Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology
Abstract
1. Introduction
2. Classical Models
2.1. Inflammatory Models
2.1.1. Experimental Autoimmune Encephalomyelitis
2.1.2. Theiler’s Murine Encephalomyelitis Virus Model
2.2. Toxicity-Induced Models
2.2.1. Cuprizone Model
2.2.2. Lysolecithin Model
3. Neurological Models
Ras-Related (R-Ras)
4. New Perspectives in Drug Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OPC | Oligodendrocyte Progenitor Cell |
DMT | Disease-Modifying Therapy |
EAE | Experimental Autoimmune Encephalomyelitis |
MBP | Myelin Basic Protein |
PLP | Proteolipid Protein |
MOG | Myelin Oligodendrocyte Glycoprotein |
KO | Knock-Out |
References
- Funfschilling, U.; Supplie, L.M.; Mahad, D.; Boretius, S.; Saab, A.S.; Edgar, J.; Brinkmann, B.G.; Kassmann, C.M.; Tzvetanova, I.D.; Mobius, W.; et al. Glycolytic Oligodendrocytes Maintain Myelin and Long-Term Axonal Integrity. Nature 2012, 485, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Morrison, B.M.; Li, Y.; Lengacher, S.; Farah, M.H.; Hoffman, P.N.; Liu, Y.; Tsingalia, A.; Jin, L.; Zhang, P.-W.; et al. Oligodendroglia Metabolically Support Axons and Contribute to Neurodegeneration. Nature 2012, 487, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Looser, Z.J.; Faik, Z.; Ravotto, L.; Zanker, H.S.; Jung, R.B.; Werner, H.B.; Ruhwedel, T.; Möbius, W.; Bergles, D.E.; Barros, L.F.; et al. Oligodendrocyte–Axon Metabolic Coupling Is Mediated by Extracellular K+ and Maintains Axonal Health. Nat. Neurosci. 2024, 27, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Saab, A.S.; Tzvetanova, I.D.; Nave, K.A. The Role of Myelin and Oligodendrocytes in Axonal Energy Metabolism. Curr. Opin. Neurobiol. 2013, 23, 1065–1072. [Google Scholar] [CrossRef]
- Simons, M.; Nave, K.A. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2015, 8, a020479. [Google Scholar] [CrossRef]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef]
- Dubey, M.; Pascual-Garcia, M.; Helmes, K.; Wever, D.D.; Hamada, M.S.; Kushner, S.A.; Kole, M.H.P. Myelination Synchronizes Cortical Oscillations by Consolidating Parvalbumin-Mediated Phasic Inhibition. eLife 2022, 11, e73827. [Google Scholar] [CrossRef]
- Monje, M. Myelin Plasticity and Nervous System Function. Annu. Rev. Neurosci. 2018, 41, 61–76. [Google Scholar] [CrossRef]
- Pajevic, S.; Basser, P.J.; Fields, R.D. Role of Myelin Plasticity in Oscillations and Synchrony of Neuronal Activity. Neuroscience 2014, 276, 135–147. [Google Scholar] [CrossRef]
- de Castro, Z.B. Migration of Myelin-Forming Cells in the CNS. In Comprehensive Developmental Neuroscience: Cellular Migration and for Mation of Neuronal Connections; Rubenstein, J.L.R., Rakic, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 417–429. [Google Scholar]
- Fletcher, J.L.; Makowiecki, K.; Cullen, C.L.; Young, K.M. Oligodendrogenesis and Myelination Regulate Cortical Development, Plasticity and Circuit Function. Semin. Cell Dev. Biol. 2021, 118, 14–23. [Google Scholar] [CrossRef]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef]
- Mekki-Dauriac, S.; Agius, E.; Kan, P.; Cochard, P. Bone Morphogenetic Proteins Negatively Control Oligodendrocyte Precursor Specification in the Chick Spinal Cord. Development 2002, 129, 5117–5130. [Google Scholar] [CrossRef]
- Nave, K.A.; Werner, H.B. Myelination of the Nervous System: Mechanisms and Functions. Annu. Rev. Cell Dev. Biol. 2014, 30, 503–533. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Hirahara, Y.; Gotoh, H.; Nomura, T.; Takebayashi, H.; Yamada, H.; Ikenaka, K. Origin of Oligodendrocytes in the Vertebrate Optic Nerve: A Review. Neurochem. Res. 2018, 43, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Cai, J.; Wu, Y.; Wu, R.; Lee, J.; Fu, H.; Rao, M.; Sussel, L.; Rubenstein, J.; Qiu, M. Control of Oligodendrocyte Differentiation by the Nkx2.2 Homeodomain Transcription Factor. Development 2001, 128, 2723–2733. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.D.; Kessaris, N.; Pringle, N. Oligodendrocyte Wars. Nat. Rev. Neurosci. 2006, 7, 11–18. [Google Scholar] [CrossRef]
- Tekki-Kessaris, N.; Woodruff, R.; Hall, A.C.; Gaffield, W.; Kimura, S.; Stiles, C.D.; Rowitch, D.H.; Richardson, W.D. Hedgehog-Dependent Oligodendrocyte Lineage Specification in the Telencephalon. Development 2001, 128, 2545–2554. [Google Scholar] [CrossRef]
- Vallstedt, A.; Klos, J.M.; Ericson, J. Multiple Dorsoventral Origins of Oligodendrocyte Generation in the Spinal Cord and Hindbrain. Neuron 2005, 45, 55–67. [Google Scholar] [CrossRef]
- Bercury, K.K.; Macklin, W.B. Dynamics and Mechanisms of CNS Myelination. Dev. Cell 2015, 32, 447–458. [Google Scholar] [CrossRef]
- Huang, W.; Bhaduri, A.; Velmeshev, D.; Wang, S.; Wang, L.; Rottkamp, C.A.; Alvarez-Buylla, A.; Rowitch, D.H.; Kriegstein, A.R. Origins and Proliferative States of Human Oligodendrocyte Precursor Cells. Cell 2020, 182, 594–608.e11. [Google Scholar] [CrossRef]
- Fang, L.-P.; Bai, X. Oligodendrocyte Precursor Cells: The Multitaskers in the Brain. Pflugers Arch. 2023, 475, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Emery, B.; Wood, T.L. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb. Perspect. Biol. 2024, 16, a041358. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Gao, T.; Zhao, J.; Li, H. Oligodendrogenesis in Evolution, Development and Adulthood. Glia 2025, 73, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, X.-F.; Zheng, K.; Qiu, M. Regulation of the Timing of Oligodendrocyte Differentiation: Mechanisms and Perspectives. Neurosci. Bull. 2013, 29, 155–164. [Google Scholar] [CrossRef]
- Boullerne, A.I. The History of Myelin. Exp. Neurol. 2016, 283, 431–445. [Google Scholar] [CrossRef]
- Simons, M.; Gibson, E.M.; Nave, K.-A. Oligodendrocytes: Myelination, Plasticity, and Axonal Support. Cold Spring Harb. Perspect. Biol. 2024, 16, a041359. [Google Scholar] [CrossRef]
- Snaidero, N.; Möbius, W.; Czopka, T.; Hekking, L.H.P.; Mathisen, C.; Verkleij, D.; Goebbels, S.; Edgar, J.; Merkler, D.; Lyons, D.A.; et al. Myelin Membrane Wrapping of CNS Axons by PI(3,4,5)P3-Dependent Polarized Growth at the Inner Tongue. Cell 2014, 156, 277–290. [Google Scholar] [CrossRef]
- Bribián, A.; de Castro, F. Oligodendrocytes: Their embryonic origin, migration and therapeutic implications. Rev. Neurol. 2007, 45, 535–546. [Google Scholar] [CrossRef]
- Beiter, R.M.; Rivet-Noor, C.; Merchak, A.R.; Bai, R.; Johanson, D.M.; Slogar, E.; Sol-Church, K.; Overall, C.C.; Gaultier, A. Evidence for Oligodendrocyte Progenitor Cell Heterogeneity in the Adult Mouse Brain. Sci. Rep. 2022, 12, 12921. [Google Scholar] [CrossRef]
- Levine, J.M.; Reynolds, R.; Fawcett, J.W. The Oligodendrocyte Precursor Cell in Health and Disease. Trends Neurosci. 2001, 24, 39–47. [Google Scholar] [CrossRef]
- Butt, A.M.; Rivera, A.D.; Fulton, D.; Azim, K. Targeting the Subventricular Zone to Promote Myelin Repair in the Aging Brain. Cells 2022, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Liampas, A.; Tseriotis, V.-S.; Artemiadis, A.; Zis, P.; Argyropoulou, C.; Grigoriadis, N.; Hadjigeorgiou, G.M.; Vavougyios, G. Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies. Brain Connect. 2024, 14, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Hiraoka, Y.; Abe, Y.; Tanaka, K.F. Visualization of Myelin-forming Oligodendrocytes in the Adult Mouse Brain. J. Neurochem. 2025, 169, e16218. [Google Scholar] [CrossRef] [PubMed]
- Bergles, D.E.; Richardson, W.D. Oligodendrocyte Development and Plasticity. Cold Spring Harb. Perspect. Biol. 2016, 8, a020453. [Google Scholar] [CrossRef]
- Xin, W.; Chan, J.R. Myelin Plasticity: Sculpting Circuits in Learning and Memory. Nat. Rev. Neurosci. 2020, 21, 682–694. [Google Scholar] [CrossRef]
- Bacmeister, C.M.; Huang, R.; Osso, L.A.; Thornton, M.A.; Conant, L.; Chavez, A.R.; Poleg-Polsky, A.; Hughes, E.G. Motor Learning Drives Dynamic Patterns of Intermittent Myelination on Learning-Activated Axons. Nat. Neurosci. 2022, 25, 1300–1313. [Google Scholar] [CrossRef]
- Pajevic, S.; Plenz, D.; Basser, P.J.; Fields, R.D. Oligodendrocyte-Mediated Myelin Plasticity and Its Role in Neural Synchronization. eLife 2023, 12, e81982. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Miron, V.; Cuo, Q.; Wegner, C.; Antel, J.; Brück, W. Differentiation Block of Oligodendroglial Progenitor Cells as a Cause for Remyelination Failure in Chronic Multiple Sclerosis. Brain 2008, 131, 1749–1758. [Google Scholar] [CrossRef]
- Tepavčević, V.; Lubetzki, C. Oligodendrocyte Progenitor Cell Recruitment and Remyelination in Multiple Sclerosis: The More, the Merrier? Brain 2022, 145, 4178–4192. [Google Scholar] [CrossRef]
- Hughes, E.G.; Orthmann-Murphy, J.L.; Langseth, A.J.; Bergles, D.E. Myelin Remodeling through Experience-Dependent Oligodendrogenesis in the Adult Somatosensory Cortex. Nat. Neurosci. 2018, 21, 696–706. [Google Scholar] [CrossRef]
- Hughes, E.G.; Stockton, M.E. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front. Cell Dev. Biol. 2021, 9, 714169. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Nishiyama, A.; Peterson, J.; Prineas, J.; Trapp, B.D. NG2-Positive Oligodendrocyte Progenitor Cells in Adult Human Brain and Multiple Sclerosis Lesions. J. Neurosci. 2000, 20, 6404–6412. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Tourtellotte, W.W.; Rudick, R.; Trapp, B.D. Premyelinating Oligodendrocytes in Chronic Lesions of Multiple Sclerosis. N. Engl. J. Med. 2002, 346, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.M.; Geraghty, A.C.; Monje, M. Bad Wrap: Myelin and Myelin Plasticity in Health and Disease. Dev. Neurobiol. 2018, 78, 123–135. [Google Scholar] [CrossRef]
- Villoslada, P. Vol. Red Española de Esclerosis Múltiple. In Esclerosis Múltiple; Villoslada, P., Ed.; Marge Medica Books: Washington, DC, USA, 2015; ISBN 978-84-92442-93-5. [Google Scholar]
- Morena, J.; Gupta, A.; Hoyle, J.C. Charcot-Marie-Tooth: From Molecules to Therapy. Int. J. Mol. Sci. 2019, 20, 3419. [Google Scholar] [CrossRef]
- Alcover-Sanchez, B.; Garcia-Martin, G.; Escudero-Ramirez, J.; Gonzalez-Riano, C.; Lorenzo, P.; Gimenez-Cassina, A.; Formentini, L.; de la Villa-Polo, P.; Pereira, M.P.; Wandosell, F.; et al. Absence of R-Ras1 and R-Ras2 Causes Mitochondrial Alterations That Trigger Axonal Degeneration in a Hypomyelinating Disease Model. Glia 2021, 69, 619–637. [Google Scholar] [CrossRef]
- Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Marcus, R. What Is Multiple Sclerosis? JAMA 2022, 328, 2078. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Bove, R.; Sutton, P.; Nicholas, J. Women’s Health and Pregnancy in Multiple Sclerosis. Neurol. Clin. 2024, 42, 275–293. [Google Scholar] [CrossRef]
- Pita, M.C.; Alonso, R.N.; Cohen, L.; Garcea, O.; Silva, B.A. Atypical clinical manifestations as a form of presentation in multiple sclerosis. Medicina 2021, 81, 972–977. [Google Scholar]
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Miller, D.H.; Chard, D.T.; Ciccarelli, O. Clinically Isolated Syndromes. Lancet Neurol. 2012, 11, 157–169. [Google Scholar] [CrossRef]
- Müller, J.; Cagol, A.; Lorscheider, J.; Tsagkas, C.; Benkert, P.; Yaldizli, Ö.; Kuhle, J.; Derfuss, T.; Sormani, M.P.; Thompson, A.; et al. Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis: A Systematic Review. JAMA Neurol. 2023, 80, 1232–1245. [Google Scholar] [CrossRef] [PubMed]
- Lebrun-Frénay, C.; Okuda, D.T.; Siva, A.; Landes-Chateau, C.; Azevedo, C.J.; Mondot, L.; Carra-Dallière, C.; Zephir, H.; Louapre, C.; Durand-Dubief, F.; et al. The Radiologically Isolated Syndrome: Revised Diagnostic Criteria. Brain 2023, 146, 3431–3443. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Goldman, M.D. Epidemiology and Pathophysiology of Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2022, 28, 988. [Google Scholar] [CrossRef] [PubMed]
- Amezcua, L. Progressive Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2022, 28, 1083. [Google Scholar] [CrossRef]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef]
- Vandebergh, M.; Degryse, N.; Dubois, B.; Goris, A. Environmental Risk Factors in Multiple Sclerosis: Bridging Mendelian Randomization and Observational Studies. J. Neurol. 2022, 269, 4565–4574. [Google Scholar] [CrossRef]
- Tarlinton, R.E.; Martynova, E.; Rizvanov, A.A.; Khaiboullina, S.; Verma, S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses 2020, 12, 643. [Google Scholar] [CrossRef]
- Sriram, S.; Steiner, I. Experimental Allergic Encephalomyelitis: A Misleading Model of Multiple Sclerosis. Ann. Neurol. 2005, 58, 939–945. [Google Scholar] [CrossRef]
- Bebo, B.F.; Allegretta, M.; Landsman, D.; Zackowski, K.M.; Brabazon, F.; Kostich, W.A.; Coetzee, T.; Ng, A.V.; Marrie, R.A.; Monk, K.R.; et al. Pathways to Cures for Multiple Sclerosis: A Research Roadmap. Mult. Scler. J. 2022, 28, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Faissner, S.; Gold, R. Progressive Multiple Sclerosis: Latest Therapeutic Developments and Future Directions. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419878323. [Google Scholar] [CrossRef] [PubMed]
- Krajnc, N.; Bsteh, G.; Berger, T.; Mares, J.; Hartung, H.-P. Monoclonal Antibodies in the Treatment of Relapsing Multiple Sclerosis: An Overview with Emphasis on Pregnancy, Vaccination, and Risk Management. Neurotherapeutics 2022, 19, 753–773. [Google Scholar] [CrossRef] [PubMed]
- Allanach, J.R.; Farrell, J.W.; Mésidor, M.; Karimi-Abdolrezaee, S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult. Scler. J. 2022, 28, 29–48. [Google Scholar] [CrossRef]
- Sabatino, J.J.; Cree, B.A.C.; Hauser, S.L. New Horizons for Multiple Sclerosis Therapy: 2025 and Beyond. Ann. Neurol. 2025, 98, 317–328. [Google Scholar] [CrossRef]
- Yang, J.H.; Rempe, T.; Whitmire, N.; Dunn-Pirio, A.; Graves, J.S. Therapeutic Advances in Multiple Sclerosis. Front. Neurol. 2022, 13, 824926. [Google Scholar] [CrossRef]
- Najm, F.J.; Madhavan, M.; Zaremba, A.; Shick, E.; Karl, R.T.; Factor, D.C.; Miller, T.E.; Nevin, Z.S.; Kantor, C.; Sargent, A.; et al. Drug-Based Modulation of Endogenous Stem Cells Promotes Functional Remyelination in Vivo. Nature 2015, 522, 216–220. [Google Scholar] [CrossRef]
- Mei, F.; Fancy, S.P.J.; Shen, Y.-A.A.; Niu, J.; Zhao, C.; Presley, B.; Miao, E.; Lee, S.; Mayoral, S.R.; Redmond, S.A.; et al. Micropillar Arrays as a High-Throughput Screening Platform for Therapeutics in Multiple Sclerosis. Nat. Med. 2014, 20, 954–960. [Google Scholar] [CrossRef]
- Plemel, J.R.; Liu, W.-Q.; Yong, V.W. Remyelination Therapies: A New Direction and Challenge in Multiple Sclerosis. Nat. Rev. Drug Discov. 2017, 16, 617–634. [Google Scholar] [CrossRef]
- Cadavid, D.; Mellion, M.; Hupperts, R.; Edwards, K.R.; Calabresi, P.A.; Drulović, J.; Giovannoni, G.; Hartung, H.-P.; Arnold, D.L.; Fisher, E.; et al. Safety and Efficacy of Opicinumab in Patients with Relapsing Multiple Sclerosis (SYNERGY): A Randomised, Placebo-Controlled, Phase 2 Trial. Lancet Neurol. 2019, 18, 845–856. [Google Scholar] [CrossRef]
- Green, A.J.; Gelfand, J.M.; Cree, B.A.; Bevan, C.; Boscardin, W.J.; Mei, F.; Inman, J.; Arnow, S.; Devereux, M.; Abounasr, A.; et al. Clemastine Fumarate as a Remyelinating Therapy for Multiple Sclerosis (ReBUILD): A Randomised, Controlled, Double-Blind, Crossover Trial. Lancet Lond. Engl. 2017, 390, 2481–2489. [Google Scholar] [CrossRef]
- De Keersmaecker, A.-V.; Van Doninck, E.; Popescu, V.; Willem, L.; Cambron, M.; Laureys, G.; D’ Haeseleer, M.; Bjerke, M.; Roelant, E.; Lemmerling, M.; et al. A Metformin Add-on Clinical Study in Multiple Sclerosis to Evaluate Brain Remyelination and Neurodegeneration (MACSiMiSE-BRAIN): Study Protocol for a Multi-Center Randomized Placebo Controlled Clinical Trial. Front. Immunol. 2024, 15, 1362629. [Google Scholar] [CrossRef] [PubMed]
- Hof, S.; van Rijn, L.J.; Uitdehaag, B.M.J.; Nij Bijvank, J.A.; Petzold, A. Measuring and Predicting the Effect of Remyelinating Therapy in Multiple Sclerosis: A Randomised Controlled Trial Protocol (RESTORE). BMJ Open 2024, 14, e076651. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05131828 (accessed on 5 August 2025).
- Hillis, J.M.; Davies, J.; Mundim, M.V.; Al-Dalahmah, O.; Szele, F.G. Cuprizone Demyelination Induces a Unique Inflammatory Response in the Subventricular Zone. J. Neuroinflammation 2016, 13, 190. [Google Scholar] [CrossRef]
- Kipp, M.; Nyamoya, S.; Hochstrasser, T.; Amor, S. Multiple Sclerosis Animal Models: A Clinical and Histopathological Perspective. Brain Pathol. 2017, 27, 123. [Google Scholar] [CrossRef]
- Lassmann, H.; Bradl, M. Multiple Sclerosis: Experimental Models and Reality. Acta Neuropathol. 2017, 133, 223–244. [Google Scholar] [CrossRef]
- Pelayo, R.; Tintore, M.; Montalban, X.; Rovira, A.; Espejo, C.; Reindl, M.; Berger, T. Antimyelin Antibodies with No Progression to Multiple Sclerosis. N. Engl. J. Med. 2007, 356, 426–428. [Google Scholar] [CrossRef]
- Terry, R.L.; Ifergan, I.; Miller, S.D. Experimental Autoimmune Encephalomyelitis in Mice. In Multiple Sclerosis: Methods and Protocols; Springer: New York, NY, USA, 2016; Volume 1304, pp. 145–160. [Google Scholar] [CrossRef]
- Robinson, A.P.; Harp, C.T.; Noronha, A.; Miller, S.D. The Experimental Autoimmune Encephalomyelitis (EAE) Model of MS: Utility for Understanding Disease Pathophysiology and Treatment. Handb. Clin. Neurol. 2014, 122, 173–189. [Google Scholar] [CrossRef]
- Owens, T. Animal Models for Multiple Sclerosis. Adv. Neurol. 2006, 98, 77–89. [Google Scholar]
- McCarthy, D.P.; Richards, M.H.; Miller, S.D. Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler’s Virus-Induced Demyelinating Disease. Methods Mol. Biol. 2012, 900, 381–401. [Google Scholar] [CrossRef]
- Molina-Holgado, E.; Areválo-Martín, A.; Vela, J.M.; Guaza, C. Theiler’s virus encephalomyelitis infection as a model for multiple sclerosis: Cytokines and pathogenic mechanisms. Rev. Neurol. 2002, 35, 973–978. [Google Scholar] [PubMed]
- Njenga, M.K.; Murray, P.D.; McGavern, D.; Lin, X.; Drescher, K.M.; Rodriguez, M. Absence of Spontaneous Central Nervous System Remyelination in Class II-Deficient Mice Infected with Theiler’s Virus. J. Neuropathol. Exp. Neurol. 1999, 58, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Fazakerley, J.K.; Walker, R. Virus Demyelination. J. Neurovirol. 2003, 9, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Franco-Pons, N.; Torrente, M.; Colomina, M.T.; Vilella, E. Behavioral Deficits in the Cuprizone-Induced Murine Model of Demyelination/Remyelination. Toxicol. Lett. 2007, 169, 205–213. [Google Scholar] [CrossRef]
- Liebetanz, D.; Merkler, D. Effects of Commissural De- and Remyelination on Motor Skill Behaviour in the Cuprizone Mouse Model of Multiple Sclerosis. Exp. Neurol. 2006, 202, 217–224. [Google Scholar] [CrossRef]
- Manrique-Hoyos, N.; Jurgens, T.; Gronborg, M.; Kreutzfeldt, M.; Schedensack, M.; Kuhlmann, T.; Schrick, C.; Bruck, W.; Urlaub, H.; Simons, M.; et al. Late Motor Decline after Accomplished Remyelination: Impact for Progressive Multiple Sclerosis. Ann. Neurol. 2012, 71, 227–244. [Google Scholar] [CrossRef]
- Morgan, M.L.; Kaushik, D.K.; Stys, P.K.; Caprariello, A.V. Autofluorescence Spectroscopy as a Proxy for Chronic White Matter Pathology. Mult. Scler. 2021, 27, 1046–1056. [Google Scholar] [CrossRef]
- DePaula-Silva, A.B.; Hanak, T.J.; Libbey, J.E.; Fujinami, R.S. Theiler’s Murine Encephalomyelitis Virus Infection of SJL/J and C57BL/6J Mice: Models for Multiple Sclerosis and Epilepsy. J. Neuroimmunol. 2017, 308, 30–42. [Google Scholar] [CrossRef]
- Zhan, J.; Mann, T.; Joost, S.; Behrangi, N.; Frank, M.; Kipp, M. The Cuprizone Model: Dos and Do Nots. Cells 2020, 9, 843. [Google Scholar] [CrossRef]
- Zirngibl, M.; Assinck, P.; Sizov, A.; Caprariello, A.V.; Plemel, J.R. Oligodendrocyte Death and Myelin Loss in the Cuprizone Model: An Updated Overview of the Intrinsic and Extrinsic Causes of Cuprizone Demyelination. Mol. Neurodegener. 2022, 17, 34. [Google Scholar] [CrossRef]
- Carlton, W.W. Response of Mice to the Chelating Agents Sodium Diethyldithiocarbamate, Alpha-Benzoinoxime, and Biscyclohexanone Oxaldihydrazone. Toxicol. Appl. Pharmacol. 1966, 8, 512–521. [Google Scholar] [CrossRef]
- Carlton, W.W. Studies on the Induction of Hydrocephalus and Spongy Degeneration by Cuprizone Feeding and Attempts to Antidote the Toxicity. Life Sci. 1967, 6, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Berghoff, S.A.; Gerndt, N.; Winchenbach, J.; Stumpf, S.K.; Hosang, L.; Odoardi, F.; Ruhwedel, T.; Bohler, C.; Barrette, B.; Stassart, R.; et al. Dietary Cholesterol Promotes Repair of Demyelinated Lesions in the Adult Brain. Nat. Commun. 2017, 8, 14241. [Google Scholar] [CrossRef] [PubMed]
- Lubetzki, C.; Zalc, B.; Williams, A.; Stadelmann, C.; Stankoff, B. Remyelination in Multiple Sclerosis: From Basic Science to Clinical Translation. Lancet Neurol. 2020, 19, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Gudi, V.; Moharregh-Khiabani, D.; Skripuletz, T.; Koutsoudaki, P.N.; Kotsiari, A.; Skuljec, J.; Trebst, C.; Stangel, M. Regional Differences between Grey and White Matter in Cuprizone Induced Demyelination. Brain Res. 2009, 1283, 127–138. [Google Scholar] [CrossRef]
- Hiremath, M.M.; Saito, Y.; Knapp, G.W.; Ting, J.P.; Suzuki, K.; Matsushima, G.K. Microglial/Macrophage Accumulation during Cuprizone-Induced Demyelination in C57BL/6 Mice. J. Neuroimmunol. 1998, 92, 38–49. [Google Scholar] [CrossRef]
- Matsushima, G.K.; Morell, P. The Neurotoxicant, Cuprizone, as a Model to Study Demyelination and Remyelination in the Central Nervous System. Brain Pathol. 2001, 11, 107–116. [Google Scholar] [CrossRef]
- Lindner, M.; Fokuhl, J.; Linsmeier, F.; Trebst, C.; Stangel, M. Chronic Toxic Demyelination in the Central Nervous System Leads to Axonal Damage despite Remyelination. Neurosci. Lett. 2009, 453, 120–125. [Google Scholar] [CrossRef]
- Plant, S.R.; Arnett, H.A.; Ting, J.P. Astroglial-Derived Lymphotoxin-Alpha Exacerbates Inflammation and Demyelination, but Not Remyelination. Glia 2005, 49, 1–14. [Google Scholar] [CrossRef]
- Blakemore, W.F. Remyelination of the Superior Cerebellar Peduncle in the Mouse Following Demyelination Induced by Feeding Cuprizone. J. Neurol. Sci. 1973, 20, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Skripuletz, T.; Gudi, V.; Hackstette, D.; Stangel, M. De- and Remyelination in the CNS White and Grey Matter Induced by Cuprizone: The Old, the New, and the Unexpected. Histol. Histopathol. 2011, 26, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Torre-Fuentes, L.; Moreno-Jiménez, L.; Pytel, V.; Matías-Guiu, J.A.; Gómez-Pinedo, U.; Matías-Guiu, J. Modelos Experimentales de Desmielinización-Remielinización. Neurología 2020, 35, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, W.F.; Franklin, R.J. Remyelination in Experimental Models of Toxin-Induced Demyelination. Curr. Top. Microbiol. Immunol. 2008, 318, 193–212. [Google Scholar] [CrossRef]
- Plemel, J.R.; Michaels, N.J.; Weishaupt, N.; Caprariello, A.V.; Keough, M.B.; Rogers, J.A.; Yukseloglu, A.; Lim, J.; Patel, V.V.; Rawji, K.S.; et al. Mechanisms of Lysophosphatidylcholine-Induced Demyelination: A Primary Lipid Disrupting Myelinopathy. Glia 2018, 66, 327–347. [Google Scholar] [CrossRef]
- Arimura, N.; Kaibuchi, K. Neuronal Polarity: From Extracellular Signals to Intracellular Mechanisms. Nat. Rev. Neurosci. 2007, 8, 194–205. [Google Scholar] [CrossRef]
- Karnoub, A.E.; Weinberg, R.A. Ras Oncogenes: Split Personalities. Nat. Rev. Mol. Cell Biol. 2008, 9, 517–531. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS Oncogenes: Weaving a Tumorigenic Web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Chan, A.M.; Miki, T.; Meyers, K.A.; Aaronson, S.A. A Human Oncogene of the RAS Superfamily Unmasked by Expression cDNA Cloning. Proc. Natl. Acad. Sci. USA 1994, 91, 7558–7562. [Google Scholar] [CrossRef]
- Ohba, Y.; Mochizuki, N.; Yamashita, S.; Chan, A.M.; Schrader, J.W.; Hattori, S.; Nagashima, K.; Matsuda, M. Regulatory Proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J. Biol. Chem. 2000, 275, 20020–20026. [Google Scholar] [CrossRef]
- Colicelli, J. Human RAS Superfamily Proteins and Related GTPases. Sci. STKE 2004, 2004, RE13. [Google Scholar] [CrossRef]
- Gutierrez-Erlandsson, S.; Herrero-Vidal, P.; Fernandez-Alfara, M.; Hernandez-Garcia, S.; Gonzalo-Flores, S.; Mudarra-Rubio, A.; Fresno, M.; Cubelos, B. R-RAS2 Overexpression in Tumors of the Human Central Nervous System. Mol. Cancer 2013, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Drivas, G.T.; Shih, A.; Coutavas, E.; Rush, M.G.; D’Eustachio, P. Characterization of Four Novel Ras-like Genes Expressed in a Human Teratocarcinoma Cell Line. Mol. Cell. Biol. 1990, 10, 1793–1798. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Rodriguez, M.; Gruart, A.; Escudero-Ramirez, J.; de Castro, F.; Delgado-Garcia, J.M.; Wandosell, F.; Cubelos, B. R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J. Neurosci. 2018, 38, 5096–5110. [Google Scholar] [CrossRef] [PubMed]
- Alcover-Sanchez, B.; Garcia-Martin, G.; Wandosell, F.; Cubelos, B. R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 5911. [Google Scholar] [CrossRef]
- Delgado, P.; Cubelos, B.; Calleja, E.; Martínez-Martín, N.; Ciprés, A.; Mérida, I.; Bellas, C.; Bustelo, X.R.; Alarcón, B. Essential Function for the GTPase TC21 in Homeostatic Antigen Receptor Signaling. Nat. Immunol. 2009, 10, 880–888. [Google Scholar] [CrossRef]
- Sertkaya, A.; Beleche, T.; Jessup, A.; Sommers, B.D. Costs of Drug Development and Research and Development Intensity in the US, 2000–2018. JAMA Netw. Open 2024, 7, e2415445. [Google Scholar] [CrossRef]
- Ascherio, A. Environmental Factors in Multiple Sclerosis. Expert Rev. Neurother. 2013, 13, 3–9. [Google Scholar] [CrossRef]
- Rivera, V.M. Advances in Multiple Sclerosis. Biomedicines 2025, 13, 266. [Google Scholar] [CrossRef]
- Shi, M.; Liu, Y.; Gong, Q.; Xu, X. Multiple Sclerosis: An Overview of Epidemiology, Risk Factors, and Serological Biomarkers. Acta Neurol. Scand. 2024, 2024, 7372789. [Google Scholar] [CrossRef]
- Yamout, B. Update in Multiple Sclerosis. eNeurologicalSci 2025, 38, 100553. [Google Scholar] [CrossRef]
- Chamberlain, K.A.; Nanescu, S.E.; Psachoulia, K.; Huang, J.K. Oligodendrocyte Regeneration: Its Significance in Myelin Replacement and Neuroprotection in Multiple Sclerosis. Neuropharmacology 2016, 110, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Della-Flora Nunes, G.; Osso, L.A.; Haynes, J.A.; Conant, L.; Thornton, M.A.; Stockton, M.E.; Brassell, K.A.; Morris, A.; Mancha Corchado, Y.I.; Gaynes, J.A.; et al. Incomplete Remyelination via Therapeutically Enhanced Oligodendrogenesis Is Sufficient to Recover Visual Cortical Function. Nat. Commun. 2025, 16, 732. [Google Scholar] [CrossRef] [PubMed]
- Rancillac, A. The Future of Multiple Sclerosis Research: Unlocking Myelin Repair Through Unified Efforts. J. Mult. Scler. Res. 2025, 5, 1–2. [Google Scholar] [CrossRef]
- Tintore, M.; Rovira, A.; Rio, J.; Nos, C.; Grive, E.; Tellez, N.; Pelayo, R.; Comabella, M.; Sastre-Garriga, J.; Montalban, X. Baseline MRI Predicts Future Attacks and Disability in Clinically Isolated Syndromes. Neurology 2006, 67, 968–972. [Google Scholar] [CrossRef]
- Atkinson, K.C.; Desfor, S.; Feri, M.; Sekyi, M.T.; Osunde, M.; Sriram, S.; Noori, S.; Rincón, W.; Bello, B.; Tiwari-Woodruff, S.K. Decreased Mitochondrial Activity in the Demyelinating Cerebellum of Progressive Multiple Sclerosis and Chronic EAE Contributes to Purkinje Cell Loss. Proc. Natl. Acad. Sci. USA 2025, 122, e2421806122. [Google Scholar] [CrossRef]
- Baker, D.; Amor, S. Mouse Models of Multiple Sclerosis: Lost in Translation? Curr. Pharm. Des. 2015, 21, 2440–2452. [Google Scholar] [CrossRef]
- Burguet Villena, F.; Cerdá-Fuertes, N.; Hofer, L.; Schädelin, S.; Sellathurai, S.; Schoenholzer, K.; D’Souza, M.; Oechtering, J.; Hanssen, H.; Gugleta, K.; et al. Retinal Neuronal Loss and Progression Independent of Relapse Activity in Multiple Sclerosis. J. Neurol. 2025, 272, 454. [Google Scholar] [CrossRef]
- Didonna, A. Preclinical Models of Multiple Sclerosis: Advantages and Limitations Towards Better Therapies. Curr. Med. Chem. 2016, 23, 1442–1459. [Google Scholar] [CrossRef]
- Bove, R.M.; Green, A.J. Remyelinating Pharmacotherapies in Multiple Sclerosis. Neurotherapeutics 2017, 14, 894–904. [Google Scholar] [CrossRef]
- Gacem, N.; Nait-Oumesmar, B. Oligodendrocyte Development and Regenerative Therapeutics in Multiple Sclerosis. Life 2021, 11, 327. [Google Scholar] [CrossRef]
- Manousi, A.; Göttle, P.; Reiche, L.; Cui, Q.-L.; Healy, L.M.; Akkermann, R.; Gruchot, J.; Schira-Heinen, J.; Antel, J.P.; Hartung, H.-P.; et al. Identification of Novel Myelin Repair Drugs by Modulation of Oligodendroglial Differentiation Competence. eBioMedicine 2021, 65, 103276. [Google Scholar] [CrossRef]
- Packer, D.; Fresenko, E.E.; Harrington, E.P. Remyelination in Animal Models of Multiple Sclerosis: Finding the Elusive Grail of Regeneration. Front. Mol. Neurosci. 2023, 16, 1207007. [Google Scholar] [CrossRef]
Immunological Models | Toxic Models | Neurological Models | |||||
---|---|---|---|---|---|---|---|
EAE | TMEV | Cuprizone | Lysolecithin | R-Ras1−/− | R-Ras2−/− | R-Ras1−/−; R-Ras2−/− | |
Myelin deficit | YES | YES | YES | YES | YES | YES | YES |
Oligodendrocyte maturation blockage | NO | NO | NO | NO | YES | YES | YES |
Myelin sheath blockage | NO | NO | NO | NO | YES | YES | YES |
Energetic and metabolic disturbances | NO | NO | NO | NO | YES | YES | YES |
Neuronal death | YES | YES | YES | YES | YES | YES | YES |
Sensory, motor and cognitive disturbances | YES | YES | YES | YES | YES | YES | YES |
Classical models | New Approaches |
Disease Features | R-Ras1−/− | R-Ras2−/− | R-Ras1−/−; R-Ras2−/− |
---|---|---|---|
Oligodendrocyte population | ↓ | ↓↓ | ↓↓↓ |
Immature oligodendrocytes | ↑ | ↑↑ | ↑↑↑ |
Mature oligodendrocytes | ↓ | ↓↓ | ↓↓↓ |
Myelinated axons | ↓ | ↓↓ | ↓↓↓ |
Channel disposition | ↑ | ↑↑ | ↑↑↑ |
Conduction velocity | ↑ | ↑↑ | ↑↑↑ |
Mitochondrial: Number Size Channel proteins Respiration | ↑ ↑ ↑ ↑ | ↓↓ = = = | ↓↓↓ ↑↑↑ ↑↑↑ ↑↑↑ |
Metabolism | Altered | Altered | ↑↑↑ |
Astro & microgliosis | = | = | ↑↑↑ |
Axonal cytoskeleton alterations | ↑ | ↑↑ | ↑↑↑ |
Motor function | ↓ | ↓↓ | ↓↓↓ |
Visual function | ↓ | ↓↓ | ↓↓↓ |
Resultant phenotype | Mild | Moderate | Severe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-Ortega, G.M.; Garcia-Martin, G.; Cubelos, B. Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology. Biomolecules 2025, 15, 1309. https://doi.org/10.3390/biom15091309
Esteban-Ortega GM, Garcia-Martin G, Cubelos B. Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology. Biomolecules. 2025; 15(9):1309. https://doi.org/10.3390/biom15091309
Chicago/Turabian StyleEsteban-Ortega, Gema M., Gonzalo Garcia-Martin, and Beatriz Cubelos. 2025. "Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology" Biomolecules 15, no. 9: 1309. https://doi.org/10.3390/biom15091309
APA StyleEsteban-Ortega, G. M., Garcia-Martin, G., & Cubelos, B. (2025). Novel Animal Models for Multiple Sclerosis: R-Ras GTPases in Myelin Pathophysiology. Biomolecules, 15(9), 1309. https://doi.org/10.3390/biom15091309