Effects of Weightlessness on Molecular Changes in Cellular Organisms, Animals and Plants
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACTB | Actin Beta gene |
2D | Two-dimensional |
3D | Three-dimensional |
CASP3 | Caspase-3 gene |
COL1A1 | alpha-1 chain of type I collagen gene |
COL10A1 | alpha-1 chain of type I0 collagen gene |
D | Days |
E. | Euglena |
ECM | Extracellular matrix |
ESA | European Space Agency |
ESR1 | Estrogen receptor 1 |
GBFs | Ground-based facilities |
GPCR | G protein-coupled receptors |
HG | High-glucose medium |
HSP-90 | Heat shock protein 90 |
IL6 | Interleukin-6 gene |
ISS | International Space Station |
ITGB1 | Integrin beta 1 gene |
LAMA1 | Laminin subunit alpha-1 gene |
MAPK | Mitogen-activated protein kinase |
µg | Microgravity |
min | Minutes |
MMP1 | Matrix Metallopeptidase 1 gene |
MMP3 | Matrix Metallopeptidase 3 gene |
MMP13 | Matrix Metallopeptidase 13 gene |
NASA | National Aeronautics and Space Administration |
NG | Normal glucose medium |
NSC | Neural stem cells |
OLPs | Oligodendrocyte progenitors |
PI3K-Akt | Phosphoinositide 3-kinase-protein kinase B |
PPAR | Peroxisome proliferator-activated receptor |
RPM | Random Positioning Machine |
RUNX3 | Runt-related transcription factor 3 gene |
RWV | Rotating Wall Vessel |
SI | Special Issue |
s-µg | Simulated microgravity |
SOX9 | SRY-Box Transcription Factor 9 |
SPARC | Secreted protein acidic and rich in cysteine (osteonectin) |
TUBB | Tubulin Beta gene |
VIM | Vimentin gene |
References
- White, R.J.; Averner, M. Humans in space. Nature 2001, 409, 1115–1118. [Google Scholar] [CrossRef]
- Krittanawong, C.; Singh, N.K.; Scheuring, R.A.; Urquieta, E.; Bershad, E.M.; Macaulay, T.R.; Kaplin, S.; Dunn, C.; Kry, S.F.; Russomano, T.; et al. Human health during space travel: State-of-the-art review. Cells 2022, 12, 40. [Google Scholar] [CrossRef]
- Pramanik, J.; Kumar, A.; Panchal, L.; Prajapati, B. Countermeasures for maintaining cardiovascular health in space missions. Curr. Cardiol. Rev. 2023, 19, 57–67. [Google Scholar] [CrossRef]
- ElGindi, M.; Sapudom, J.; Ibrahim, I.H.; Al-Sayegh, M.; Chen, W.; Garcia-Sabate, A.; Teo, J.C.M. May the force be with you (or not): The immune system under microgravity. Cells 2021, 10, 1941. [Google Scholar] [CrossRef]
- Trittel, T.; Puzyrev, D.; Harth, K.; Stannarius, R. Rotational and translational motions in a homogeneously cooling granular gas. NPJ Microgravity 2024, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Moura, W.d.M.; dos Santos, C.R.; Freitas, M.J.d.S.; Pinto, A.C.; Simões, L.P.; Moraes, A. Microgravity explorer kit (mgx): An open-source platform for accessible space science experiments. Aerospace 2024, 11, 790. [Google Scholar] [CrossRef]
- Shelhamer, M. Parabolic flight as a spaceflight analog. J. Appl. Physiol. 2016, 120, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Heatwole, S.E. Current usage of sounding rockets to study the upper atmosphere. Proc. Natl. Acad. Sci. USA 2024, 121, e2413285121. [Google Scholar] [CrossRef]
- Zeger, L.; Barasa, P.; Han, Y.; Hellgren, J.; Redwan, I.N.; Reiche, M.E.; Florin, G.; Christoffersson, G.; Kozlova, E.N. Microgravity effect on pancreatic islets. Cells 2024, 13, 1588. [Google Scholar] [CrossRef]
- Luna, A.; Meisel, J.; Hsu, K.; Russi, S.; Fernandez, D. Protein structural changes on a cubesat under rocket acceleration profile. NPJ Microgravity 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Greshko, M. Panel calls for giant boost to space station research. Science 2023, 381, 1144–1145. [Google Scholar] [CrossRef]
- Pei, W.; Hu, W.; Chai, Z.; Zhou, G. Current status of space radiobiological studies in china. Life Sci. Space Res. 2019, 22, 1–7. [Google Scholar] [CrossRef]
- Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.; de Geest, M.; Hauslage, J.; Hilbig, R.; Hill, R.J.; Lebert, M.; et al. Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 2013, 13, 1–17. [Google Scholar] [CrossRef]
- Joksiene, J.; Sahana, J.; Wehland, M.; Schulz, H.; Cortes-Sanchez, J.L.; Prat-Duran, J.; Grimm, D.; Simonsen, U. Effects of high glucose on human endothelial cells exposed to simulated microgravity. Biomolecules 2023, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.; Carpo, N.; Cepeda, C.; Espinosa-Jeffrey, A. Oligodendrocyte progenitors display enhanced proliferation and autophagy after space flight. Biomolecules 2023, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Veliz, A.L.; Mamoun, L.; Hughes, L.; Vega, R.; Holmes, B.; Monteon, A.; Bray, J.; Pecaut, M.J.; Kearns-Jonker, M. Transcriptomic effects on the mouse heart following 30 days on the international space station. Biomolecules 2023, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Steinwerth, P.; Bertrand, J.; Sandt, V.; Marchal, S.; Sahana, J.; Bollmann, M.; Schulz, H.; Kopp, S.; Grimm, D.; Wehland, M. Structural and molecular changes of human chondrocytes exposed to the rotating wall vessel bioreactor. Biomolecules 2023, 14, 25. [Google Scholar] [CrossRef]
- Carpo, N.; Tran, V.; Biancotti, J.C.; Cepeda, C.; Espinosa-Jeffrey, A. Space flight enhances stress pathways in human neural stem cells. Biomolecules 2024, 14, 65. [Google Scholar] [CrossRef]
- Krüger, J.; Richter, P.; Stoltze, J.; Prasad, B.; Strauch, S.M.; Krüger, M.; Nasir, A.; Lebert, M. Changes in gravitaxis and gene-expression in an euglena gracilis culture over time. Biomolecules 2024, 14, 327. [Google Scholar] [CrossRef] [PubMed]
- Ru, M.; He, J.; Bai, Y.; Zhang, K.; Shi, Q.; Gao, F.; Wang, Y.; Li, B.; Shen, L. Integration of proteomic and metabolomic data reveals the lipid metabolism disorder in the liver of rats exposed to simulated microgravity. Biomolecules 2024, 14, 682. [Google Scholar] [CrossRef]
- Barkia, B.; Sandt, V.; Melnik, D.; Cortes-Sanchez, J.L.; Marchal, S.; Baselet, B.; Baatout, S.; Sahana, J.; Grimm, D.; Wehland, M.; et al. The formation of stable lung tumor spheroids during random positioning involves increased estrogen sensitivity. Biomolecules 2024, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, S.; Nossol, C.; Krüger, M.; Kopp, S.; Grimm, D.; Wuest, S.L.; Rothkotter, H.J. Dynamic mechanical load as a trigger for growth and proliferation in porcine epithelial cells. Biomolecules 2025, 15, 455. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; De Dominicis, N.; Forte, G.; Bari, M.; Leuti, A.; Maccarrone, M. Cellular and molecular effects of microgravity on the immune system: A focus on bioactive lipids. Biomolecules 2024, 14, 466. [Google Scholar] [CrossRef]
- Van den Nieuwenhof, D.W.A.; Moroni, L.; Chou, J.; Hinkelbein, J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: A narrative review. NPJ Microgravity 2024, 10, 102. [Google Scholar] [CrossRef]
- Lopez Garzon, N.A.; Pinzon-Fernandez, M.V.; Saavedra, T.J.; Nati-Castillo, H.A.; Arias-Intriago, M.; Salazar-Santoliva, C.; Izquierdo-Condoy, J.S. Microgravity and cellular biology: Insights into cellular responses and implications for human health. Int. J. Mol. Sci. 2025, 26, 3058. [Google Scholar] [CrossRef]
- Sanford, G.L.; Ellerson, D.; Melhado-Gardner, C.; Sroufe, A.E.; Harris-Hooker, S. Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor. In Vitro Cell. Dev. Biol. Anim. 2002, 38, 493–504. [Google Scholar] [CrossRef]
- Ratushnyy, A.; Ezdakova, M.; Yakubets, D.; Buravkova, L. Angiogenic activity of human adipose-derived mesenchymal stem cells under simulated microgravity. Stem. Cells Dev. 2018, 27, 831–837. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, W.; Zhao, S.; Zhao, Y.; Dai, J. Advances in microgravity directed tissue engineering. Adv. Healthc. Mater. 2023, 12, e2202768. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ramasubramanian, S.; Yadav, S.; Jeyaraman, N. Exploring new horizons: Advancements in cartilage tissue engineering under space microgravity. Cureus 2024, 16, e66224. [Google Scholar] [CrossRef] [PubMed]
- Akbarialiabad, H.; Jamshidi, P.; Aminzade, Z.; Azizi, N.; Taha, S.R.; Sadeghian, N.; Varghese, L.J.K.; Kouhanjani, M.F.; Niknam, N.; Babocs, D.; et al. Leveraging space innovations for cancer breakthroughs on earth. Trends Cancer 2025, 11, 433–440. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Guo, S.; Li, B.B.; Jiang, N.; Li, A.; Yan, H.F.; Yang, H.M.; Zhou, J.L.; Li, C.L.; Cui, Y. Effect of weightlessness on the 3d structure formation and physiologic function of human cancer cells. Biomed. Res. Int. 2019, 2019, 4894083. [Google Scholar] [CrossRef]
- McKinley, S.; Taylor, A.; Peeples, C.; Jacob, M.; Khaparde, G.; Walter, Y.; Ekpenyong, A. Simulated microgravity-induced changes to drug response in cancer cells quantified using fluorescence morphometry. Life 2023, 13, 1683. [Google Scholar] [CrossRef]
- Niknam, N.; Akbarialiabad, H.; Farjoud Kouhanjani, M.; Kolaparambil Varghese, L.J.; Berrington de González, A.; Melin, M.M.; Shafie’ei, M.; Mousavi, S.M.; Hosseini, S.A.; Taha, S.R.; et al. Space oncology: A comprehensive scoping review. Wilderness Env. Med. 2025, 36, 148s–171s. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Schneider, V.S.; Jones, J.A.; Sibonga, J.D. The case for bisphosphonate use in astronauts flying long-duration missions. Cells 2024, 13, 1337. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, S.K.; Harikrishnan, N.; Pavithra, T.; Maheshwari, U.; Sharon, E.; Singh, A. Challenges and countermeasures for ensuring health and drug stability during long-term space missions. Curr. Drug Discov. Technol. 2025. [Google Scholar] [CrossRef] [PubMed]
Author | Title | Topics and Results | Type | Reference |
---|---|---|---|---|
Jokšienè J. et al. | Effects of high glucose on human endothelial cells exposed to simulated microgravity |
| Research article | [14] |
Tran V. et al. | Oligodendrocyte progenitors display enhanced proliferation and autophagy after space flight |
| Research article | [15] |
Veliz A. et al. | Transcriptomic effects on the mouse heart following 30 days on the international space station |
| Research article | [16] |
Steinwerth P. et al. | Structural and molecular changes in human chondrocytes exposed to the rotating wall vessel bioreactor |
| Research Article | [17] |
Carpo N. et al. | Space flight enhances stress pathways in human neural stem cells |
| Research Article | [18] |
Krüger J. et al. | Changes in gravitaxis and gene-expression in an Euglena gracilis culture over time |
| Research Article | [19] |
Ru M. et al. | Integration of proteomic and metabolomic data reveals the lipid metabolism disorder in the liver of rats exposed to simulated microgravity |
| Research Article | [20] |
Barkia B. et al. | The formation of stable lung tumor spheroids during random positioning involves increased estrogen sensitivity |
| Research Article | [21] |
Kahlert S. et al. | Dynamic mechanical load as a trigger for growth and proliferation in porcine epithelial cells |
| Research Article | [22] |
Fava M. et al. | Cellular and molecular effects of microgravity on the immune system: A focus on bioactive lipids |
| Review | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimm, D. Effects of Weightlessness on Molecular Changes in Cellular Organisms, Animals and Plants. Biomolecules 2025, 15, 1207. https://doi.org/10.3390/biom15081207
Grimm D. Effects of Weightlessness on Molecular Changes in Cellular Organisms, Animals and Plants. Biomolecules. 2025; 15(8):1207. https://doi.org/10.3390/biom15081207
Chicago/Turabian StyleGrimm, Daniela. 2025. "Effects of Weightlessness on Molecular Changes in Cellular Organisms, Animals and Plants" Biomolecules 15, no. 8: 1207. https://doi.org/10.3390/biom15081207
APA StyleGrimm, D. (2025). Effects of Weightlessness on Molecular Changes in Cellular Organisms, Animals and Plants. Biomolecules, 15(8), 1207. https://doi.org/10.3390/biom15081207