Structure and Function of PML Nuclear Bodies: A Brief Overview of Key Cellular Roles
Abstract
1. Introduction
2. Structure and Assembly
3. Chromatin Interactions
4. Transcriptional Regulation and Protein Quality Control
5. Antiviral Response
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lallemand-Breitenbach, V.; de Thé, H. PML nuclear bodies. Cold Spring Harb. Perspect. Biol. 2010, 2, a000661. [Google Scholar] [CrossRef]
- Borden, K.L. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: Can we fit the pieces together using an RNA regulon? Biochim. Biophys. Acta 2008, 1783, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A.; Carra, S. PML nuclear bodies: New players in familial amyotrophic lateral sclerosis-frontotemporal dementia? Neural Regen. Res. 2024, 19, 1875–1876. [Google Scholar] [CrossRef] [PubMed]
- Ryabchenko, B.; Šroller, V.; Horníková, L.; Lovtsov, A.; Forstová, J.; Huérfano, S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol. J. 2023, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Corpet, A.; Kleijwegt, C.; Roubille, S.; Juillard, F.; Jacquet, K.; Texier, P.; Lomonte, P. PML nuclear bodies and chromatin dynamics: Catch me if you can! Nucleic Acids Res. 2020, 48, 11890–11912. [Google Scholar] [CrossRef]
- Shen, T.H.; Lin, H.K.; Scaglioni, P.P.; Yung, T.M.; Pandolfi, P.P. The mechanisms of PML-nuclear body formation. Mol. Cell 2006, 24, 331–339. [Google Scholar] [CrossRef]
- Nisole, S.; Maroui, M.A.; Mascle, X.H.; Aubry, M.; Chelbi-Alix, M.K. Differential Roles of PML Isoforms. Front. Oncol. 2013, 3, 125. [Google Scholar] [CrossRef]
- Wu, W.; Tan, Y.; Yin, H.; Jiang, M.; Jiang, Y.; Ma, X.; Yin, T.; Li, Y.; Zhang, H.; Cai, X.; et al. Phase separation is required for PML nuclear body biogenesis and function. FASEB J. 2023, 37, e22986. [Google Scholar] [CrossRef]
- Wang, P.; Benhenda, S.; Wu, H.; Lallemand-Breitenbach, V.; Zhen, T.; Jollivet, F.; Peres, L.; Li, Y.; Chen, S.J.; Chen, Z.; et al. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat. Commun. 2018, 9, 1841. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.L. Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells. J. Mol. Biol. 2025, 437, 168951. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, M.; Yu, X.; Wondisford, A.R.; Lackner, R.M.; Salsman, J.; Dellaire, G.; Chenoweth, D.M.; O’Sullivan, R.J.; Zhao, X.; et al. SUMO promotes DNA repair protein collaboration to support alternative telomere lengthening in the absence of PML. Genes Dev. 2024, 38, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Huoh, Y.S.; Wu, B.; Park, S.; Yang, D.; Bansal, K.; Greenwald, E.; Wong, W.P.; Mathis, D.; Hur, S. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. Nat. Commun. 2020, 11, 1625. [Google Scholar] [CrossRef]
- Sahin, U.; Ferhi, O.; Jeanne, M.; Benhenda, S.; Berthier, C.; Jollivet, F.; Niwa-Kawakita, M.; Faklaris, O.; Setterblad, N.; de Thé, H.; et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J. Cell Biol. 2014, 204, 931–945. [Google Scholar] [CrossRef]
- Banani, S.F.; Rice, A.M.; Peeples, W.B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M.K. Compositional Control of Phase-Separated Cellular Bodies. Cell 2016, 166, 651–663. [Google Scholar] [CrossRef]
- Kiesslich, A.; von Mikecz, A.; Hemmerich, P. Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J. Struct. Biol. 2002, 140, 167–179. [Google Scholar] [CrossRef]
- Gialitakis, M.; Arampatzi, P.; Makatounakis, T.; Papamatheakis, J. Gamma interferon-dependent transcriptional memory via relocalization of a gene locus to PML nuclear bodies. Mol. Cell. Biol. 2010, 30, 2046–2056. [Google Scholar] [CrossRef]
- Shiels, C.; Islam, S.A.; Vatcheva, R.; Sasieni, P.; Sternberg, M.J.; Freemont, P.S.; Sheer, D. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J. Cell Sci. 2001, 114, 3705–3716. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, M.; Kato, K.; Sanbo, C.; Shigenobu, S.; Ohkawa, Y.; Fuchigami, T.; Miyanari, Y. Genomic Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A Exclusion. Mol. Cell 2020, 78, 493–505.e8. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Salomoni, P.; Luo, J.; Shih, A.; Zhong, S.; Gu, W.; Pandolfi, P.P. The function of PML in p53 dependent apoptosis. Nat. Cell Biol. 2000, 2, 730–736. [Google Scholar] [CrossRef]
- Gulve, N.; Su, C.; Deng, Z.; Soldan, S.S.; Vladimirova, O.; Wickramasinghe, J.; Zheng, H.; Kossenkov, A.V.; Lieberman, P.M. DAXX-ATRX regulation of p53 chromatin binding and DNA damage response. Nat. Commun. 2022, 13, 5033. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef]
- Willms, A.; Schupp, H.; Poelker, M.; Adawy, A.; Debus, J.F.; Hartwig, T.; Krichel, T.; Fritsch, J.; Singh, S.; Walczak, H.; et al. TRAIL-receptor 2-a novel negative regulator of p53. Cell Death Dis. 2021, 12, 757. [Google Scholar] [CrossRef]
- Peterson, P.; Org, T.; Rebane, A. Transcriptional regulation by AIRE: Molecular mechanisms of central tolerance. Nat. Rev. Immunol. 2008, 8, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Mediani, L.; Guillén-Boixet, J.; Vinet, J.; Franzmann, T.M.; Bigi, I.; Mateju, D.; Carrà, A.D.; Morelli, F.F.; Tiago, T.; Poser, I.; et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 2019, 38, e101341. [Google Scholar] [CrossRef]
- Sloan, E.; Tatham, M.H.; Groslambert, M.; Glass, M.; Orr, A.; Hay, R.T.; Everett, R.D. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015, 11, e1005059. [Google Scholar] [CrossRef] [PubMed]
- Catez, F.; Picard, C.; Held, K.; Gross, S.; Rousseau, A.; Theil, D.; Sawtell, N.; Labetoulle, M.; Lomonte, P. HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog. 2012, 8, e1002852. [Google Scholar] [CrossRef]
- Roubille, S.; Escure, T.; Juillard, F.; Corpet, A.; Néplaz, R.; Binda, O.; Seurre, C.; Gonin, M.; Bloor, S.; Cohen, C.; et al. The HUSH epigenetic repressor complex silences PML nuclear body-associated HSV-1 quiescent genomes. Proc. Natl. Acad. Sci. USA 2024, 121, e2412258121. [Google Scholar] [CrossRef] [PubMed]
- Alandijany, T.; Roberts, A.P.E.; Conn, K.L.; Loney, C.; McFarlane, S.; Orr, A.; Boutell, C. Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection. PLoS Pathog. 2018, 14, e1006769. [Google Scholar]
- Ip, W.-H.; Tatham, M.H.; Krohne, S.; Gruhne, J.; Melling, M.; Meyer, T.; Gornott, B.; Bertzbach, L.D.; Hay, R.T.; Rodriguez, E.; et al. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J. Virol. 2023, 97, e0079123. [Google Scholar] [CrossRef]
- Li, W.; Luo, Z.; Yan, C.Y.; Wang, X.H.; He, Z.J.; Ouyang, S.H.; Yan, C.; Liu, L.F.; Zhou, Q.Q.; Mu, H.L.; et al. Autophagic degradation of PML promotes susceptibility to HSV-1 by stress-induced corticosterone. Theranostics 2020, 10, 9032–9049. [Google Scholar] [CrossRef]
- Hofmann, S.; Stubbe, M.; Mai, J.; Schreiner, S. Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res. 2021, 295, 198280. [Google Scholar] [CrossRef] [PubMed]
- Ullman, A.J.; Hearing, P. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J. Virol. 2008, 82, 7325–7335. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, S.; Wimmer, P.; Sirma, H.; Everett, R.D.; Blanchette, P.; Groitl, P.; Dobner, T. Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J. Virol. 2010, 84, 7029–7038. [Google Scholar] [CrossRef] [PubMed]
Protein(s) | Primary Function | Interaction with PML-NBs | Disease Relevance | Reference(s) |
---|---|---|---|---|
SP100 | Transcriptional regulation, chromatin remodeling | Core component; recruited via SUMO-SIM interactions | Autoimmune disorders; Viral defense | Lallemand-Breitenbach & de Thé, 2010 [1] |
DAXX | Transcriptional co-repressor; H3.3 chaperone | Dynamically associates with PML-NBs; undergoes SUMOylation within PML-NBs | Cancer; Viral defense; Neurodegeneration | Gulve et al., 2022 [20]; Schreiner et al., 2010 [33] |
ATRX | Chromatin remodeling | Forms complex with DAXX; facilitates p53 chromatin binding | ALT cancers; X-linked α-thalassemia/mental retardation syndrome | Gulve et al., 2022 [20]; Yu & Zhang, 2025 [10] |
p53 | Tumor suppressor; regulates cell cycle arrest and apoptosis | Activity modulated within PML-NBs | Cancer; Cellular senescence | Guo et al., 2000 [19]; Wang et al., 2023 [21] |
TRAIL-R2 | Death receptor | Interaction with p53 occurs at PML-NBs | Cancer; Apoptosis resistance | Willms et al., 2021 [22] |
Aire | Transcription factor for central tolerance | Disease-causing mutants accumulate in PML-NBs | Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) | Huoh et al., 2020 [12]; Peterson et al., 2008 [23] |
SUMO1/2/3 | Post-translational modifier | Essential for PML-NB maturation and protein recruitment | Multiple (cancer, viral defense, neurodegeneration) | Sahin et al., 2014 [13]; Sloan et al., 2015 [25] |
RNF4 | SUMO-targeted ubiquitin ligase | Regulates PML-NB turnover | APL treatment response | Lallemand-Breitenbach & de Thé, 2010 [1] |
SETDB1 | Histone methyltransferase | Mediates H3K9me3 at viral genomes within PML-NBs | Viral latency | Roubille et al., 2024 [27] |
MORC2 | ATPase; chromatin remodeling | Component of HUSH complex at PML-NBs | Viral latency; Charcot–Marie–Tooth disease | Roubille et al., 2024 [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorosz, K.; Majewska, L.; Kijowski, J. Structure and Function of PML Nuclear Bodies: A Brief Overview of Key Cellular Roles. Biomolecules 2025, 15, 1291. https://doi.org/10.3390/biom15091291
Dorosz K, Majewska L, Kijowski J. Structure and Function of PML Nuclear Bodies: A Brief Overview of Key Cellular Roles. Biomolecules. 2025; 15(9):1291. https://doi.org/10.3390/biom15091291
Chicago/Turabian StyleDorosz, Karolina, Lidia Majewska, and Jacek Kijowski. 2025. "Structure and Function of PML Nuclear Bodies: A Brief Overview of Key Cellular Roles" Biomolecules 15, no. 9: 1291. https://doi.org/10.3390/biom15091291
APA StyleDorosz, K., Majewska, L., & Kijowski, J. (2025). Structure and Function of PML Nuclear Bodies: A Brief Overview of Key Cellular Roles. Biomolecules, 15(9), 1291. https://doi.org/10.3390/biom15091291