Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culturing
2.2. Simulated Microgravity on the iRPM and Sample Collection
2.3. RNA Isolation
2.4. RNA Sequencing
2.5. Gene Expression Analysis
2.6. DNA Isolation
2.7. Preparation and Filtering of DNA Methylation Data and DMP and DMR Analyses
2.8. DNA Methylation Enrichment Analyses
2.9. Histology
2.10. Immunohistochemical Staining, Microscopy and Analysis
3. Results
3.1. PC-3 RNA Expression Changes Under Simulated Microgravity
3.2. Differential DNA Methylation Under Simulated Microgravity
4. Discussion
4.1. Transcriptional RPM Effects in PC-3 Cell Cultures
4.2. Transcriptional Effects in RPM-Induced PC-3 Tumor Spheroids
4.3. The RPM Cell Culture Reduces Hypoxia-Related Gene Expression in Bubble-Free Filled Culture Flasks
4.4. DNA Methylation Changes Under Simulated Microgravity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1g | 1g control |
AA | African American (population) |
AD | adherent cells after three days in the RPM |
ChIP-Seq | chromatin immunoprecipitation DNA sequencing |
DAVID | Database for Annotation, Visualization and Integrated Discovery |
DEG | differentially expressed gene |
DMP | differentially methylated position |
DMR | differentially methylated region |
EA | European American (population) |
ECACC | European Collection of Authenticated Cell Cultures |
ECM | extracellular matrix |
FCS | fetal calf serum |
FDR | false discovery rate (p-value multiple testing adjusted by the Benjamini–Hochberg method) |
TFBS | transcription factor binding site |
JEB-PA | junctional epidermolysis bullosa with pyloric atresia |
MCS | multicellular spheroid |
MSC | mesenchymal stem cell |
NSCLC | blood of non-small cell lung cancer |
OSCC | oral squamous cell carcinoma |
PA-JEB | pyloric atresia-junctional epidermolysis bullosa syndrome |
PC | prostate cancer |
PF | parabolic flight |
PPI | protein-to-protein interaction |
PTC | premature termination codon |
padj | multiple testing adjusted p-value |
RPM | random positioning machine |
cf-mtDNA | cell-free mitochondrial DNA |
cfDNA | cell-free DNA |
iRPM | incubator random positioning machine |
s-µg | simulated microgravity |
References
- Surintrspanont, J.; Zhou, M. Prostate pathology: What is new in the 2022 WHO classification of urinary and male genital tumors? Pathologica 2022, 115, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Abdollah, F.; Schiffmann, J.; Trudeau, V.; Shariat, S.F.; Kim, S.P.; Perrotte, P.; Montorsi, F.; Briganti, A.; Trinh, Q.D.; et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2014, 74, 210–216. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics for Prostate Cancer. Available online: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html (accessed on 1 December 2024).
- Schulz, H.; Dietrichs, D.; Wehland, M.; Corydon, T.J.; Hemmersbach, R.; Liemersdorf, C.; Melnik, D.; Hubner, N.; Saar, K.; Infanger, M.; et al. In prostate cancer cells cytokines are early responders to gravitational changes occurring in parabolic flights. Int. J. Mol. Sci. 2022, 23, 7876. [Google Scholar] [CrossRef]
- Albi, E.; Kruger, M.; Hemmersbach, R.; Lazzarini, A.; Cataldi, S.; Codini, M.; Beccari, T.; Ambesi-Impiombato, F.S.; Curcio, F. Impact of gravity on thyroid cells. Int. J. Mol. Sci. 2017, 18, 972. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Schulz, H.; Kruger, M.; Cortes-Sanchez, J.L.; Egli, M.; Kraus, A.; Sahana, J.; Corydon, T.J.; Hemmersbach, R.; Wise, P.M.; et al. The Fight against cancer by microgravity: The multicellular spheroid as a metastasis model. Int. J. Mol. Sci. 2022, 23, 3073. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Pietsch, J.; Wehland, M.; Schulz, H.; Saar, K.; Hubner, N.; Bauer, J.; Braun, M.; Schwarzwalder, A.; Segerer, J.; et al. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 2014, 28, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Melnik, D.; Kruger, M.; Schulz, H.; Kopp, S.; Wehland, M.; Bauer, J.; Baselet, B.; Vermeesen, R.; Baatout, S.; Corydon, T.J.; et al. The cellbox-2 mission to the international space station: Thyroid cancer cells in space. Int. J. Mol. Sci. 2021, 22, 8777. [Google Scholar] [CrossRef]
- Dietrichs, D.; Grimm, D.; Sahana, J.; Melnik, D.; Corydon, T.J.; Wehland, M.; Kruger, M.; Vermeesen, R.; Baselet, B.; Baatout, S.; et al. Three-dimensional growth of prostate cancer cells exposed to simulated microgravity. Front. Cell. Dev. Biol. 2022, 10, 841017. [Google Scholar] [CrossRef]
- Hybel, T.E.; Dietrichs, D.; Sahana, J.; Corydon, T.J.; Nassef, M.Z.; Wehland, M.; Kruger, M.; Magnusson, N.E.; Bauer, J.; Utpatel, K.; et al. Simulated microgravity influences VEGF, MAPK, and PAM signaling in prostate cancer cells. Int. J. Mol. Sci. 2020, 21, 1263. [Google Scholar] [CrossRef]
- Clejan, S.; O’Connor, K.; Rosensweig, N. Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J. Cell. Mol. Med. 2001, 5, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Gangadaran, P.; Oh, E.J.; Rajendran, R.L.; Oh, J.M.; Kim, H.M.; Kwak, S.; Chung, H.Y.; Lee, J.; Ahn, B.C.; Hong, C.M. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem. Biophys. Res. Commun. 2023, 673, 87–95. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Sun, Y.; Zhang, D.; Zhao, Z.; Liu, L. Reversing platinum resistance in ovarian cancer multicellular spheroids by targeting Bcl-2. Onco Targets Ther. 2019, 12, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Sievers, D.; Bunzendahl, J.; Frosch, A.; Perske, C.; Hemmerlein, B.; Schliephake, H.; Brockmeyer, P. Generation of highly differentiated BHY oral squamous cell carcinoma multicellular spheroids. Mol. Clin. Oncol. 2018, 8, 323–325. [Google Scholar] [CrossRef]
- Lee, C.; Siu, A.; Ramos, D.M. Multicellular spheroids as a model for hypoxia-induced EMT. Anticancer. Res. 2016, 36, 6259–6263. [Google Scholar] [CrossRef]
- Jagtap, J.C.; Parveen, D.; Shah, R.D.; Desai, A.; Bhosale, D.; Chugh, A.; Ranade, D.; Karnik, S.; Khedkar, B.; Mathur, A.; et al. Secretory prostate apoptosis response (Par)-4 sensitizes multicellular spheroids (MCS) of glioblastoma multiforme cells to tamoxifen-induced cell death. FEBS Open Bio 2015, 5, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Venzor, A.; Mandujano-Tinoco, E.A.; Ruiz-Silvestre, A.; Sanchez, J.M.; Lizarraga, F.; Zampedri, C.; Melendez-Zajgla, J.; Maldonado, V. lncMat2B regulated by severe hypoxia induces cisplatin resistance by increasing DNA damage repair and tumor-initiating population in breast cancer cells. Carcinogenesis 2020, 41, 1485–1497. [Google Scholar] [CrossRef]
- Masiello, M.G.; Cucina, A.; Proietti, S.; Palombo, A.; Coluccia, P.; D’Anselmi, F.; Dinicola, S.; Pasqualato, A.; Morini, V.; Bizzarri, M. Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells. Biomed. Res. Int. 2014, 2014, 652434. [Google Scholar] [CrossRef] [PubMed]
- Rutter, L.; Barker, R.; Bezdan, D.; Cope, H.; Costes, S.V.; Degoricija, L.; Fisch, K.M.; Gabitto, M.I.; Gebre, S.; Giacomello, S.; et al. A New Era for Space Life Science: International Standards for Space Omics Processing. Patterns 2020, 1, 100148. [Google Scholar] [CrossRef]
- Fujita, S.I.; Rutter, L.; Ong, Q.; Muratani, M. Integrated RNA-seq analysis indicates asynchrony in clock genes between tissues under spaceflight. Life 2020, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Haus, E.L.; Smolensky, M.H. Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 2013, 17, 273–284. [Google Scholar] [CrossRef]
- Bezdan, D.; Grigorev, K.; Meydan, C.; Pelissier Vatter, F.A.; Cioffi, M.; Rao, V.; MacKay, M.; Nakahira, K.; Burnham, P.; Afshinnekoo, E.; et al. Cell-free DNA (cfDNA) and exosome profiling from a year-long human spaceflight reveals circulating biomarkers. iScience 2020, 23, 101844. [Google Scholar] [CrossRef] [PubMed]
- Vahlensieck, C.; Thiel, C.S.; Christoffel, S.; Herbst, S.; Polzer, J.; Lauber, B.A.; Wolter, S.; Layer, L.E.; Hinkelbein, J.; Tauber, S.; et al. Rapid downregulation of H3K4me3 binding to immunoregulatory genes in altered gravity in primary human M1 macrophages. Int. J. Mol. Sci. 2022, 24, 603. [Google Scholar] [CrossRef]
- Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 1979, 17, 16–23. [Google Scholar]
- Tai, S.; Sun, Y.; Squires, J.M.; Zhang, H.; Oh, W.K.; Liang, C.Z.; Huang, J. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011, 71, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.J.; Kingsley, E.A. Human prostate cancer cell lines. Methods Mol. Med. 2003, 81, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic. Acids. Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Amand, J.; Fehlmann, T.; Backes, C.; Keller, A. DynaVenn: Web-based computation of the most significant overlap between ordered sets. BMC Bioinform. 2019, 20, 743. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic. Acids. Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic. Acids. Res. 2005, 33, D433–D437. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis pipeline for illumina beadchips. Bioinformatics 2017, 33, 3982–3984. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, J.; Oshlack, A.; Phipson, B. Gene set enrichment analysis for genome-wide DNA methylation data. Genome. Biol. 2021, 22, 173. [Google Scholar] [CrossRef] [PubMed]
- Vorontsov, I.E.; Eliseeva, I.A.; Zinkevich, A.; Nikonov, M.; Abramov, S.; Boytsov, A.; Kamenets, V.; Kasianova, A.; Kolmykov, S.; Yevshin, I.S.; et al. HOCOMOCO in 2024: A rebuild of the curated collection of binding models for human and mouse transcription factors. Nucleic. Acids. Res. 2024, 52, D154–D163. [Google Scholar] [CrossRef]
- Owens, D.W.; Lane, E.B. The quest for the function of simple epithelial keratins. Bioessays 2003, 25, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Trompetter, M.; Smedts, F.; van der Wijk, J.; Schoots, C.; de Jong, H.J.; Hopman, A.; de la Rosette, J. Keratin profiling in the developing human prostate. A different approach to understanding epithelial lineage. Anticancer Res. 2008, 28, 237–243. [Google Scholar]
- Gruener, R.; Roberts, R.; Reitstetter, R. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight. Biol. Sci. Space 1994, 8, 79–93. [Google Scholar] [CrossRef]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Kruger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schutte, A.; et al. Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef]
- Clejan, S.; O’Connor, K.C.; Cowger, N.L.; Cheles, M.K.; Haque, S.; Primavera, A.C. Effects of simulated microgravity on DU 145 human prostate carcinoma cells. Biotechnol. Bioeng. 1996, 50, 587–597. [Google Scholar] [CrossRef]
- Barkia, B.; Sandt, V.; Melnik, D.; Cortes-Sanchez, J.L.; Marchal, S.; Baselet, B.; Baatout, S.; Sahana, J.; Grimm, D.; Wehland, M.; et al. The formation of stable lung tumor spheroids during random positioning involves increased estrogen sensitivity. Biomolecules 2024, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.; Slumstrup, L.; Corydon, T.J.; Sahana, J.; Aleshcheva, G.; Islam, T.; Magnusson, N.E.; Wehland, M.; Bauer, J.; Infanger, M.; et al. Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci. Rep. 2016, 6, 26887. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.; Saba, S.; Gower, W. Fibronectin influences cellular proliferation and apoptosis similarly in LNCaP and PC-3 prostate cancer cell lines. Urol. Oncol. 2000, 5, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Caicedo-Carvajal, C.E.; Shinbrot, T.; Foty, R.A. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates. PLoS ONE 2010, 5, e11830. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.E.; Foty, R.A.; Corbett, S.A. Fibronectin matrix assembly regulates α5β1-mediated cell cohesion. Mol. Biol. Cell 2004, 15, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, J.; Sickmann, A.; Weber, G.; Bauer, J.; Egli, M.; Wildgruber, R.; Infanger, M.; Grimm, D. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 2011, 11, 2095–2104. [Google Scholar] [CrossRef]
- Fang, M.; Yuan, J.; Peng, C.; Li, Y. Collagen as a double-edged sword in tumor progression. Tumour. Biol. 2014, 35, 2871–2882. [Google Scholar] [CrossRef]
- Pal, S.; Ganguly, K.K.; Chatterjee, A. Extracellular matrix protein fibronectin induces matrix metalloproteinases in human prostate adenocarcinoma cells PC-3. Cell Commun. Adhes. 2013, 20, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, U.P.; Grizzle, W.E.; Lillard, J.W., Jr. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab. Invest. 2004, 84, 1666–1676. [Google Scholar] [CrossRef] [PubMed]
- Savita, J.K.; Varsha, V.K.; Girish, H.C. Role of MMP1 and MMP10 in local invasion and distant metastasis in different levels of oral squamous cell carcinoma—A immunohistochemical comparative study. J. Oral. Maxillofac. Pathol. 2023, 27, 315–322. [Google Scholar] [CrossRef]
- Thakore, V.P.; Patel, K.D.; Vora, H.H.; Patel, P.S.; Jain, N.K. Up-regulation of extracellular-matrix and inflammation related genes in oral squamous cell carcinoma. Arch. Oral. Biol. 2024, 161, 105925. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Kong, Y.; Chen, N.; Peng, W.; Zi, R.; Jiang, M.; Zhu, J.; Wang, Y.; Yue, J.; Lv, J.; et al. Identification of Immune-Related Gene Signature and Prediction of CeRNA network in active ulcerative colitis. Front. Immunol. 2022, 13, 855645. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, H.; Li, H.; Ge, C.; Zhao, F.; Yao, M.; Li, J. Derivate isocorydine (d-ICD) suppresses migration and invasion of hepatocellular carcinoma cell by downregulating ITGA1 expression. Int. J. Mol. Sci. 2017, 18, 514. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.P.; Zhang, Q.; Devarajan, R.; Paia, C.; Luo, B.; Zhang, K.; Koivusalo, S.; Qin, L.; Xia, J.; Ahtikoski, A.; et al. Dampened regulatory circuitry of TEAD1/ITGA1/ITGA2 promotes TGFbeta1 signaling to orchestrate prostate cancer progression. Adv. Sci. 2024, 11, e2305547. [Google Scholar] [CrossRef] [PubMed]
- Aleshcheva, G.; Wehland, M.; Sahana, J.; Bauer, J.; Corydon, T.J.; Hemmersbach, R.; Frett, T.; Egli, M.; Infanger, M.; Grosse, J.; et al. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J. 2015, 29, 2303–2314. [Google Scholar] [CrossRef]
- Barth, P.J.; Moll, R.; Ramaswamy, A. Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Arch. 2005, 446, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Gilles, C.; Bassuk, J.A.; Pulyaeva, H.; Sage, E.H.; Foidart, J.M.; Thompson, E.W. SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res. 1998, 58, 5529–5536. [Google Scholar] [PubMed]
- Gerson, K.D.; Shearstone, J.R.; Maddula, V.; Seligmann, B.E.; Mercurio, A.M. Integrin beta4 regulates SPARC protein to promote invasion. J. Biol. Chem. 2012, 287, 9835–9844. [Google Scholar] [CrossRef]
- Carpo, N.; Tran, V.; Biancotti, J.C.; Cepeda, C.; Espinosa-Jeffrey, A. Space flight enhances stress pathways in human neural stem cells. Biomolecules 2024, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Pecaut, M.J.; Slater, J.M.; Gridley, D.S. Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. J. Appl. Physiol. 2010, 108, 162–171. [Google Scholar] [CrossRef]
- Braveboy-Wagner, J.; Lelkes, P.I. Impairment of 7F2 osteoblast function by simulated partial gravity in a random positioning machine. NPJ Microgravity 2022, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Mateo, F.; Meca-Cortes, O.; Celia-Terrassa, T.; Fernandez, Y.; Abasolo, I.; Sanchez-Cid, L.; Bermudo, R.; Sagasta, A.; Rodriguez-Carunchio, L.; Pons, M.; et al. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol. Cancer 2014, 13, 237. [Google Scholar] [CrossRef]
- Celia-Terrassa, T.; Meca-Cortes, O.; Mateo, F.; Martinez de Paz, A.; Rubio, N.; Arnal-Estape, A.; Ell, B.J.; Bermudo, R.; Diaz, A.; Guerra-Rebollo, M.; et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 2012, 122, 1849–1868. [Google Scholar] [CrossRef]
- Ethiraj, P.; Link, J.R.; Sinkway, J.M.; Brown, G.D.; Parler, W.A.; Reddy, S.V. Microgravity modulation of syncytin-A expression enhance osteoclast formation. J. Cell Biochem. 2018, 119, 5696–5703. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Guo, S.; Yang, J.; Lu, S.; Yue, Y.; Li, H.; Sun, P.; Zhang, T.; Xu, B.; Sun, H.; et al. Inflammation is involved in response of gastric mucosal epithelial cells under simulated microgravity by integrated transcriptomic analysis. Am. J. Transl. Res. 2021, 13, 9195–9207. [Google Scholar]
- Alshyarba, M.; Otifi, H.; Al Fayi, M.; Dera, A.A.; Rajagopalan, P. Thymoquinone inhibits IL-7-induced tumor progression and metastatic invasion in prostate cancer cells by attenuating matrix metalloproteinase activity and Akt/NF-kappaB signaling. Biotechnol. Appl. Biochem. 2021, 68, 1403–1411. [Google Scholar] [CrossRef]
- Qu, H.; Zou, Z.; Pan, Z.; Zhang, T.; Deng, N.; Chen, G.; Wang, Z. IL-7/IL-7 receptor axis stimulates prostate cancer cell invasion and migration via AKT/NF-kappaB pathway. Int. Immunopharmacol. 2016, 40, 203–210. [Google Scholar] [CrossRef]
- Molina, O.E.; LaRue, H.; Simonyan, D.; Hovington, H.; Tetu, B.; Fradet, V.; Lacombe, L.; Toren, P.; Bergeron, A.; Fradet, Y. High infiltration of CD209(+) dendritic cells and CD163(+) macrophages in the peritumor area of prostate cancer is predictive of late adverse outcomes. Front. Immunol. 2023, 14, 1205266. [Google Scholar] [CrossRef]
- Shareef, Z.A.; Hachim, M.Y.; Talaat, I.M.; Bhamidimarri, P.M.; Ershaid, M.N.A.; Ilce, B.Y.; Venkatachalam, T.; Eltayeb, A.; Hamoudi, R.; Hachim, I.Y. DKK3’s protective role in prostate cancer is partly due to the modulation of immune-related pathways. Front. Immunol. 2023, 14, 978236. [Google Scholar] [CrossRef] [PubMed]
- Melnik, D.; Cortes-Sanchez, J.L.; Sandt, V.; Kahlert, S.; Kopp, S.; Grimm, D.; Kruger, M. Dexamethasone selectively inhibits detachment of metastatic thyroid cancer cells during random positioning. Cancers 2023, 15, 1641. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Sanchez, J.L.; Melnik, D.; Sandt, V.; Kahlert, S.; Marchal, S.; Johnson, I.R.D.; Calvaruso, M.; Liemersdorf, C.; Wuest, S.L.; Grimm, D.; et al. Fluid and bubble flow detach adherent cancer cells to form spheroids on a random positioning machine. Cells 2023, 12, 2665. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar] [CrossRef] [PubMed]
- De Backer, J.; Maric, D.; Bosman, M.; Dewilde, S.; Hoogewijs, D. A reliable set of reference genes to normalize oxygen-dependent cytoglobin gene expression levels in melanoma. Sci. Rep. 2021, 11, 10879. [Google Scholar] [CrossRef]
- Kohmura, N.; Yagi, T.; Tomooka, Y.; Oyanagi, M.; Kominami, R.; Takeda, N.; Chiba, J.; Ikawa, Y.; Aizawa, S. A novel nonreceptor tyrosine kinase, Srm: Cloning and targeted disruption. Mol. Cell. Biol. 1994, 14, 6915–6925. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Song, L.; Lin, Y.; Nowialis, P.; Gao, Q.; Li, T.; Li, B.; Mao, X.; Song, Q.; Xing, C.; et al. ROS-mediated SRMS activation confers platinum resistance in ovarian cancer. Oncogene 2023, 42, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, W.; Feng, S.; Zhong, B. The possible role of SRMS in colorectal cancer by bioinformatics analysis. World J. Surg. Oncol. 2021, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.T. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, J.; Zou, J.; She, R.; Wang, Y.; Yue, Z.; Tian, J.; Xia, K.; Yin, J.; Wang, D. The effect of microgravity on tissue structure and function of rat testis. Braz. J. Med. Biol. Res. 2011, 44, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.P.; Deaver, D.R.; Zirkin, B.R.; Grills, G.S.; Sapp, W.J.; Veeramachaneni, D.N.; Clemens, J.W.; Banerjee, S.D.; Folmer, J.; Gruppi, C.M.; et al. Effects of microgravity or simulated launch on testicular function in rats. J. Appl. Physiol. 1992, 73, 174S–185S. [Google Scholar] [CrossRef]
- Jamroze, A.; Chatta, G.; Tang, D.G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 2021, 518, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, E.; Ould Madi Berthelemy, P.; Cottard, F.; Angel, C.Z.; Schreyer, E.; Ye, T.; Morlet, B.; Negroni, L.; Kieffer, B.; Ceraline, J. Androgen receptor-mediated transcriptional repression targets cell plasticity in prostate cancer. Mol. Oncol. 2022, 16, 2518–2536. [Google Scholar] [CrossRef] [PubMed]
- McCrea, E.; Sissung, T.M.; Price, D.K.; Chau, C.H.; Figg, W.D. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol. Res. 2016, 114, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, D.; Jiang, J.; Huang, W.; Li, D.; Luo, J.; Gu, W.; Mo, W.; Wang, C.; Li, Y.; et al. Integrative analysis of AR-mediated transcriptional regulatory network reveals IRF1 as an inhibitor of prostate cancer progression. Prostate 2020, 80, 640–652. [Google Scholar] [CrossRef]
- Kanayama, M.; Hayano, T.; Koebis, M.; Maeda, T.; Tabe, Y.; Horie, S.; Aiba, A. Hyperactive mTOR induces neuroendocrine differentiation in prostate cancer cell with concurrent up-regulation of IRF1. Prostate 2017, 77, 1489–1498. [Google Scholar] [CrossRef]
- Kneitz, B.; Krebs, M.; Kalogirou, C.; Schubert, M.; Joniau, S.; van Poppel, H.; Lerut, E.; Kneitz, S.; Scholz, C.J.; Strobel, P.; et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014, 74, 2591–2603. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, X.; Basourakos, S.P.; Zuo, X.; Wei, D.; Zhao, J.; Li, M.; Li, Q.; Feng, T.; Guo, P.; et al. Enzalutamide-resistant progression of castration-resistant prostate cancer is driven via the JAK2/STAT1-Dependent pathway. Front. Mol. Biosci. 2021, 8, 652443. [Google Scholar] [CrossRef] [PubMed]
- Diallo, J.S.; Peant, B.; Lessard, L.; Delvoye, N.; Le Page, C.; Mes-Masson, A.M.; Saad, F. An androgen-independent androgen receptor function protects from inositol hexakisphosphate toxicity in the PC3/PC3(AR) prostate cancer cell lines. Prostate 2006, 66, 1245–1256. [Google Scholar] [CrossRef]
- Jin, J.; Zhou, S.; Li, C.; Xu, R.; Zu, L.; You, J.; Zhang, B. MiR-517a-3p accelerates lung cancer cell proliferation and invasion through inhibiting FOXJ3 expression. Life Sci. 2014, 108, 48–53. [Google Scholar] [CrossRef]
- Barisciano, G.; Leo, M.; Muccillo, L.; Pranzini, E.; Parri, M.; Colantuoni, V.; Taddei, M.L.; Sabatino, L. The miR-27a/FOXJ3 axis dysregulates mitochondrial homeostasis in colorectal cancer cells. Cancers 2021, 13, 4994. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Lee, J.; Kim, J.; Shim, S.; Jang, S.W. FOXJ3 regulates cell proliferation and motility through modulating snail expression in breast cancer cells. Anticancer Res. 2023, 43, 2995–3001. [Google Scholar] [CrossRef] [PubMed]
Comparison | Term | Count | FDR |
---|---|---|---|
AD vs. MCSs | KEGG hsa04110—cell cycle | 26 | 1.87 × 10−8 |
GO BP GO:0051301—cell division | 36 | 5.20 × 10−6 | |
GO CC GO:0005615—extracellular space | 102 | 1.05 × 10−5 | |
GO CC GO:0005576—extracellular region | 104 | 1.05 × 10−5 | |
GO CC GO:0005654—nucleoplasm | 165 | 1.38 × 10−4 | |
GO CC GO:0062023—collagen-containing extracellular matrix | 31 | 3.51 × 10−4 | |
GO BP GO:0000278—mitotic cell cycle | 19 | 3.54 × 10−4 | |
GO BP GO:0001525—angiogenesis | 25 | 3.89 × 10−4 | |
GO MF GO:0005515—protein binding | 437 | 7.54 × 10−4 | |
GO BP GO:0007156—homophilic cell adhesion via plasma membrane adhesion molecules | 20 | 0.0013 | |
GO CC GO:0005694—chromosome | 22 | 0.0015 | |
GO BP GO:0007155—cell adhesion | 35 | 0.0037 | |
GO BP GO:0007059—chromosome segregation | 14 | 0.0041 | |
GO CC GO:0000775—chromosome, centromeric region | 10 | 0.0047 | |
GO CC GO:0000776—kinetochore | 16 | 0.0065 | |
GO CC GO:0005604—basement membrane | 12 | 0.0065 | |
GO CC GO:0005819—spindle | 15 | 0.0075 | |
GO BP GO:0006268—DNA unwinding involved in DNA replication | 7 | 0.0083 | |
GO CC GO:0005829—cytosol | 203 | 0.0083 | |
GO CC GO:0071162—CMG complex | 5 | 0.0083 | |
GO MF GO:0005178—integrin binding | 17 | 0.0128 | |
GO CC GO:0005634—nucleus | 217 | 0.0146 | |
GO BP GO:0000070—mitotic sister chromatid segregation | 8 | 0.0169 | |
GO BP GO:0045109—intermediate filament organization | 11 | 0.0169 | |
GO BP GO:0030335—positive regulation of cell migration | 22 | 0.0248 | |
GO CC GO:0032133—chromosome passenger complex | 4 | 0.0282 | |
GO MF GO:0005524—ATP binding | 73 | 0.0292 | |
GO MF GO:0004714—transmembrane receptor protein tyrosine kinase activity | 8 | 0.0292 | |
GO BP GO:0030198—extracellular matrix organization | 16 | 0.0365 | |
GO CC GO:0045121—membrane raft | 16 | 0.0420 |
Comparison | Term | Count | FDR |
---|---|---|---|
1g vs. MCSs | GO BP GO:0051301—cell division | 37 | 3.46 × 10−8 |
GO BP GO:0007059—chromosome segregation | 18 | 1.17 × 10−6 | |
GO CC GO:0000776—kinetochore | 21 | 3.17 × 10−6 | |
GO BP GO:0000278—mitotic cell cycle | 19 | 3.15 × 10−5 | |
GO CC GO:0005819—spindle | 18 | 6.38 × 10−5 | |
GO BP GO:0007156—homophilic cell adhesion via plasma membrane adhesion molecules | 20 | 1.79 × 10−4 | |
GO BP GO:0045109—intermediate filament organization | 13 | 1.84 × 10−4 | |
GO CC GO:0005576—extracellular region | 88 | 2.17 × 10−4 | |
GO MF GO:0008017—microtubule binding | 25 | 2.45 × 10−4 | |
GO BP GO:0007094—mitotic spindle assembly checkpoint signaling | 9 | 3.19 × 10−4 | |
GO BP GO:0000070—mitotic sister chromatid segregation | 9 | 7.47 × 10−4 | |
KEGG hsa04110—cell cycle | 18 | 7.58 × 10−4 | |
GO CC GO:0005615—extracellular space | 81 | 0.0029 | |
GO BP GO:0090307—mitotic spindle assembly | 9 | 0.0079 | |
GO CC GO:0062023—collagen-containing extracellular matrix | 25 | 0.0080 | |
GO CC GO:0000940—outer kinetochore | 5 | 0.0080 | |
GO BP GO:0001525—angiogenesis | 20 | 0.0087 | |
GO CC GO:0015630—microtubule cytoskeleton | 16 | 0.0110 | |
GO BP GO:0007052—mitotic spindle organization | 10 | 0.0126 | |
GO BP GO:0007155—cell adhesion | 30 | 0.0126 | |
GO MF GO:0005524—ATP binding | 67 | 0.0143 | |
GO MF GO:0030280—structural constituent of skin epidermis | 8 | 0.0143 | |
GO MF GO:0030020—extracellular matrix structural constituent conferring tensile strength | 9 | 0.0143 | |
GO CC GO:0000152—nuclear ubiquitin ligase complex | 4 | 0.0148 | |
GO CC GO:0030496—midbody | 15 | 0.0148 | |
GO CC GO:0072686—mitotic spindle | 13 | 0.0148 | |
GO CC GO:0031012—extracellular matrix | 17 | 0.0148 | |
GO BP GO:0000281—mitotic cytokinesis | 10 | 0.0155 | |
GO CC GO:0043231—intracellular membrane-bounded organelle | 41 | 0.0161 | |
GO CC GO:0009986—cell surface | 32 | 0.0189 | |
GO BP GO:0051983—regulation of chromosome segregation | 5 | 0.0235 | |
GO BP GO:0030198—extracellular matrix organization | 15 | 0.0239 | |
GO CC GO:0005581—collagen trimer | 10 | 0.0278 | |
GO CC GO:0005829—cytosol | 174 | 0.0284 | |
GO CC GO:0005886—plasma membrane | 172 | 0.0311 | |
GO CC GO:0005874—microtubule | 19 | 0.0383 | |
GO MF GO:0005515—protein binding | 371 | 0.0391 | |
1g vs. AD | GO BP GO:0001666—response to hypoxia | 8 | 0.0150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulz, H.; Abdelfattah, F.; Heinrich, A.; Melnik, D.; Sandt, V.; Krüger, M.; Wehland, M.; Hoffmann, P.; Cortés-Sánchez, J.L.; Evert, M.; et al. Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions. Biomolecules 2025, 15, 303. https://doi.org/10.3390/biom15020303
Schulz H, Abdelfattah F, Heinrich A, Melnik D, Sandt V, Krüger M, Wehland M, Hoffmann P, Cortés-Sánchez JL, Evert M, et al. Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions. Biomolecules. 2025; 15(2):303. https://doi.org/10.3390/biom15020303
Chicago/Turabian StyleSchulz, Herbert, Fatima Abdelfattah, Anna Heinrich, Daniela Melnik, Viviann Sandt, Marcus Krüger, Markus Wehland, Per Hoffmann, José Luis Cortés-Sánchez, Matthias Evert, and et al. 2025. "Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions" Biomolecules 15, no. 2: 303. https://doi.org/10.3390/biom15020303
APA StyleSchulz, H., Abdelfattah, F., Heinrich, A., Melnik, D., Sandt, V., Krüger, M., Wehland, M., Hoffmann, P., Cortés-Sánchez, J. L., Evert, M., Evert, K., & Grimm, D. (2025). Omics Investigations of Prostate Cancer Cells Exposed to Simulated Microgravity Conditions. Biomolecules, 15(2), 303. https://doi.org/10.3390/biom15020303