanthinuria and Other Promoters
5.6. Hypocitraturia
6. Other Factors Predisposing to Urolithiasis
6.1. Infectious Urolithiasis
6.2. Urinary Structural Abnormalities
6.3. Acquired Risk Factors
7. Nephrocalcinosis
8. Diagnosis
8.1. History and Physical Examination
| Clinical Symptoms of Urolithiasis |
|---|
| Abdominal, flank, or pelvis pain |
| Acute pain radiating to the groin, testicles, and labia majora |
| Dysuria |
| Frequent micturition |
| Polyuria |
| Enuresis |
| Nycturia |
| Macroscopic hematuria |
| Urgency |
| Nausea |
| Vomiting |
| Hypotension and fainting induced by pain |
| Loss of appetite |
| Anxiety |
| Diarrhea |
8.2. Diagnostic Imaging
| Radiopaque Calculi | Radiolucent Calculi |
|---|---|
| calcium oxalate calcium phosphate struvite hydroxyapatite | uric acid xanthine 2,8-dihydroxyadenine cystine |
8.3. Blood Tests
8.4. Urine Analysis
8.5. Evaluation of Stone Composition
8.6. The 24 h Urine Analysis
8.7. Genetic Testing
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sas, D.J.; Hulsey, T.C.; Shatat, I.F.; Orak, J.K. Increasing incidence of kidney stones in children evaluated in the emergency department. J. Pediatr. 2010, 157, 132–137. [Google Scholar] [CrossRef]
- Tang, X.; Lieske, J.C. Acute and chronic kidney injury in nephrolithiasis. Curr. Opin. Nephrol. Hypertens. 2014, 23, 385–390. [Google Scholar] [CrossRef]
- Jamal, A.; Ramzan, A. Renal and post-renal causes of acute renal failure in children. J. Coll. Physicians Surg. Pak. 2004, 14, 411–415. [Google Scholar]
- Edvardsson, V.O.; Goldfarb, D.S.; Lieske, J.C.; Beara-Lasic, L.; Anglani, F.; Milliner, D.S.; Palsson, R. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 2013, 28, 1923–1942. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.; Johny, A.; Ziemba, J.B. Quality-of-life measures for patients with kidney stones. Urol. Clin. N. Am. 2025, 52, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Habbig, S.; Beck, B.B.; Hoppe, B. Nephrocalcinosis and urolithiasis in children. Kidney Int. 2011, 80, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, M.; Krolikowska, K.; Jobs, K.; Placzynska, M.; Kalicki, B. Pathophysiology and symptoms of renal colic in children—A case report. Dev. Period. Med. 2018, 22, 265–269. [Google Scholar]
- López, M.; Hoppe, B. History, epidemiology and regional diversities of urolithiasis. Pediatr. Nephrol. 2010, 25, 49–59. [Google Scholar] [CrossRef]
- Edvardsson, V.O.; Ingvarsdottir, S.E.; Palsson, R.; Indridason, O.S. Incidence of kidney stone disease in Icelandic children and adolescents from 1985 to 2013: Results of a nationwide study. Pediatr. Nephrol. 2018, 33, 1375–1384. [Google Scholar] [CrossRef]
- Bastug, F.; Dusunsel, R. Pediatric urolithiasis: Causative factors, diagnosis and medical management. Nat. Rev. Urol. 2012, 9, 138–146. [Google Scholar] [CrossRef]
- Coward, R.J.; Peters, C.J.; Duffy, P.G.; Corry, D.; Kellett, M.J.; Choong, S.; van’t Hoff, W.G. Epidemiology of paediatric renal stone disease in the UK. Arch. Dis. Child. 2003, 88, 962–965. [Google Scholar] [CrossRef]
- Sharma, A.P.; Filler, G. Epidemiology of pediatric urolithiasis. Indian J. Urol. 2010, 26, 516–522. [Google Scholar] [CrossRef]
- Fakheri, R.J.; Goldfarb, D.S. Ambient temperature as a contributor to kidney stone formation: Implications of global warming. Kidney Int. 2011, 79, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Scales, C.D., Jr.; Curtis, L.H.; Norris, R.D.; Springhart, W.P.; Sur, R.L.; Schulman, K.A.; Preminger, G.M. Changing gender prevalence of stone disease. J. Urol. 2007, 177, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Novak, T.E.; Lakshmanan, Y.; Trock, B.J.; Gearhart, J.P.; Matlaga, B.R. Sex prevalence of pediatric kidney stone disease in the United States: An epidemiologic investigation. Urology 2009, 74, 104–107. [Google Scholar] [CrossRef]
- Alfandary, H.; Haskin, O.; Davidovits, M.; Pleniceanu, O.; Leiba, A.; Dagan, A. Increasing prevalence of nephrolithiasis in association with increased body mass index in children: A population based study. J. Urol. 2018, 199, 1044–1049. [Google Scholar] [CrossRef]
- Tiwari, R.; Campfield, T.; Wittcopp, C.; Braden, G.; Visintainer, P.; Reiter, E.O.; Allen, H.F. Metabolic syndrome in obese adolescents is associated with risk for nephrolithiasis. J. Pediatr. 2012, 160, 615–620.e612. [Google Scholar] [CrossRef] [PubMed]
- Smeulders, N.; Cho, A.; Alshaiban, A.; Read, K.; Fagan, A.; Easty, M.; Minhas, K.; Barnacle, A.; Hayes, W.; Bockenhauer, D. Shockwaves and the rolling stones: An overview of pediatric stone disease. Kidney Int. Rep. 2023, 8, 215–228. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, R.; He, C.; Liu, C.; Lei, J.; Zhu, Y.; Gao, Y.; Kan, H.; Xuan, J. Ambient heat stress and urolithiasis attacks in China: Implication for climate change. Environ. Res. 2023, 217, 114850. [Google Scholar] [CrossRef]
- Spiardi, R.; Goldfarb, D.S.; Tasian, G.E. Role of climate change in urologic health: Kidney stone disease. Eur. Urol. Focus 2023, 9, 866–868. [Google Scholar] [CrossRef]
- Szmigielska, A.; Skrzypczyk, P.; Pańczyk-Tomaszewska, M. Epidemiology and types of urolithiasis. Pediatr. I Med. Rodz. 2019, 15, 22–25. [Google Scholar] [CrossRef]
- Spivacow, F.R.; Del Valle, E.E.; Boailchuk, J.A.; Sandoval Diaz, G.; Rodriguez Ugarte, V.; Arreaga Alvarez, Z. Metabolic risk factors in children with kidney stone disease: An update. Pediatr. Nephrol. 2020, 35, 2107–2112. [Google Scholar] [CrossRef]
- Wachnicka-Bąk, A.; Jobs, K.; Jung, A.; Kalicki, B. Urolithiasis in children aged 0–3 years based on author’s own research, with reference to the coexistence of urinary tract defects and infections. Pediatr. I Med. Rodz. 2016, 12, 164–170. [Google Scholar] [CrossRef]
- Penido, M.G.; Srivastava, T.; Alon, U.S. Pediatric primary urolithiasis: 12-year experience at a Midwestern Children’s Hospital. J. Urol. 2013, 189, 1493–1497. [Google Scholar] [CrossRef]
- Tamborino, F.; Cicchetti, R.; Mascitti, M.; Litterio, G.; Orsini, A.; Ferretti, S.; Basconi, M.; De Palma, A.; Ferro, M.; Marchioni, M.; et al. Pathophysiology and main molecular mechanisms of urinary stone formation and recurrence. Int. J. Mol. Sci. 2024, 25, 3075. [Google Scholar] [CrossRef]
- Copelovitch, L. Urolithiasis in children: Medical approach. Pediatr. Clin. N. Am. 2012, 59, 881–896. [Google Scholar] [CrossRef]
- Shadman, A.; Bastani, B. Kidney calculi: Pathophysiology and as a systemic disorder. Iran. J. Kidney Dis. 2017, 11, 180–191. [Google Scholar]
- Jobs, K.; Rakowska, M.; Paturej, A. Urolithiasis in the pediatric population—Current opinion on epidemiology, patophysiology, diagnostic evaluation and treatment. Dev. Period. Med. 2018, 22, 201–208. [Google Scholar] [PubMed]
- Hoppe, B.; Martin-Higueras, C. Inherited conditions resulting in nephrolithiasis. Curr. Opin. Pediatr. 2020, 32, 273–283. [Google Scholar] [CrossRef]
- Grases, F.; Conte, A. Urolithiasis, inhibitors and promoters. Urol. Res. 1992, 20, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Abrol, N.; Antonisamy, B.; Vanitha, S.; Chandrasingh, J.; Kumar, S.; Kekre, N.; Devasia, A. Urine and serum fetuin-A levels in patients with urolithiasis. Indian J. Urol. 2017, 33, 291–293. [Google Scholar] [CrossRef]
- Alelign, T.; Petros, B. Kidney stone disease: An update on current concepts. Adv. Urol. 2018, 2018, 3068365. [Google Scholar] [CrossRef]
- Basavaraj, D.R.; Biyani, C.S.; Browning, A.J.; Cartledge, J.J. The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Ser. 2007, 5, 126–136. [Google Scholar] [CrossRef]
- Schwaderer, A.L.; Raina, R.; Khare, A.; Safadi, F.; Moe, S.M.; Kusumi, K. Comparison of risk factors for pediatric kidney stone formation: The effects of sex. Front. Pediatr. 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- DiSandro, M. Pediatric urolithiasis: Children as little adults. J. Urol. 2010, 184, 1833–1834. [Google Scholar] [CrossRef]
- Panzarino, V. Urolithiasis in children. Adv. Pediatr. 2020, 67, 105–112. [Google Scholar] [CrossRef]
- Coe, F.L.; Worcester, E.M.; Evan, A.P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 2016, 12, 519–533. [Google Scholar] [CrossRef]
- Alexander, R.T.; Dimke, H.; Cordat, E. Proximal tubular NHEs: Sodium, protons and calcium? Am. J. Physiol. Ren. Physiol. 2013, 305, F229–F236. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.W.; Sajjad, H. Hypercalciuria; Statpearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alexander, R.T. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 2023, 32, 359–365. [Google Scholar] [CrossRef]
- Hou, J. Claudins and mineral metabolism. Curr. Opin. Nephrol. Hypertens. 2016, 25, 308–313. [Google Scholar] [CrossRef]
- Downie, M.L.; Alexander, R.T. Molecular mechanisms altering tubular calcium reabsorption. Pediatr. Nephrol. 2022, 37, 707–718. [Google Scholar] [CrossRef]
- Meher, D.; Agarwal, V.; Das, S.; Choudhury, A.; Sahoo, D.; Sahu, S.K.; Prusty, B.; Das, B. Idiopathic hypercalciuria: A comprehensive review of clinical insights and management strategies. Cureus 2025, 17, e81778. [Google Scholar] [CrossRef]
- Stapleton, F.B.; Miller, L.A. Renal function in children with idiopathic hypercalciuria. Pediatr. Nephrol. 1988, 2, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Bizerea-Moga, T.O.; Chisavu, F.; Ilies, C.; Olah, O.; Marginean, O.; Gafencu, M.; Doros, G.; Stroescu, R. Phenotype of idiopathic infantile hypercalcemia associated with the heterozygous pathogenic variant of SLC34A1 and CYP24A1. Children 2023, 10, 1701. [Google Scholar] [CrossRef]
- Janiec, A.; Halat-Wolska, P.; Obrycki, Ł.; Ciara, E.; Wójcik, M.; Płudowski, P.; Wierzbicka, A.; Kowalska, E.; Książyk, J.B.; Kułaga, Z.; et al. Long-term outcome of the survivors of infantile hypercalcaemia with CYP24A1 and SLC34A1 mutations. Nephrol. Dial. Transplant. 2021, 36, 1484–1492. [Google Scholar] [CrossRef]
- Lenherr-Taube, N.; Young, E.J.; Furman, M.; Elia, Y.; Assor, E.; Chitayat, D.; Uster, T.; Kirwin, S.; Robbins, K.; Vinette, K.M.B.; et al. Mild idiopathic infantile hypercalcemia-part 1: Biochemical and genetic findings. J. Clin. Endocrinol. Metab. 2021, 106, 2915–2937. [Google Scholar] [CrossRef] [PubMed]
- Lenherr-Taube, N.; Furman, M.; Assor, E.; Elia, Y.; Collins, C.; Thummel, K.; Levine, M.A.; Sochett, E. Mild idiopathic infantile hypercalcemia-part 2: A longitudinal observational study. J. Clin. Endocrinol. Metab. 2021, 106, 2938–2948. [Google Scholar] [CrossRef] [PubMed]
- Figueres, L.; Hourmant, M.; Lemoine, S. Understanding and managing hypercalciuria in adults with nephrolithiasis: Keys for nephrologists. Nephrol. Dial. Transplant. 2020, 35, 573–575. [Google Scholar] [CrossRef]
- Sindhar, S.; Lugo, M.; Levin, M.D.; Danback, J.R.; Brink, B.D.; Yu, E.; Dietzen, D.J.; Clark, A.L.; Purgert, C.A.; Waxler, J.L.; et al. Hypercalcemia in patients with williams-beuren syndrome. J. Pediatr. 2016, 178, 254–260 e254. [Google Scholar] [CrossRef]
- Polito, C.; La Manna, A.; Cioce, F.; Villani, J.; Nappi, B.; Di Toro, R. Clinical presentation and natural course of idiopathic hypercalciuria in children. Pediatr. Nephrol. 2000, 15, 211–214. [Google Scholar] [CrossRef]
- Tabel, Y.; Mir, S. The long-term outcomes of idiopathic hypercalciuria in children. J. Pediatr. Urol. 2006, 2, 453–458. [Google Scholar] [CrossRef]
- Hoppe, B.; Kemper, M.J. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr. Nephrol. 2010, 25, 403–413. [Google Scholar] [CrossRef]
- Pott, V.; Tietze, H.; Kanzelmeyer, N.; von der Born, J.; Baumann, U.; Mindermann, C.; Suhlrie, A.; Drube, J.; Melk, A.; Das, A.M.; et al. LMS-based pediatric reference values for parameters of phosphate homeostasis in the HARP cohort. J. Clin. Endocrinol. Metab. 2024, 109, 668–679. [Google Scholar] [CrossRef]
- Kirejczyk, J.K.; Porowski, T.; Konstantynowicz, J.; Kozerska, A.; Nazarkiewicz, A.; Hoppe, B.; Wasilewska, A. Urinary citrate excretion in healthy children depends on age and gender. Pediatr. Nephrol. 2014, 29, 1575–1582. [Google Scholar] [CrossRef]
- Sikora, P. In Pediatria; Kulus, M., Grenda, R., Kawalec, W., Eds.; Kamica Układu Moczowego i Nefrokalcynoza. PZWL: Warszawa, Poland, 2018; pp. 786–791. [Google Scholar]
- Haffner, D.; Leifheit-Nestler, M.; Grund, A.; Schnabel, D. Rickets guidance: Part i-diagnostic workup. Pediatr. Nephrol. 2022, 37, 2013–2036. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Mughal, Z.; Haffner, D.; Nilsson, O.; Levtchenko, E.; Ariceta, G.; de Lucas Collantes, C.; Schnabel, D.; Jandhyala, R.; Mäkitie, O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 2019, 14, 58. [Google Scholar] [CrossRef]
- Haffner, D.; Emma, F.; Eastwood, D.M.; Biosse Duplan, M.; Bacchetta, J.; Schnabel, D.; Wicart, P.; Bockenhauer, D.; Santos, F.; Levtchenko, E.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019, 15, 435–455. [Google Scholar] [CrossRef]
- Haffner, D.; Emma, F.; Seefried, L.; Högler, W.; Javaid, K.M.; Bockenhauer, D.; Bacchetta, J.; Eastwood, D.; Biosse Duplan, M.; Schnabel, D.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2025, 21, 330–354. [Google Scholar] [CrossRef]
- Hueppelshaeuser, R.; von Unruh, G.E.; Habbig, S.; Beck, B.B.; Buderus, S.; Hesse, A.; Hoppe, B. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr. Nephrol. 2012, 27, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Aydin-Ghormoz, E.; Lightle, A.; Faddoul, G. Diet-induced hyperoxaluria: A case based mini-review. Clin. Nephrol. Case Stud. 2024, 12, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, A. Effect of cola consumption on urinary biochemical and physicochemical risk factors associated with calcium oxalate urolithiasis. Urol. Res. 1999, 27, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Hesse, A. Effect of black tea consumption on urinary risk factors for kidney stone formation. Nutrients 2021, 13, 4434. [Google Scholar] [CrossRef]
- Sas, D.J.; Enders, F.T.; Mehta, R.A.; Tang, X.; Zhao, F.; Seide, B.M.; Milliner, D.S.; Lieske, J.C. Clinical features of genetically confirmed patients with primary hyperoxaluria identified by clinical indication versus familial screening. Kidney Int. 2020, 97, 786–792. [Google Scholar] [CrossRef]
- Beck, B.B.; Hoyer-Kuhn, H.; Gobel, H.; Habbig, S.; Hoppe, B. Hyperoxaluria and systemic oxalosis: An update on current therapy and future directions. Expert Opin. Investig. Drugs 2013, 22, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Groothoff, J.W.; Metry, E.; Deesker, L.; Garrelfs, S.; Acquaviva, C.; Almardini, R.; Beck, B.B.; Boyer, O.; Cerkauskiene, R.; Ferraro, P.M.; et al. Clinical practice recommendations for primary hyperoxaluria: An expert consensus statement from ERKNet and OxalEurope. Nat. Rev. Nephrol. 2023, 19, 194–211. [Google Scholar] [CrossRef]
- Taroni, F.; Peruzzi, L.; Longo, G.; Becherucci, F.; Malgieri, G.; D’Alessandro, M.M.; Montini, G. Lumasiran treatment in pediatric patients with PH1: Real-world data within a compassionate use program in italy. Clin. Kidney J. 2024, 17, sfae090. [Google Scholar] [CrossRef] [PubMed]
- Saland, J.M.; Lieske, J.C.; Groothoff, J.W.; Frishberg, Y.; Shasha-Lavsky, H.; Magen, D.; Moochhala, S.H.; Simkova, E.; Coenen, M.; Hayes, W.; et al. Efficacy and safety of lumasiran in patients with primary hyperoxaluria type 1: Results from a phase III clinical trial. Kidney Int. Rep. 2024, 9, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.; Groothoff, J.W.; Shasha-Lavsky, H.; Lieske, J.C.; Frishberg, Y.; Simkova, E.; Sellier-Leclerc, A.L.; Devresse, A.; Guebre-Egziabher, F.; Bakkaloglu, S.A.; et al. Lumasiran for advanced primary hyperoxaluria type 1: Phase 3 ILLUMINATE-C trial. Am. J. Kidney Dis. 2023, 81, 145–155.e141. [Google Scholar] [CrossRef]
- Gang, X.; Liu, F.; Mao, J. Lumasiran for primary hyperoxaluria type 1: What we have learned? Front. Pediatr. 2022, 10, 1052625. [Google Scholar] [CrossRef]
- Kang, C. Lumasiran: A review in primary hyperoxaluria type 1. Drugs 2024, 84, 219–226. [Google Scholar] [CrossRef]
- Garrelfs, S.F.; Rumsby, G.; Peters-Sengers, H.; Erger, F.; Groothoff, J.W.; Beck, B.B.; Oosterveld, M.J.S.; Pelle, A.; Neuhaus, T.; Adams, B.; et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 2019, 96, 1389–1399. [Google Scholar] [CrossRef]
- Martin-Higueras, C.; Garrelfs, S.F.; Groothoff, J.W.; Jacob, D.E.; Moochhala, S.H.; Bacchetta, J.; Acquaviva, C.; Zaniew, M.; Sikora, P.; Beck, B.B.; et al. A report from the European Hyperoxaluria Consortium (OxalEurope) registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int. 2021, 100, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Heron, V.C.; Kerr, P.G.; Kanellis, J.; Polkinghorne, K.R.; Isbel, N.M.; See, E.J. Long-term graft and patient outcomes following kidney transplantation in end-stage kidney disease secondary to hyperoxaluria. Transplant. Proc. 2021, 53, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Mandrile, G.; Beck, B.; Acquaviva, C.; Rumsby, G.; Deesker, L.; Garrelfs, S.; Gupta, A.; Bacchetta, J.; Groothoff, J. Genetic assessment in primary hyperoxaluria: Why it matters. Pediatr. Nephrol. 2023, 38, 625–634. [Google Scholar] [CrossRef]
- Eggermann, T.; Venghaus, A.; Zerres, K. Cystinuria: An inborn cause of urolithiasis. Orphanet J. Rare Dis. 2012, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.W.; Sajjad, H.; Nazzal, L. Cystinuria; Statpearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Servais, A.; Thomas, K.; Dello Strologo, L.; Sayer, J.A.; Bekri, S.; Bertholet-Thomas, A.; Bultitude, M.; Capolongo, G.; Cerkauskiene, R.; Daudon, M.; et al. Cystinuria: Clinical practice recommendation. Kidney Int. 2021, 99, 48–58. [Google Scholar] [CrossRef]
- Kaur, P.; Bhatt, H. Hyperuricosuria; Statpearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Kovacevic, L. Diagnosis and management of nephrolithiasis in children. Pediatr. Clin. N. Am. 2022, 69, 1149–1164. [Google Scholar] [CrossRef]
- Nakayama, A.; Matsuo, H.; Ohtahara, A.; Ogino, K.; Hakoda, M.; Hamada, T.; Hosoyamada, M.; Yamaguchi, S.; Hisatome, I.; Ichida, K.; et al. Clinical practice guideline for renal hypouricemia (1st edition). Hum. Cell 2019, 32, 83–87. [Google Scholar] [CrossRef]
- Arikyants, N.; Sarkissian, A.; Hesse, A.; Eggermann, T.; Leumann, E.; Steinmann, B. Xanthinuria Type I: A rare cause of urolithiasis. Pediatr. Nephrol. 2007, 22, 310–314. [Google Scholar] [CrossRef]
- Leow, E.H.; Ganesan, I.; Chong, S.L.; Yap, C.J.Y.; Chao, S.M.; Wang, F.; Ng, Y.H. Adenine phosphoribosyltransferase (APRT) deficiency: An increasingly recognized disease. Int. Urol. Nephrol. 2025, 57, 2519–2529. [Google Scholar] [CrossRef]
- Cochat, P.; Pichault, V.; Bacchetta, J.; Dubourg, L.; Sabot, J.F.; Saban, C.; Daudon, M.; Liutkus, A. Nephrolithiasis related to inborn metabolic diseases. Pediatr. Nephrol. 2010, 25, 415–424. [Google Scholar] [CrossRef]
- Mraz, M.; Hurba, O.; Bartl, J.; Dolezel, Z.; Marinaki, A.; Fairbanks, L.; Stiburkova, B. Modern diagnostic approach to hereditary xanthinuria. Urolithiasis 2015, 43, 61–67. [Google Scholar] [CrossRef]
- Karabacak, O.R.; Ipek, B.; Ozturk, U.; Demirel, F.; Saltas, H.; Altug, U. Metabolic evaluation in stone disease metabolic differences between the pediatric and adult patients with stone disease. Urology 2010, 76, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, J.M.; Assimos, D.G. Hypocitraturia: Pathophysiology and medical management. Rev. Urol. 2009, 11, 134–144. [Google Scholar] [PubMed]
- Castellani, D.; Giulioni, C.; De Stefano, V.; Brocca, C.; Fuligni, D.; Galosi, A.B.; Teoh, J.Y.; Sarica, K.; Gauhar, V. Dietary management of hypocitraturia in children with urolithiasis: Results from a systematic review. World J. Urol. 2023, 41, 1243–1250. [Google Scholar] [CrossRef]
- Kovacevic, L.; Wolfe-Christensen, C.; Edwards, L.; Sadaps, M.; Lakshmanan, Y. From hypercalciuria to hypocitraturia—A shifting trend in pediatric urolithiasis? J. Urol. 2012, 188, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczyk, P.; Pańczyk-Tomaszewska, M.M. Hipocytraturia—Znaczenie w rozwoju kamicy układu moczowego. Pediatr. I Med. Rodz. 2019, 15, 26–32. [Google Scholar] [CrossRef]
- Youssef, R.F.; Martin, J.W.; Sakhaee, K.; Poindexter, J.; Dianatnejad, S.; Scales, C.D.; Preminger, G.M.; Lipkin, M.E. Rising occurrence of hypocitraturia and hyperoxaluria associated with increasing prevalence of stone disease in calcium kidney stone formers. Scand. J. Urol. 2020, 54, 426–430. [Google Scholar] [CrossRef]
- Flannigan, R.; Choy, W.H.; Chew, B.; Lange, D. Renal struvite stones—Pathogenesis, microbiology, and management strategies. Nat. Rev. Urol. 2014, 11, 333–341. [Google Scholar] [CrossRef]
- Jurkiewicz, B.; Zabkowski, T.; Jobs, K.; Samotyjek, J.; Jung, A. Combined use of pyelolithotomy and endoscopy: An alternative surgical treatment for staghorn urolithiasis in children. Urol. J. 2016, 13, 2599–2604. [Google Scholar]
- Kamoun, A.; Daudon, M.; Abdelmoula, J.; Hamzaoui, M.; Chaouachi, B.; Houissa, T.; Zghal, A.; Ben Ammar, S.; Belkahia, C.; Lakhoua, R. Urolithiasis in tunisian children: A study of 120 cases based on stone composition. Pediatr. Nephrol. 1999, 13, 920–925; discussion 926. [Google Scholar] [CrossRef]
- Imran, K.; Zafar, M.N.; Fatima, N.; Ozair, U.; Sultan, S.; Hasan Rizvi, S.A. Chemical composition of stones in paediatric urolithiasis. J. Ayub Med. Coll. Abbottabad 2017, 29, 630–634. [Google Scholar]
- Kaefer, M.; Hendren, W.H.; Bauer, S.B.; Goldenblatt, P.; Peters, C.A.; Atala, A.; Retik, A.B. Reservoir calculi: A comparison of reservoirs constructed from stomach and other enteric segments. J. Urol. 1998, 160, 2187–2190. [Google Scholar] [CrossRef]
- Barroso, U.; Jednak, R.; Fleming, P.; Barthold, J.S.; González, R. Bladder calculi in children who perform clean intermittent catheterization. BJU Int. 2000, 85, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Marien, T.; Miller, N.L. Treatment of the infected stone. Urol. Clin. N. Am. 2015, 42, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Jungers, P.; Joly, D.; Barbey, F.; Choukroun, G.; Daudon, M. ESRD caused by nephrolithiasis: Prevalence, mechanisms, and prevention. Am. J. Kidney Dis. 2004, 44, 799–805. [Google Scholar] [CrossRef]
- Alhasan, K.A.; Shalaby, M.A.; Albanna, A.S.; Temsah, M.H.; Alhayek, Z.; Abdalla, M.S.; Alotaibi, N.G.; Kalakattawi, N.M.; Zaher, Z.F.; Kari, J.A. Comparison of renal stones and nephrocalcinosis in children: Findings from two tertiary centers in saudi arabia. Front. Pediatr. 2021, 9, 736308. [Google Scholar] [CrossRef] [PubMed]
- Rauturier, C.; Machon, C.; Demède, D.; Dubourg, L.; Bacchetta, J.; Bertholet-Thomas, A. Composition of urinary stones in children: Clinical and metabolic determinants in a french tertiary care center. Eur. J. Pediatr. 2021, 180, 3555–3563. [Google Scholar] [CrossRef]
- Sternberg, K.; Greenfield, S.P.; Williot, P.; Wan, J. Pediatric stone disease: An evolving experience. J. Urol. 2005, 174, 1711–1714; discussion 1714. [Google Scholar] [CrossRef]
- Healy, K.A.; Baumgarten, D.A.; Lendvay, T.S.; Fountain, A.J.; Galloway, N.T.; Ogan, K. Occult spinal dysraphism and urolithiasis: Are patients at higher risk of stone disease? J. Endourol. 2007, 21, 1293–1296. [Google Scholar] [CrossRef]
- Furth, S.L.; Casey, J.C.; Pyzik, P.L.; Neu, A.M.; Docimo, S.G.; Vining, E.P.; Freeman, J.M.; Fivush, B.A. Risk factors for urolithiasis in children on the ketogenic diet. Pediatr. Nephrol. 2000, 15, 125–128. [Google Scholar] [CrossRef]
- Pecoraro, L.; Zuccato, A.; Vitella, R.; Pietrobelli, A.; Piacentini, G.; Brugnara, M. Pediatric nephrolithiasis: A changing landscape through time and space. Medicina (Kaunas) 2024, 60, 1993. [Google Scholar] [CrossRef]
- Kokorowski, P.J.; Routh, J.C.; Hubert, K.C.; Graham, D.A.; Nelson, C.P. Association of urolithiasis with systemic conditions among pediatric patients at children’s hospitals. J. Urol. 2012, 188, 1618–1622. [Google Scholar] [CrossRef]
- Sas, D.J.; Becton, L.J.; Tutman, J.; Lindsay, L.A.; Wahlquist, A.H. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis. Urolithiasis 2016, 44, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Güzin, Y.; Yılmaz, Ü.; Devrim, F.; Dinçel, N.; Ünalp, A. Kidney stones in epileptic children receiving ketogenic diet: Frequency and risk factors. Neuropediatrics 2023, 54, 308–314. [Google Scholar] [CrossRef]
- Lin, T.H.; Lu, H.J.; Lin, C.H.; Lee, M.D.; Chang, B.P.; Lin, C.C.; Tsai, J.D. Nephrocalcinosis in children who received high-dose Vitamin D. Pediatr. Nephrol. 2022, 37, 2471–2478. [Google Scholar] [CrossRef] [PubMed]
- Monet-Didailler, C.; Chateil, J.F.; Allard, L.; Godron-Dubrasquet, A.; Harambat, J. Nephrocalcinosis in children. Nephrol. Ther. 2021, 17, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Brunkhorst, M.; Brunkhorst, L.; Martens, H.; Papizh, S.; Besouw, M.; Grasemann, C.; Turan, S.; Sikora, P.; Chromek, M.; Cornelissen, E.; et al. Presentation and outcome in carriers of pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter NPT 2a and 2c. Kidney Int. 2025, 107, 116–129. [Google Scholar] [CrossRef]
- Zaniew, M.; Bökenkamp, A.; Kolbuc, M.; La Scola, C.; Baronio, F.; Niemirska, A.; Szczepanska, M.; Bürger, J.; La Manna, A.; Miklaszewska, M.; et al. Long-term renal outcome in children with OCRL mutations: Retrospective analysis of a large international cohort. Nephrol. Dial. Transplant. 2018, 33, 85–94. [Google Scholar] [CrossRef]
- Baştuğ, F.; Ağbaş, A.; Tülpar, S.; Yıldırım, Z.N.Y.; Çiçek, N.; Günay, N.; Gemici, A.; Çelik, B.; Delebe, E.; Nalçacıoğlu, H.; et al. Comparison of infants and children with urolithiasis: A large case series. Urolithiasis 2022, 50, 411–421. [Google Scholar] [CrossRef]
- Güven, S.; Tokas, T.; Tozsin, A.; Haid, B.; Lendvay, T.S.; Silay, S.; Mohan, V.C.; Cansino, J.R.; Saulat, S.; Straub, M.; et al. Consensus statement addressing controversies and guidelines on pediatric urolithiasis. World J. Urol. 2024, 42, 473. [Google Scholar] [CrossRef]
- Colleran, G.C.; Callahan, M.J.; Paltiel, H.J.; Nelson, C.P.; Cilento, B.G., Jr.; Baum, M.A.; Chow, J.S. Imaging in the diagnosis of pediatric urolithiasis. Pediatr. Radiol. 2017, 47, 5–16. [Google Scholar] [CrossRef]
- Grivas, N.; Thomas, K.; Drake, T.; Donaldson, J.; Neisius, A.; Petrik, A.; Ruhayel, Y.; Seitz, C.; Turk, C.; Skolarikos, A. Imaging modalities and treatment of paediatric upper tract urolithiasis: A systematic review and update on behalf of the EAU urolithiasis guidelines panel. J. Pediatr. Urol. 2020, 16, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.M.; Mitek-Palusinska, J. Imaging urolithiasis: Complications and interventions in children. Pediatr. Radiol. 2023, 53, 706–713. [Google Scholar] [CrossRef]
- Bernardor, J.; Bidault, V.; Bacchetta, J.; Cabet, S. Pediatric urolithiasis: What can pediatricians expect from radiologists? Pediatr. Radiol. 2023, 53, 695–705. [Google Scholar] [CrossRef] [PubMed]
- European Association of Urology Guidelines Panel. EAU Guidelines on Urolithiasis 2023. In European Association of Urology Guidelines; EAU: Bern, Switzerland, 2023. [Google Scholar]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin D-mediated hypercalcemia: Mechanisms, diagnosis, and treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [CrossRef]
- Farag, A.; Sharma, D. 1,25-Dihydroxyvitamin D testing in clinical practice: A literature review on diagnostic challenges arising from analytical variability. Cureus 2025, 17, e92683. [Google Scholar] [CrossRef]
- Simhadri, P.K.; Rout, P.; Leslie, S.W. Urinary Crystals Identification and Analysis; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Williams, J.C., Jr.; Gambaro, G.; Rodgers, A.; Asplin, J.; Bonny, O.; Costa-Bauza, A.; Ferraro, P.M.; Fogazzi, G.; Fuster, D.G.; Goldfarb, D.S.; et al. Urine and stone analysis for the investigation of the renal stone former: A consensus conference. Urolithiasis 2021, 49, 1–16. [Google Scholar] [CrossRef]
- Gefen, A.M.; Sethna, C.B.; Cil, O.; Perwad, F.; Schoettler, M.; Michael, M.; Angelo, J.R.; Safdar, A.; Amlie-Wolf, L.; Hunley, T.E.; et al. Genetic testing in children with nephrolithiasis and nephrocalcinosis. Pediatr. Nephrol. 2023, 38, 2615–2622. [Google Scholar] [CrossRef]
- Kravdal, G.; Helgø, D.; Moe, M.K. Infrared spectroscopy is the gold standard for kidney stone analysis. Tidsskr. Nor. Laegeforen. 2015, 135, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Haymann, J.P.; Estrade, V.; Meria, P.; Almeras, C.; Lithiasis Committee of the French Association of Urology (CLAFU). 2022 Recommendations of the AFU lithiasis committee: Epidemiology, stone analysis and composition. Prog Urol 2023, 33, 737–765. [Google Scholar] [CrossRef]
- Gilad, R.; Williams, J.C., Jr.; Usman, K.D.; Holland, R.; Golan, S.; Tor, R.; Lifshitz, D. Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J. Nephrol. 2017, 30, 135–140. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Ticinesi, A.; Meschi, T.; Rodgers, A.; Di Maio, F.; Fulignati, P.; Borghi, L.; Gambaro, G. Short-term changes in urinary relative supersaturation predict recurrence of kidney stones: A tool to guide preventive measures in urolithiasis. J. Urol. 2018, 200, 1082–1087. [Google Scholar] [CrossRef]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.T.; et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Varela, M.; Gil-Pena, H.; Santos, F. Incomplete distal renal tubular acidosis in children. Acta Paediatr. 2020, 109, 2243–2250. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.; Lovegrove, C.; Howles, S.; Sayer, J.A. Role of genetic testing in kidney stone disease: A narrative review. Curr. Urol. Rep. 2024, 25, 311–323. [Google Scholar] [CrossRef]
- Schott, C.; Pourtousi, A.; Connaughton, D.M. Monogenic causation of pediatric nephrolithiasis. Front. Urol. 2022, 2, 1075711. [Google Scholar] [CrossRef]
- Grutters, L.A.; Christiaans, I. Cascade genetic counseling and testing in hereditary syndromes: Inherited cardiovascular disease as a model: A narrative review. Fam. Cancer 2024, 23, 155–164. [Google Scholar] [CrossRef]
- Levine, R.; Kahn, R.M.; Perez, L.; Brewer, J.; Ratner, S.; Li, X.; Yeoshoua, E.; Frey, M.K. Cascade genetic testing for hereditary cancer syndromes: A review of barriers and breakthroughs. Fam. Cancer 2024, 23, 111–120. [Google Scholar] [CrossRef]
- Savige, J.; Lipska-Zietkiewicz, B.S.; Watson, E.; Hertz, J.M.; Deltas, C.; Mari, F.; Hilbert, P.; Plevova, P.; Byers, P.; Cerkauskaite, A.; et al. Guidelines for genetic testing and management of alport syndrome. Clin. J. Am. Soc. Nephrol. 2022, 17, 143–154. [Google Scholar] [CrossRef]
- Chen, J.; Lin, F.; Zhai, Y.; Wang, C.; Wu, B.; Ma, D.; Rao, J.; Liu, J.; Liu, J.; Yu, M.; et al. Diagnostic and clinical utility of genetic testing in children with kidney failure. Pediatr. Nephrol. 2021, 36, 3653–3662. [Google Scholar] [CrossRef] [PubMed]



| Inhibiting Factors | Promoting Factors |
|---|---|
| Citrate Magnesium Pyrophosphate Uromodullin (Tamm-Horsfall protein) Fetuin-A Nephrocalcin Osteopontin Lithostatine Bacunin Fibronectin Chondroitin sulphate Heparin sulphate Inter-alpha-inhibitor Urinary prothrombin fragment-1 Glycosaminoglycans | Calcium Oxalate Sodium Urate Cystine Nucleolin Myeloperoxidase |
| Daily Urinary Collection | Urinary Calcium–Creatinine Ratio by Hoppe [53] | Urinary Calcium–Creatinine Ratio by Pott [54] | ||
|---|---|---|---|---|
| Children: <4 mg/kg/24 h Adult females: >250 mg/24 h Adult males >300 mg/24 h | <1 y.o. 1–3 y.o. 3–5 y.o. 5–7 y.o. 7–17 y.o. | <0.81 <0.53 <0.39 <0.28 <0.21 | 0 y.o. 0.5 y.o. 1 y.o. 2 y.o. 5 y.o. 8 y.o. 10 y.o. 15 y.o. 18 y.o. | 0.53 0.50 0.48 0.44 0.33 0.27 0.24 0.19 0.17 |
| Urine Component | 24 h Urine Collection | Indicator from a Urine Sample (Normalized to Creatinine) (mg/mg Creatinine) | |
|---|---|---|---|
| Calcium | <4 mg/kg/24 h | <1 y.o. 1–3 y.o. 3–5 y.o. 5–7 y.o. 7–17 y.o. | <0.81 <0.53 <0.39 <0.28 <0.21 |
| Magnesium | >2 y.o.—>88 mg/1.73 m2/24 h | 0–1 y.o. 1–2 y.o. 2–3 y.o. 3–5 y.o. 5–7 y.o. 7–10 y.o. 10–14 y.o. 14–17 y.o. | >0.48 >0.37 >0.34 >0.29 >0.21 >0.18 >0.15 >0.13 |
| Uric acid | <815 mg/1.73 m2/24 h or: <1 y.o.—<12.9 mg/kg/24 h 1–5 y.o.—<11 mg/kg/24 h >5 y.o.—<9 mg/kg/24 h | <1 y.o. 1–3 y.o. 3–5 y.o. 5–10 y.o. >10 y.o. | <2.2 <1.9 <1.5 <0.9 <0.6 |
| Oxalate | <45 mg/1.73 m2/24 h (or: <0.5 mmol/1.73 m2/24 h) | <6 m.o. 6 mo.–2 y.o. 2–5 y.o. 6–12 y.o. >12 y.o. | <0.180 <0.140 <0.080 <0.063 <0.031 |
| Citrates | Boys: >175 mg/1.73 m2 Girls: >253 mg/1.73 m2 | 0–5 y.o. >5 y.o. | >0.42 >0.25 |
| Cystine | <10 y.o.—<13 mg/1.73 m2/24 h >10 y.o.—<48 mg/24 h | <1 y.o. 1–3 y.o. 3–5 y.o. 5–7 y.o. 7–17 y.o. | <0.81 <0.53 <0.39 <0.28 <0.21 |
| Etiology | Ca | P | Mg | K | ALP | PTH | 25OHD | 1,25(OH)2D | UCa | UP | TmP/GFR | UMg |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Primary hyperparathyroidism | ↑ | ↓ | N | N | ↑ | ↑ | N | N/↑ | ↑ | ↑ | ↓ | N |
| Pathogenic variants in SLC34A1 or SLC34A3 | N/↑ | ↓/N | N | N | ↑ | N/↑ | N | ↑/N | ↑/N | ↑ | ↓ | N |
| Pathogenic variants in CYP24A1 | ↑ | ↑ | N | N | N | ↓ | ↑ | N/↑ | ↑ | N/↑ | N | N |
| Vitamin D overdosage | ↑ | ↑ | N | N | N | ↓ | ↑ | N/↓ | ↑ | N/↑ | N | N |
| Bartter syndrome | N/↓ | N | N/↓ | ↓ | N | N | N | N | ↑ | N | N | N/↑ |
| Dent-1 and Dent-2 disease | N | N/↓ | N/↓ | N/↓ | ↑ | N/↑ | N | N/↑ | ↑ | N/↑ | N/↓ | N/↑ |
| Familial hypomagnesemia with hypercalciuria and nephrocalcinosis | N | N | ↓ | N | N | N/↑ | N | N | ↑ | N | N | ↑ |
| Fanconi syndrome | N/↓ | ↓ | ↓ | ↓ | ↑ | N/↑ | N | N/↓ | ↑ | ↑ | ↓ | ↑ |
| Factor/Factors | Mechanism |
|---|---|
| Overweight/obesity, metabolic syndrome | Hypercalciuria Hyperuricosuria Hyperoxaluria Hypocitraturia Acidifying urine pH |
| High-salt (sodium) diet | Hypercalciuria |
| Low fluid intake | Low urine output and supersaturation |
| Hot climate | Low urine output and supersaturation |
| Immobilization | Bone resorption Hypercalciuria |
| Ketogenic diet and its modification | Hypercalciuria Hyperuricosuria Hypocitraturia Metabolic acidosis Acidifying urine pH |
| Carbonic anhydrase inhibitors | Hypercalciuria Hypocitraturia Metabolic acidosis |
| Vitamin C supplementation | Hyperoxaluria |
| Vitamin D supplementation | Hypercalciuria |
| Sulfonamides, ceftriaxone, acyclovir, indinavir, atazanavir, nelfinavir, triamterene, methotrexate | Crystallization in the urinary tract |
| Loop diuretics, e.g., furosemide | Hypercalciuria |
| Corticosteroids | Hypercalciuria |
| Predisposing Conditions for Nephrolithiasis | Genetic Defects |
|---|---|
| Hypercalciuria |
|
| Hyperoxaluria |
|
| Hypocitraturia |
|
| Hyperuricosuria and Other Purine Metabolism Defects |
|
| Cystinuria |
|
| Other |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pięta, J.; Szyszka, M.; Lipiński, P.; Skrzypczyk, P. Urolithiasis in Children—Clinical Picture, Pathogenesis, and Diagnostic Approach. Biomolecules 2026, 16, 119. https://doi.org/10.3390/biom16010119
Pięta J, Szyszka M, Lipiński P, Skrzypczyk P. Urolithiasis in Children—Clinical Picture, Pathogenesis, and Diagnostic Approach. Biomolecules. 2026; 16(1):119. https://doi.org/10.3390/biom16010119
Chicago/Turabian StylePięta, Justyna, Michał Szyszka, Patryk Lipiński, and Piotr Skrzypczyk. 2026. "Urolithiasis in Children—Clinical Picture, Pathogenesis, and Diagnostic Approach" Biomolecules 16, no. 1: 119. https://doi.org/10.3390/biom16010119
APA StylePięta, J., Szyszka, M., Lipiński, P., & Skrzypczyk, P. (2026). Urolithiasis in Children—Clinical Picture, Pathogenesis, and Diagnostic Approach. Biomolecules, 16(1), 119. https://doi.org/10.3390/biom16010119

