Proteomics Approaches for Discovering Novel Protein Biomarkers in Inflammatory Bowel Disease-Related Cancer
Abstract
1. Introduction
1.1. Inflammatory Bowel Disease
1.1.1. Symptoms
1.1.2. Intraintestinal and Extraintestinal Complications
1.1.3. Diagnosis
1.2. Epidemiology
1.3. Pathogenesis of IBD
1.4. Treatment of IBD
2. IBD-Related Cancer: Discovery of Biomarkers and Technological Approaches
2.1. The Medical Problem
2.1.1. IBD and Cancer: A Long-Known Correlation
2.1.2. Recent Observational Studies
2.1.3. Statistical Correlation Between IBD and Cancer Development
2.2. Proteomics Relevance in Personalized Medicine
2.3. Most-Used Proteomics Techniques in Clinical Studies
2.4. Proteomic Approaches in IBD
3. Proteomics Application in IBD-Related Cancer Studies
3.1. Inflammation-Related Cancer
3.1.1. Colorectal Cancer
3.1.2. Small Bowel Cancer
3.1.3. Cholangiocarcinoma
3.2. Immunosuppression-Related Cancer
3.2.1. Skin Cancer
3.2.2. Lymphoma
3.2.3. Glioblastoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | inflammatory bowel disease |
UC | ulcerative colitis |
CD | Crohn’s disease |
IBD-U | unclassified IBD |
GI | gastrointestinal |
GWAS | genome-wide association studies |
STAT3 | Signal Transducer and Activator of Transcription 3 |
AIEC | Adherent-Invasive Escherichia coli |
ELISA | enzyme-linked immunosorbent assay |
CRP | C-reactive protein |
ECCO | European Crohn’s and Colitis Organisation |
5-ASA | 5-Aminosalicylic acid |
TNFα | tumor necrosis factor α |
ADCC | antibody-dependent cell-mediated cytotoxicity |
S1P | Sphingosine-1-phosphate |
SIR | Standardized Incidence Ratio |
CRC | colorectal cancer |
SBC | small bowel cancer |
SBA | small bowel adenocarcinoma |
ALL | acute lymphocytic leukemia |
6-TGN | 6-thioguanine nucleotides |
MMR | mismatch repair |
MS | mass spectrometry |
TOF | time-of-flight |
ESI | electrospray ionization |
MALDI | matrix-assisted laser desorption/ionization |
SELDI | surface-enhanced laser desorption/ionization |
MRM | multiple reaction monitoring |
PSC | primary sclerosing cholangitis |
CCA | cholangiocarcinoma |
NMSC | non-melanoma skin cancer |
BCC | basal cell carcinoma |
EBV | Epstein–Barr virus |
References
- Bernstein, C.N.; Eliakim, A.; Fedail, S.; Fried, M.; Gearry, R.; Goh, K.-L.; Hamid, S.; Khan, A.G.; Khalif, I.; Ng, S.C.; et al. World Gastroenterology Organisation Global Guidelines Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2016, 50, 803–818. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Lynge, E.; Burisch, J. The Incidence of Inflammatory Bowel Disease in Denmark 1980–2013: A Nationwide Cohort Study. Aliment. Pharmacol. Ther. 2017, 45, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Jin, Y.; Shao, X.; Xu, Y.; Ma, G.; Jiang, Y.; Xu, Y.; Jiang, Y.; Hu, D. Global, Regional, and National Burden of Inflammatory Bowel Disease, 1990–2021: Insights from the Global Burden of Disease 2021. Int. J. Color. Dis. 2024, 39, 139. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jeong, G.H.; Song, M.; Yon, D.K.; Lee, S.W.; Koyanagi, A.; Jacob, L.; Kostev, K.; Dragioti, E.; Radua, J.; et al. The Global, Regional, and National Burden of Inflammatory Bowel Diseases, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Dig. Liver Dis. 2023, 55, 1352–1359. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory Bowel Disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-Microbe Interactions Have Shaped the Genetic Architecture of Inflammatory Bowel Disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Hubbard, J.; Korzenik, J.; Sands, B.E.; Panaccione, R.; Ghosh, S.; Wheeler, A.J.; Villeneuve, P.J. The Inflammatory Bowel Diseases and Ambient Air Pollution: A Novel Association. Am. J. Gastroenterol. 2010, 105, 2412–2419. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Boudeau, J.; Bulois, P.; Neut, C.; Glasser, A.L.; Barnich, N.; Bringer, M.A.; Swidsinski, A.; Beaugerie, L.; Colombel, J.F. High Prevalence of Adherent-Invasive Escherichia Coli Associated with Ileal Mucosa in Crohn’s Disease. Gastroenterology 2004, 127, 412–421. [Google Scholar] [CrossRef]
- Putignani, L.; Oliva, S.; Isoldi, S.; Del Chierico, F.; Carissimi, C.; Laudadio, I.; Cucchiara, S.; Stronati, L. Fecal and Mucosal Microbiota Profiling in Pediatric Inflammatory Bowel Diseases. Eur. J. Gastroenterol. Hepatol. 2021, 33, 1376–1386. [Google Scholar] [CrossRef]
- Zhou, L.; Ivanov, I.I.; Spolski, R.; Min, R.; Shenderov, K.; Egawa, T.; Levy, D.E.; Leonard, W.J.; Littman, D.R. IL-6 Programs TH-17 Cell Differentiation by Promoting Sequential Engagement of the IL-21 and IL-23 Pathways. Nat. Immunol. 2007, 8, 967–974. [Google Scholar] [CrossRef]
- Gu, C.; Wu, L.; Li, X. IL-17 Family: Cytokines, Receptors and Signaling. Cytokine 2013, 64, 477–485. [Google Scholar] [CrossRef]
- Kotla, N.G.; Rochev, Y. IBD Disease-Modifying Therapies: Insights from Emerging Therapeutics. Trends Mol. Med. 2023, 29, 241–253. [Google Scholar] [CrossRef]
- Harbord, M.; Eliakim, R.; Bettenworth, D.; Karmiris, K.; Katsanos, K.; Kopylov, U.; Kucharzik, T.; Molnár, T.; Raine, T.; Sebastian, S.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. J. Crohns Colitis 2017, 11, 769–784. [Google Scholar] [CrossRef]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Minozzi, S.; Kopylov, U.; Verstockt, B.; Chaparro, M.; Buskens, C.; Warusavitarne, J.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis 2024, 18, 1531–1555. [Google Scholar] [CrossRef] [PubMed]
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
- Craigle, V. MedWatch: The FDA Safety Information and Adverse Event Reporting Program. J. Med. Libr. Assoc. 2007, 95, 224. [Google Scholar] [CrossRef]
- Noor, N.M.; Bourke, A.; Subramanian, S. Review Article: Novel Therapies in Inflammatory Bowel Disease—An Update for Clinicians. Aliment. Pharmacol. Ther. 2024, 60, 1244–1260. [Google Scholar] [CrossRef] [PubMed]
- Bargen, J.A. Chronic Ulcerative Colitis Associated with Malignant Disease. Arch. Surg. 1928, 17, 561–576. [Google Scholar] [CrossRef]
- Ekbom, A. Clinical Review Risk Factors and Distinguishing Features of Cancer in IBD. Inflamm. Bowel Dis. 1998, 4, 235–243. [Google Scholar] [CrossRef]
- Scharl, S.; Barthel, C.; Rossel, J.B.; Biedermann, L.; Misselwitz, B.; Schoepfer, A.M.; Straumann, A.; Vavricka, S.R.; Rogler, G.; Scharl, M.; et al. Malignancies in Inflammatory Bowel Disease: Frequency, Incidence and Risk Factors—Results from the Swiss IBD Cohort Study. Am. J. Gastroenterol. 2019, 114, 116–126. [Google Scholar] [CrossRef]
- Biancone, L.; Armuzzi, A.; Scribano, M.L.; Castiglione, F.; D’Incà, R.; Orlando, A.; Papi, C.; Daperno, M.; Vecchi, M.; Riegler, G.; et al. Cancer Risk in Inflammatory Bowel Disease: A 6-Year Prospective Multicenter Nested Case-Control IG-IBD Study. Inflamm. Bowel Dis. 2020, 26, 450–459. [Google Scholar] [CrossRef]
- Fotoohi, A.K.; Coulthard, S.A.; Albertioni, F. Thiopurines: Factors Influencing Toxicity and Response. Biochem. Pharmacol. 2010, 79, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Ledder, O. The Question That Doesn’t Seem to Go Away: Cancer Risk of Anti-TNF Therapy. Dig. Dis. Sci. 2022, 67, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xie, S.; Yuan, C.; Yang, Z.; Liu, S.; Zhang, Q.; Sun, F.; Wu, J.; Zhan, S.; Zhu, S.; et al. Inflammatory Bowel Disease and Long-Term Risk of Cancer: A Prospective Cohort Study among Half a Million Adults in UK Biobank. Inflamm. Bowel Dis. 2023, 29, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Tyers, M.; Mann, M. From Genomics to Proteomics. Nature 2003, 422, 193–197. [Google Scholar] [CrossRef]
- Maes, E.; Mertens, I.; Valkenborg, D.; Pauwels, P.; Rolfo, C.; Baggerman, G. Proteomics in Cancer Research: Are We Ready for Clinical Practice? Crit. Rev. Oncol. Hematol. 2015, 96, 437–448. [Google Scholar] [CrossRef]
- Ahsan, H. Monoplex and Multiplex Immunoassays: Approval, Advancements, and Alternatives. Comp. Clin. Path 2022, 31, 333–345. [Google Scholar] [CrossRef]
- Shuken, S.R. An Introduction to Mass Spectrometry-Based Proteomics. J. Proteome Res. 2023, 22, 2151–2171. [Google Scholar] [CrossRef]
- Duarte, T.T.; Spencer, C.T. Personalized Proteomics: The Future of Precision Medicine. Proteomes 2016, 4, 29. [Google Scholar] [CrossRef]
- Frantzi, M.; Metzger, J.; Banks, R.E.; Husi, H.; Klein, J.; Dakna, M.; Mullen, W.; Cartledge, J.J.; Schanstra, J.P.; Brand, K.; et al. Discovery and Validation of Urinary Biomarkers for Detection of Renal Cell Carcinoma. J. Proteom. 2014, 98, 44–58. [Google Scholar] [CrossRef]
- Frantzi, M.; Van Kessel, K.E.; Zwarthoff, E.C.; Marquez, M.; Rava, M.; Malats, N.; Merseburger, A.S.; Katafigiotis, I.; Stravodimos, K.; Mullen, W.; et al. Development and Validation of Urine-Based Peptide Biomarker Panels for Detecting Bladder Cancer in a Multi-Center Study. Clin. Cancer Res. 2016, 22, 4077–4086. [Google Scholar] [CrossRef]
- Njoku, K.; Pierce, A.; Geary, B.; Campbell, A.E.; Kelsall, J.; Reed, R.; Armit, A.; Da Sylva, R.; Zhang, L.; Agnew, H.; et al. Quantitative SWATH-Based Proteomic Profiling of Urine for the Identification of Endometrial Cancer Biomarkers in Symptomatic Women. Br. J. Cancer 2023, 128, 1723–1732. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, X.; Ren, J.; Huang, S.; Xiao, Z.; Jiang, H.; Tan, Y. Quantitative Proteomic Analysis of Cervical Cancer Based on TMT-Labeled Quantitative Proteomics. J. Proteom. 2022, 252, 104453. [Google Scholar] [CrossRef] [PubMed]
- Whiteaker, J.R.; Lin, C.; Kennedy, J.; Hou, L.; Trute, M.; Sokal, I.; Yan, P.; Schoenherr, R.M.; Zhao, L.; Voytovich, U.J.; et al. A Targeted Proteomics-Based Pipeline for Verification of Biomarkers in Plasma. Nat. Biotechnol. 2011, 29, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Asonuma, K.; Kobayashi, T.; Kikkawa, N.; Nakano, M.; Sagami, S.; Morikubo, H.; Miyatani, Y.; Hojo, A.; Fukuda, T.; Hibi, T. Optimal Use of Serum Leucine-Rich Alpha-2 Glycoprotein as a Biomarker for Small Bowel Lesions of Crohn’s Disease. Inflamm. Intest. Dis. 2023, 8, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Popescu, I.D.; Codrici, E.; Albulescu, L.; Mihai, S.; Enciu, A.M.; Albulescu, R.; Tanase, C.P. Potential Serum Biomarkers for Glioblastoma Diagnostic Assessed by Proteomic Approaches. Proteome Sci. 2014, 12, 47. [Google Scholar] [CrossRef]
- Salomon, B.; Sudhakar, P.; Bergemalm, D.; Andersson, E.; Grännö, O.; Carlson, M.; Hedin, C.R.H.; Söderholm, J.D.; Öhman, L.; Ungaro, R.C.; et al. Characterization of Inflammatory Bowel Disease Heterogeneity Using Serum Proteomics: A Multicenter Study. J. Crohns Colitis 2024, 19, jjae169. [Google Scholar] [CrossRef]
- Basso, D.; Padoan, A.; D’Incà, R.; Arrigoni, G.; Scapellato, M.L.; Contran, N.; Franchin, C.; Lorenzon, G.; Mescoli, C.; Moz, S.; et al. Peptidomic and Proteomic Analysis of Stool for Diagnosing IBD and Deciphering Disease Pathogenesis. Clin. Chem. Lab. Med. 2020, 58, 968–979. [Google Scholar] [CrossRef]
- Park, J.M.; Han, N.Y.; Han, Y.M.; Chung, M.K.; Lee, H.K.; Ko, K.H.; Kim, E.H.; Hahm, K.B. Predictive Proteomic Biomarkers for Inflammatory Bowel Disease-Associated Cancer: Where Are We Now in the Era of the next Generation Proteomics? World J. Gastroenterol. 2014, 20, 13466–13476. [Google Scholar] [CrossRef] [PubMed]
- Angriman, I.; Scarpa, M.; D’Incà, R.; Basso, D.; Ruffolo, C.; Polese, L.; Sturniolo, G.C.; D’Amico, D.F.; Plebani, M. Enzymes in Feces: Useful Markers of Chronic Inflammatory Bowel Disease. Clin. Chim. Acta 2007, 381, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Vaiopoulou, A.; Gazouli, M.; Theodoropoulos, G.; Zografos, G. Current Advantages in the Application of Proteomics in Inflammatory Bowel Disease. Dig. Dis. Sci. 2012, 57, 2755–2764. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, N.; Kushima, R.; Vieth, M.; Mukaisho, K.I.; Kakinoki, R.; Okabe, H.; Borchard, F.; Stolte, M.; Okanoue, T.; Hattori, T. Cytokeratin 7/20 and Mucin Core Protein Expression in Ulcerative Colitis-Associated Colorectal Neoplasms. Virchows Arch. 2006, 448, 756–762. [Google Scholar] [CrossRef]
- Hashimoto, K.; Saigusa, S.; Araki, T.; Tanaka, K.; Okita, Y.; Fujikawa, H.; Kawamura, M.; Okugawa, Y.; Toiyama, Y.; Inoue, Y.; et al. Correlation of CCL20 Expression in Rectal Mucosa with the Development of Ulcerative Colitis-Associated Neoplasia. Oncol. Lett. 2013, 6, 1271–1276. [Google Scholar] [CrossRef]
- Yeo, M.; Kim, D.K.; Park, H.J.; Oh, T.Y.; Kim, J.H.; Cho, S.W.; Paik, Y.K.; Nahm, K.B. Loss of Transgelin in Repeated Bouts of Ulcerative Colitis-Induced Colon Carcinogenesis. Proteomics 2006, 6, 1158–1165. [Google Scholar] [CrossRef]
- May, D.; Pan, S.; Crispin, D.A.; Lai, K.; Bronner, M.P.; Hogan, J.; Hockenbery, D.M.; McIntosh, M.; Brentnall, T.A.; Chen, R. Investigating Neoplastic Progression of Ulcerative Colitis with Label-Free Comparative Proteomics. J. Proteome Res. 2011, 10, 200–209. [Google Scholar] [CrossRef]
- Murata, M. Inflammation and Cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef]
- Jewel Samadder, N.; Valentine, J.F.; Guthery, S.; Singh, H.; Bernstein, C.N.; Wan, Y.; Wong, J.; Boucher, K.; Pappas, L.; Rowe, K.; et al. Colorectal Cancer in Inflammatory Bowel Diseases: A Population-Based Study in Utah. Dig. Dis. Sci. 2017, 62, 2126–2132. [Google Scholar] [CrossRef]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The Risk of Colorectal Cancer in Ulcerative Colitis: A Meta-Analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Lepage, C.; Jooste, V.; Guéant, J.L.; Faivre, J.; Bouvier, A.M. Colorectal Cancer in Inflammatory Bowel Diseases: A Population-Based Study (1976–2008). Inflamm. Bowel Dis. 2012, 18, 2247–2251. [Google Scholar] [CrossRef] [PubMed]
- Selinger, C.P.; Andrews, J.M.; Titman, A.; Norton, I.; Jones, D.B.; McDonald, C.; Barr, G.; Selby, W.; Leong, R.; Andrews, J.; et al. Long-Term Follow-up Reveals Low Incidence of Colorectal Cancer, but Frequent Need for Resection, Among Australian Patients with Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2014, 12, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.B.; Sharma, S.; Mohamedali, A.; Mahboob, S.; Redmond, W.J.; Pascovici, D.; Wu, J.X.; Zaw, T.; Adhikari, S.; Vaibhav, V.; et al. Potential Early Clinical Stage Colorectal Cancer Diagnosis Using a Proteomics Blood Test Panel. Clin. Proteom. 2019, 16, 34. [Google Scholar] [CrossRef]
- Boehm, D.; Krzystek-Korpacka, M.; Neubauer, K.; Matusiewicz, M.; Berdowska, I.; Zielinski, B.; Paradowski, L.; Gamian, A. Paraoxonase-1 Status in Crohn’s Disease and Ulcerative Colitis. Inflamm. Bowel Dis. 2009, 15, 93–99. [Google Scholar] [CrossRef]
- Devarajan, A.; Shih, D.; Reddy, S.T. Inflammation, Infection, Cancer 5 and All That…the Role of Paraoxonases. Adv. Exp. Med. Biol. 2014, 824, 33–41. [Google Scholar] [CrossRef]
- Tratenšek, A.; Locatelli, I.; Grabnar, I.; Drobne, D.; Vovk, T. Oxidative Stress-Related Biomarkers as Promising Indicators of Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis. Redox Biol. 2024, 77, 103380. [Google Scholar] [CrossRef]
- Contran, N.; Arrigoni, G.; Battisti, I.; D’Incà, R.; Angriman, I.; Franchin, C.; Scapellato, M.L.; Padoan, A.; Moz, S.; Aita, A.; et al. Colorectal Cancer and Inflammatory Bowel Diseases Share Common Salivary Proteomic Pathways. Sci. Rep. 2024, 14, 17711. [Google Scholar] [CrossRef]
- Chan, M.; Bennick, A. Proteolytic Processing of a Human Salivary Proline-Rich Protein Precursor by Proprotein Convertases. Eur. J. Biochem. 2001, 268, 3423–3431. [Google Scholar] [CrossRef]
- Bojesen, R.D.; Riis, L.B.; Høgdall, E.; Nielsen, O.H.; Jess, T. Inflammatory Bowel Disease and Small Bowel Cancer Risk, Clinical Characteristics, and Histopathology: A Population-Based Study. Clin. Gastroenterol. Hepatol. 2017, 15, 1900–1907.e2. [Google Scholar] [CrossRef]
- Lin, M.; Liu, J.; Zhang, F.; Qi, G.; Tao, S.; Fan, W.; Chen, M.; Ding, K.; Zhou, F. The Role of Leucine-Rich Alpha-2-Glycoprotein-1 in Proliferation, Migration, and Invasion of Tumors. J. Cancer Res. Clin. Oncol. 2022, 148, 283–291. [Google Scholar] [CrossRef]
- Shimoyama, T.; Yamamoto, T.; Yoshiyama, S.; Nishikawa, R.; Umegae, S. Leucine-Rich Alpha-2 Glycoprotein Is a Reliable Serum Biomarker for Evaluating Clinical and Endoscopic Disease Activity in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2023, 29, 1399–1408. [Google Scholar] [CrossRef]
- Huai, J.P.; Ding, J.; Ye, X.H.; Chen, Y.P. Inflammatory Bowel Disease and Risk of Cholangiocarcinoma: Evidence from a Meta-Analysis of Population-Based Studies. Asian Pac. J. Cancer Prev. 2014, 15, 3477–3482. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Refsum, E.; Helsingen, L.M.; Folseraas, T.; Ploner, A.; Wieszczy, P.; Barua, I.; Jodal, H.C.; Melum, E.; Løberg, M.; et al. Risk of Hepato-Pancreato-Biliary Cancer Is Increased by Primary Sclerosing Cholangitis in Patients with Inflammatory Bowel Disease: A Population-Based Cohort Study. United Eur. Gastroenterol. J. 2022, 10, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhong, L.; He, Q.; Wang, S.; Pan, Z.; Wang, T.; Zhao, Y. Diagnostic Accuracy of Serum CA19-9 in Patients with Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Med. Sci. Monit. 2015, 21, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, K.M.; Hosseinzadeh, Y.; Nourpanah, Z.; Shirazinezhad, A.M.; Nikniaz, Z. The Value of Serum CA19-9 in Predicting Primary Sclerosing Cholangitis in Patients with Ulcerative Colitis. Adv. Dig. Med. 2020, 7, 147–151. [Google Scholar] [CrossRef]
- Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; et al. Roles of CA19-9 in Pancreatic Cancer: Biomarker, Predictor and Promoter. Biochim. Biophys Acta Rev Cancer 2021, 1875, 188409. [Google Scholar] [CrossRef]
- Shi, Y.; Deng, X.; Zhan, Q.; Shen, B.; Jin, X.; Zhu, Z.; Chen, H.; Li, H.; Peng, C. A Prospective Proteomic-Based Study for Identifying Potential Biomarkers for the Diagnosis of Cholangiocarcinoma. J. Gastrointest. Surg. 2013, 17, 1584–1591. [Google Scholar] [CrossRef]
- Ma, J.; Grant, C.E.; Plagens, R.N.; Barrett, L.N.; Guisbert, K.S.K.; Guisbert, E. Cellular Proteomes Drive Tissue-Specific Regulation of the Heat Shock Response. G3 Genes. Genomes Genet. 2017, 7, 1011–1018. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front Immunol 2018, 9, 1298. [Google Scholar] [CrossRef]
- Long, M.D.; Martin, C.F.; Pipkin, C.A.; Herfarth, H.H.; Sandler, R.S.; Kappelman, M.D. Risk of Melanoma and Nonmelanoma Skin Cancer among Patients with Inflammatory Bowel Disease. Gastroenterology 2012, 143, 390–399.e1. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Z.; Liu, Z.C.; Liao, W.X.; Wei, J.X.; Huang, X.W.; Yang, C.; Xia, Y.H.; Li, L.; Ye, C.; Dai, S.X. Risk of Skin Cancers in Thiopurines-Treated and Thiopurines-Untreated Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Gastroenterol. Hepatol. 2019, 34, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Osterman, M.T.; Sandborn, W.J.; Colombel, J.F.; Robinson, A.M.; Lau, W.; Huang, B.; Pollack, P.F.; Thakkar, R.B.; Lewis, J.D. Increased Risk of Malignancy with Adalimumab Combination Therapy, Compared with Monotherapy, for Crohn’s Disease. Gastroenterology 2014, 146, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Berl, A.; Shir-Az, O.; Genish, I.; Biran, H.; Mann, D.; Singh, A.; Wise, J.; Kravtsov, V.; Kidron, D.; Golberg, A.; et al. Exploring Multisite Heterogeneity of Human Basal Cell Carcinoma Proteome and Transcriptome. PLoS ONE 2023, 18, e0293744. [Google Scholar] [CrossRef]
- Zhao, Y.; Wan, D.; Yang, J.; Hammock, B.D.; De Montellano, P.R.O. Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 toward Endogenous Substrates. Drug Metab. Dispos. 2016, 44, 771–780. [Google Scholar] [CrossRef]
- Wood, L.D.; Calhoun, E.S.; Silliman, N.; Ptak, J.; Szabo, S.; Powell, S.M.; Riggins, G.J.; Wang, T.L.; Yan, H.; Gazdar, A.; et al. Somatic Mutations of GUCY2F, EPHA3, and NTRK3 in Human Cancers. Hum. Mutat. 2006, 27, 1060–1061. [Google Scholar] [CrossRef]
- Beaugerie, L.; Brousse, N.; Marie Bouvier, A.; Frédéric Colombel, J.; Lémann, M.; Cosnes, J.; Hébuterne, X.; Cortot, A.; Bouhnik, Y.; Pierre Gendre, J.; et al. Lymphoproliferative Disorders in Patients Receiving Thiopurines for Infl Ammatory Bowel Disease: A Prospective Observational Cohort Study. Lancet 2009, 374, 1617–1625. [Google Scholar] [CrossRef]
- Khan, N.; Abbas, A.M.; Lichtenstein, G.R.; Loftus, E.V.; Bazzano, L.A. Risk of Lymphoma in Patients with Ulcerative Colitis Treated with Thiopurines: A Nationwide Retrospective Cohort Study. Gastroenterology 2013, 145, 1007–1015.e3. [Google Scholar] [CrossRef]
- Vos, A.C.W.; Bakkal, N.; Minnee, R.C.; Casparie, M.K.; De Jong, D.J.; Dijkstra, G.; Stokkers, P.; Van Bodegraven, A.A.; Pierik, M.; Van Der Woude, C.J.; et al. Risk of Malignant Lymphoma in Patients with Inflammatory Bowel Diseases: A Dutch Nationwide Study. Inflamm. Bowel Dis. 2011, 17, 1837–1845. [Google Scholar] [CrossRef]
- Marchesi, F.; Martin, A.P.; Thirunarayanan, N.; Devany, E.; Mayer, L.; Grisotto, M.G.; Furtado, G.C.; Lira, S.A. CXCL13 Expression in the Gut Promotes Accumulation of IL-22-Producing Lymphoid Tissue-Inducer Cells, and Formation of Isolated Lymphoid Follicles. Mucosal Immunol. 2009, 2, 486–494. [Google Scholar] [CrossRef]
- Spåth, F.; Wibom, C.; Krop, E.J.M.; Johansson, A.S.; Bergdahl, I.A.; Vermeulen, R.; Melin, B. Biomarker Dynamics in B-Cell Lymphoma: A Longitudinal Prospective Study of Plasma Samples up to 25 Years before Diagnosis. Cancer Res. 2017, 77, 1408–1415. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Ao, D.; Wei, X. CXCL13-CXCR5 Axis: Regulation in Inflammatory Diseases and Cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877. [Google Scholar] [CrossRef]
- Lapsia, S.; Koganti, S.; Spadaro, S.; Rajapakse, R.; Chawla, A.; Bhaduri-Mcintosh, S. Anti-TNFα Therapy for Inflammatory Bowel Diseases Is Associated with Epstein-Barr Virus Lytic Activation. J. Med. Virol. 2016, 88, 312–318. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Collins, S.M.; Bercik, P.; Verdu, E.F. The Microbiota-Gut-Brain Axis in Gastrointestinal Disorders: Stressed Bugs, Stressed Brain or Both? J. Physiol. 2014, 592, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, H.M.; Yasin, R.; Mohammad, I.S.; Fan, Y.; Li, H.; Shahzad, M.; Xu, J. The Gut-Brain-Axis: A Positive Relationship between Gut Microbial Dysbiosis and Glioblastoma Brain Tumour. Heliyon 2024, 10, e30494. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Luo, H.; Samii, A.; Etminan, M. The Risk of Glioblastoma with TNF Inhibitors. Pharmacotherapy 2016, 36, 449–454. [Google Scholar] [CrossRef]
- Tichy, J.; Spechtmeyer, S.; Mittelbronn, M.; Hattingen, E.; Rieger, J.; Senft, C.; Foerch, C. Prospective Evaluation of Serum Glial Fibrillary Acidic Protein (GFAP) as a Diagnostic Marker for Glioblastoma. J. Neurooncol. 2015, 126, 361–369. [Google Scholar] [CrossRef]
- Kimura, A.; Takemura, M.; Yamamoto, Y.; Hayashi, Y.; Saito, K.; Shimohata, T. Cytokines and Biological Markers in Autoimmune GFAP Astrocytopathy: The Potential Role for Pathogenesis and Therapeutic Implications. J. Neuroimmunol. 2019, 334, 576999. [Google Scholar] [CrossRef]
- Jun, J.; Gim, J.; Kim, Y.; Kim, H.; Yu, S.J.; Yeo, I.; Park, J.; Yoo, J.J.; Cho, Y.Y.; Lee, D.H.; et al. Analysis of Significant Protein Abundance from Multiple Reaction-Monitoring Data. BMC Syst. Biol. 2018, 12, 123. [Google Scholar] [CrossRef]
Stool Examination | |
---|---|
Lactoferrin | Used to exclude intestinal inflammation, it is a negative diagnostic test |
Calprotectin | Used to measure the activity of IBD |
Blood Examination | |
---|---|
Erythrocyte sedimentation rate | Levels correlate with inflammation activity |
C-reactive protein | Levels correlate with inflammation activity |
Antibody tests (with ELISA) | Mostly for microbial agents that increase probability of IBD |
UC: Highest Annual Incidence (per 100,000 Person-Years) | CD: Highest Annual Incidence (per 100,000 Person-Years) | Study Period | |
---|---|---|---|
Europe | 24.3 | 12.7 | 1930–2008 |
Asia/Middle East | 6.3 | 5.0 | 1950–2008 |
North America | 19.2 | 20.2 | 1920–2004 |
Australia | 11.2 | 17.4 | 1967–2008 |
Drug Class | Drug Compound | Mechanism of Action | Adverse Effects | Increased Cancer Risk |
---|---|---|---|---|
Amino salicylate | 5-Aminosalicylic acid (5-ASA) | Not fully understood. Possible inhibition of COX enzyme. | Nausea, vomiting, abdominal pain, tachypnea, hyperpnea, neurologic symptoms | No |
Local corticosteroids | Budesonide | Binding to glucocorticoid receptor inhibits gene expression (i.e., NF-kB, IL-10) | Hypercorticism and adrenal axis suppression | No |
Systemic corticosteroids | Prednisolone | Binding to glucocorticoid receptor inhibits gene expression (i.e., NF-kB, IL-10) | Gastrointestinal disturbances, insomnia, and restlessness | Not certain |
Immuno- modulators | 6-mercaptopurine | Interferes with nucleic acid synthesis by inhibiting purine metabolism | Nausea, vomiting, and diarrhea; myelosuppression, liver dysfunction, gastroenteritis | Risk of developing skin cancer and leukemia under investigation |
Azathioprine (prodrug of 6-mercaptopurine) | Immunosuppressive: modulation of rac1 induces T cell apoptosis | Bone marrow hypoplasia, bleeding, and infection, which may progress to death | Risk of developing skin cancer and lymphoma under investigation | |
Methotrexate | Inhibition of cell division by inhibiting nucleotide synthesis | Nausea, vomiting, bone marrow suppression, gastrointestinal ulceration & bleeding | Not certain | |
TNFα antagonists | Infliximab | Binding to TNFα: disruption of the proinflammatory cascade signaling. Can activate ADCC | Recurrent infections, hepatotoxicity, infusion reactions, allergic reactions | Risk of developing lymphoma and other tumors under investigation |
Adalimumab | Binding to TNFα: disruption of the proinflammatory cascade signaling. Can activate ADCC | Skin rash, swelling, difficulty breathing or swallowing, dyspnea, allergic reactions | Risk of developing leukemia and other tumors under investigation | |
Certolizumab | Binding to TNFα: disruption of the proinflammatory cascade signaling. Cannot activate ADCC | Recurrent infections, skin rash, fatigue, hepatotoxicity, allergic reactions | Risk of developing lymphoma and skin cancer under investigation | |
IL-12 & IL-23 antagonists | Ustekinumab | Binding to IL-12 and IL-23 prevents receptor-mediated responses | Recurrent infections, allergic reactions, itching, diarrhea, nausea, fatigue, bleeding | No |
Risankizumab | Binding to IL-23 inhibits the differentiation of Th17 cells, preventing inflammation | Recurrent infections, headache, itching, fatigue | No | |
Integrin blockers | Vedolizumab | Binding to the α4β7 integrin prevents homing of T-lymphocytes to gut lymph tissue | Recurrent infections, rash, gastrointestinal symptoms (stypsis, anal abscess, etc.) | No |
Janus kinase inhibitors | Upadacitinib | Inhibition of proinflammatory tyrosine-protein kinase JAK1 | Infections of upper airways, neutropenia, nausea, cough, hypercholesterolemia | Risk of developing non-melanoma skin cancer under investigation |
Cancer | Incidence (New Cases of Cancer per 100,000 Men and Women per Year) | Death Rate (Deaths per 100,000 Men and Women per Year) | 5-Year Relative Survival (%) |
---|---|---|---|
Colorectal cancer | 37.1 | 12.9 | 65.4 |
Small bowel cancer | 2.6 | 0.4 | 71.1 |
Cholangiocarcinoma | 9.4 | 6.6 | 22 |
Melanoma skin cancer | 21.9 | 2.0 | 94.7 |
Non-Hodgkin lymphoma | 5.6 | 1.7 | 64.8 |
Glioblastoma | 6.1 | 4.4 | 33 |
Breast cancer | 130.8 | 19.2 | 91.7 |
Lung cancer | 47.8 | 31.5 | 28.1 |
Proteomic Technique | Advantages | Disadvantages | Ref. |
---|---|---|---|
ELISA | High specificity; widely used in diagnostics; cost-effective; easy to automate | Limited to known targets; not suitable for biomarker discovery | [30] |
LATEX TURBIDIMETRIC ASSAY | Rapid and inexpensive; good for routine diagnostics | Low sensitivity and specificity; limited to known proteins | [38] |
Orbitrap MS | High resolution and mass accuracy; excellent for biomarker discovery | High cost; requires expert handling; lower throughput than some other MS types | [31] |
MALDI-TOF MS | High-throughput; low cost per sample; rapid analysis | Requires pure samples; less effective for complex mixtures | [31] |
ESI-TOF MS | High sensitivity; good for complex mixtures and quantitative analysis | More expensive than MALDI; lower throughput | [31] |
SELDI-TOF MS | Suitable for biomarker profiling in diagnostics | Lower resolution and reproducibility; limited to surface-bound proteins | [39] |
SWATH-MS | High reproducibility; quantitative; ideal for biomarker discovery; high-throughput | Requires spectral libraries; complex data analysis; high cost | [31] |
Cancer | Potential Biomarker | Biological Matrix | Technique of Detection | Already Used in Diagnostics | Ref. |
---|---|---|---|---|---|
Colorectal Cancer | PON1 | Blood serum | SWATH-MS | No | [54] |
PRB1 (fragment GG-17) | Feces | Orbitrap MS | No | [58] | |
Small Bowel Cancer | LRG | Blood serum | Latex turbidimetric immunoassay | Yes | [38] |
Cholangiocarcinoma | CA19-9 | Blood serum | ELISA | Yes | [65,66] |
CCTγ and S100A9 | Liver biopsy | MALDI-TOF | No | [68] | |
Skin Cancer (nodular BCC subtype) | CYP2W1 and NTRK3 | Skin biopsy | Mass Spectrometry | No | [74] |
Lymphoma | CXCL13 | Blood | ELISA | No | [80] |
EBV-related lymphoma | ZEBRA and RTA | Blood | PCR | No | [83] |
Glioblastoma | GFAP | Blood serum | ELISA | No | [87] |
S100A8/A9 | Blood serum | SELDI-TOF | No | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccon, T.; Bergamo, M.; Franchin, C. Proteomics Approaches for Discovering Novel Protein Biomarkers in Inflammatory Bowel Disease-Related Cancer. Biomolecules 2025, 15, 1328. https://doi.org/10.3390/biom15091328
Saccon T, Bergamo M, Franchin C. Proteomics Approaches for Discovering Novel Protein Biomarkers in Inflammatory Bowel Disease-Related Cancer. Biomolecules. 2025; 15(9):1328. https://doi.org/10.3390/biom15091328
Chicago/Turabian StyleSaccon, Tommaso, Matilde Bergamo, and Cinzia Franchin. 2025. "Proteomics Approaches for Discovering Novel Protein Biomarkers in Inflammatory Bowel Disease-Related Cancer" Biomolecules 15, no. 9: 1328. https://doi.org/10.3390/biom15091328
APA StyleSaccon, T., Bergamo, M., & Franchin, C. (2025). Proteomics Approaches for Discovering Novel Protein Biomarkers in Inflammatory Bowel Disease-Related Cancer. Biomolecules, 15(9), 1328. https://doi.org/10.3390/biom15091328