Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases
Abstract
1. Introduction
2. Biochemical Mechanisms of Lactylation
3. Crosstalk with Other Protein Modifications
4. Lactylation in Liver Diseases
4.1. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
4.2. Liver Fibrosis
4.3. Liver Ischemia/Reperfusion Injury (IRI)
4.4. Drug-Induced Liver Injury (DILI)
4.5. Liver Cancer
4.5.1. Metabolic Adaptation
4.5.2. Cell Cycle, Proliferation, and Survival
4.5.3. Invasion and Metastasis
4.5.4. Immune Evasion
4.5.5. Therapy Resistance
4.5.6. Cancer Stemness
4.5.7. Angiogenesis
5. Therapeutic Strategies Targeting of Lactate and Lactylation in Liver Diseases
5.1. Targeting Lactate Availability/Production
5.2. Inhibiting Lactylation “Writer” Activity
5.3. Modulating Lactylation “Eraser” Activity
5.4. Combinatorial Inhibition of Lactate Availability and Lactylation
5.5. Potential Risks of Lactylation-Targeted Therapies
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AARS1/2 | alanyl-tRNA synthetase 1/2 |
ABCF1 | ATP-binding cassette subfamily F member 1 |
ACSS2 | acetyl-CoA synthetase 2 |
ALDOA | aldolase A |
ATAT1 | α-tubulin acetyltransferase 1 |
BMP2 | bone morphogenetic protein 2 |
CENPA | centromere protein A |
CSCs | cancer stem cells |
2-DG | 2-deoxy-D-glucose |
DILI | drug-induced liver injury |
ECM | extracellular matrix |
EMT | epithelial-mesenchymal transition |
FASN | fatty acid synthase |
FBXO2 | F-box protein 2 |
G3P | glyceraldehyde-3-phosphate |
GCN5 | general control non-depressible 5 |
GLO1 | glyoxalase 1 |
GLO2 | glyoxalase 2 |
GP73 | Golgi phosphoprotein 73 |
GTPSCS | guanosine triphosphate-specific succinyl-CoA synthetase |
HATs | histone acetyltransferases |
H3K18la | histone H3 lysine 18 lactylation |
HCC | hepatocellular carcinoma |
HDACs | histone deacetylases |
HIF1A | hypoxia-inducible factor 1A |
HIFs | hypoxia-inducible factors |
HK2 | hexokinase 2 |
HMGB1 | high mobility group box-1 |
HSCs | hepatic stellate cells |
HSPA12A | hepatocyte heat shock protein A12A |
HTG | Huazhuo Tiaozhi Granule |
ICB | immune checkpoint blockade |
iCCA | intrahepatic cholangiocarcinoma |
IGF2BP2 | insulin-like growth factor 2 mRNA binding protein 2 |
IRF4 | interferon-regulatory factor 4 |
IRI | ischemia/reperfusion injury |
IRS1 | insulin receptor substrate 1 |
JAML | junctional adhesion molecule-like protein |
KAT | lysine acetyltransferase |
KDM3A | lysine demethylase 3A |
KEAP1 | Kelch-like ECH-associated protein 1 |
Kla | lysine lactylation |
LCSCs | liver cancer stem cells |
LDH | lactate dehydrogenase |
LDHA | lactate dehydrogenase A |
LGSH | lactoylglutathione |
L-La CoA | L-lactyl-CoA |
LOX | lysyl oxidase |
m6A | N6-methyladenosine |
MADD | MAP kinase-activating death domain protein |
MASH | metabolic dysfunction-associated steatohepatitis |
MASLD | metabolic dysfunction-associated steatotic liver disease |
MCM7 | minichromosome maintenance complex component 7 |
MCTs | monocarboxylate transporters |
METTL3 | methyltransferase-like 3 |
MGO | methylglyoxal |
MVB | multivesicular body |
NAFLD | non-alcoholic fatty liver disease |
NAM | nicotinamide |
NEDD4 | neuronal precursor cell-expressed developmentally downregulated 4 |
NRF2 | nuclear factor erythroid 2-related factor 2 |
NFS1 | cysteine desulfurase |
NUPR1 | nuclear protein 1 |
PCK2 | phosphoenolpyruvate carboxykinase 2 |
PDC | pyruvate dehydrogenase complex |
PDH | pyruvate dehydrogenase |
PDHX | pyruvate dehydrogenase complex component X |
PDHK | pyruvate dehydrogenase kinase |
PD-L1 | programmed death-ligand 1 |
PRMT3 | protein arginine methyltransferase 3 |
PTM | post-translational modification |
sEVs | small extracellular vesicles |
SIRPA | signal regulatory protein alpha |
SORBS3 | SH3 domain-containing 3 |
SPIO | superparamagnetic iron oxide |
SRSF10 | serine- and arginine-rich splicing factor 10 |
TAMs | tumor-associated macrophages |
TCA | tricarboxylic acid |
TEC | tectorigenin |
TME | tumor microenvironment |
TPX2 | targeting protein for Xklp2 |
Tregs | regulatory T cells |
TWIST1 | twist family BHLH transcription factor 1 |
UC-MSC | umbilical cord mesenchymal stem cell |
USP34 | ubiquitin-specific protease 34 |
YAP | yes-associated protein |
YTHDC1 | YTH domain-containing family protein 1 |
References
- Ippolito, L.; Morandi, A.; Giannoni, E.; Chiarugi, P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem. Sci. 2019, 44, 153–166. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.; Chen, Y.; Tian, H.; Chai, P.; Shen, Y.; Yao, Y.; Xu, S.; Ge, S.; Jia, R. Lactate and lactylation in cancer. Signal Transduct. Target. Ther. 2025, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Llibre, A.; Kucuk, S.; Gope, A.; Certo, M.; Mauro, C. Lactate: A key regulator of the immune response. Immunity 2025, 58, 535–554. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Merkuri, F.; Rothstein, M.; Simoes-Costa, M. Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat. Commun. 2024, 15, 90. [Google Scholar] [CrossRef]
- Liao, Y.; Niu, L.; Ling, J.; Cui, Y.; Huang, Z.; Xu, J.; Jiang, Y.; Yu, P.; Liu, X. Turning sour into sweet: Lactylation modification as a promising target in cardiovascular health. Metabolism 2025, 168, 156234. [Google Scholar] [CrossRef]
- Iozzo, M.; Pardella, E.; Giannoni, E.; Chiarugi, P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol. Cell 2025, 85, 1263–1279. [Google Scholar] [CrossRef]
- Rho, H.; Hay, N. Protein lactylation in cancer: Mechanisms and potential therapeutic implications. Exp. Mol. Med. 2025, 57, 545–553. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Xu, J.; Pan, H.; Wang, W.; Yu, X.; Shi, S. Histone lactylation: From tumor lactate metabolism to epigenetic regulation. Int. J. Biol. Sci. 2024, 20, 1833–1854. [Google Scholar] [CrossRef]
- Peery, A.F.; Murphy, C.C.; Anderson, C.; Jensen, E.T.; Deutsch-Link, S.; Egberg, M.D.; Lund, J.L.; Subramaniam, D.; Dellon, E.S.; Sperber, A.D.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2024. Gastroenterology 2025, 168, 1000–1024. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, F.; Wong, N.K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K.; et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective. J. Hepatol. 2019, 71, 212–221. [Google Scholar] [CrossRef]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zou, X.; Chen, Q.; Nong, W.; Miao, W.; Luo, H.; Qu, S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int. 2024, 24, 246. [Google Scholar] [CrossRef]
- Zhao, L.; Qi, H.; Lv, H.; Liu, W.; Zhang, R.; Yang, A. Lactylation in health and disease: Physiological or pathological? Theranostics 2025, 15, 1787–1821. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, C.H.; Lv, D.; Sample, K.M.; Rojas, A.; Zhang, Y.; Qiu, H.; He, L.; Zheng, L.; Chen, L.; et al. Halting hepatocellular carcinoma: Identifying intercellular crosstalk in HBV-driven disease. Cell Rep. 2025, 44, 115457. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; He, X.; Chen, X.; Huang, J.; Liu, Y.; Zhang, J.; Chen, H.; Sui, X.; Lv, X.; Zhao, X.; et al. Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation. Cancer Lett. 2025, 627, 217636. [Google Scholar] [CrossRef]
- Yao, S.; Chai, H.; Tao, T.; Zhang, L.; Yang, X.; Li, X.; Yi, Z.; Wang, Y.; An, J.; Wen, G.; et al. Role of lactate and lactate metabolism in liver diseases (Review). Int. J. Mol. Med. 2024, 54, 59. [Google Scholar] [CrossRef]
- Chen, Q.; Yuan, H.; Bronze, M.S.; Li, M. Targeting lactylation and the STAT3/CCL2 axis to overcome immunotherapy resistance in pancreatic ductal adenocarcinoma. J. Clin. Invest. 2025, 135, e191422. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, C.; Hou, Y.; Zhang, Y. Lactylation in tumor microenvironment and immunotherapy resistance: New mechanisms and challenges. Cancer Lett. 2025, 627, 217835. [Google Scholar] [CrossRef]
- Tsukihara, S.; Akiyama, Y.; Shimada, S.; Hatano, M.; Igarashi, Y.; Taniai, T.; Tanji, Y.; Kodera, K.; Yasukawa, K.; Umeura, K.; et al. Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene 2025, 44, 724–738. [Google Scholar] [CrossRef]
- Chaudagar, K.; Hieromnimon, H.M.; Khurana, R.; Labadie, B.; Hirz, T.; Mei, S.; Hasan, R.; Shafran, J.; Kelley, A.; Apostolov, E.; et al. Reversal of Lactate and PD-1-mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer. Clin. Cancer Res. 2023, 29, 1952–1968. [Google Scholar] [CrossRef]
- Kocianova, E.; Piatrikova, V.; Golias, T. Revisiting the Warburg Effect with Focus on Lactate. Cancers 2022, 14, 6028. [Google Scholar] [CrossRef]
- Brooks, G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020, 35, 101454. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Ren, J.; Yang, B.; Zhang, L.; Zhou, F. Emerging roles of lysine lactyltransferases and lactylation. Nat. Cell Biol. 2025, 27, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Ye, X.; Lu, X.; Xiao, L.; Yuan, M.; Zhao, H.; Guo, D.; Meng, Y.; Han, H.; Luo, S.; et al. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 2025, 37, 361–376.e7. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ren, X.; Park, Y.E.; Feng, H.; Sheng, X.; Song, X.; AminiTabrizi, R.; Shah, H.; Li, L.; Zhang, Y.; et al. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab. 2025, 37, 377–394.e9. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, X.; Ni, W.; Zheng, L.; Lin, Z.; Lai, Y.; Yang, N.; Dai, Z.; Yao, T.; Chen, Z.; et al. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. Adv. Sci. 2024, 11, e2406184. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhai, L.; Zhang, T.; Yin, H.; Gao, H.; Zhao, F.; Wang, Z.; Yang, X.; Jin, M.; et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024, 187, 294–311.e21. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, M.; Wu, Z.; Wu, J.; Zheng, K.; Wang, J.; Zeng, Q.; Chen, M.; Lv, T.; Shi, Y.; et al. The Lactate-Primed KAT8–PCK2 Axis Exacerbates Hepatic Ferroptosis During Ischemia/Reperfusion Injury by Reprogramming OXSM-Dependent Mitochondrial Fatty Acid Synthesis. Adv. Sci. 2025, 12, e2414141. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Li, H.; Chen, X.; Fu, H.; Mao, D.; Chen, W.; Lan, L.; Wang, C.; Hu, K.; et al. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 2024, 631, 663–669. [Google Scholar] [CrossRef]
- Sun, C.; Li, X.; Teng, Q.; Liu, X.; Song, L.; Schioth, H.B.; Wu, H.; Ma, X.; Zhang, Z.; Qi, C.; et al. Targeting platinum-resistant ovarian cancer by disrupting histone and RAD51 lactylation. Theranostics 2025, 15, 3055–3075. [Google Scholar] [CrossRef]
- Niu, Z.; Chen, C.; Wang, S.; Lu, C.; Wu, Z.; Wang, A.; Mo, J.; Zhang, J.; Han, Y.; Yuan, Y.; et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat. Commun. 2024, 15, 3561. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhou, J.; Gu, Y.; Huang, W.; Ruan, M.; Zhang, H.; Wang, T.; Wei, P.; Chen, G.; Li, W.; et al. Lactylation of NAT10 promotes N(4)-acetylcytidine modification on tRNA(Ser-CGA-1-1) to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ. 2024, 31, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, Z.; He, L.; Shen, Y.; Yan, Y.; Lv, X.; Zhu, X.; Li, W.; Tian, W.Y.; Zheng, Y.; et al. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed alpha-tubulin lactylation. Nat. Commun. 2024, 15, 8377. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Yruela, C.; Zhang, D.; Wei, W.; Baek, M.; Liu, W.; Gao, J.; Dankova, D.; Nielsen, A.L.; Bolding, J.E.; Yang, L.; et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci. Adv. 2022, 8, eabi6696. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, J.; Zhang, H.; Han, Y.; Lu, C.; Chen, C.; Tan, X.; Wang, S.; Bai, X.; Zhai, G.; et al. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat. Commun. 2022, 13, 6628. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Li, R.; Zhou, L.; Ran, Y.; Yang, Q.; Huang, H.; Lu, H.; Song, H.; Yang, B.; et al. AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases. Nature 2024, 634, 1229–1237. [Google Scholar] [CrossRef]
- Zong, Z.; Xie, F.; Wang, S.; Wu, X.; Zhang, Z.; Yang, B.; Zhou, F. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell 2024, 187, 2375–2392.e33. [Google Scholar] [CrossRef]
- Ju, J.; Zhang, H.; Lin, M.; Yan, Z.; An, L.; Cao, Z.; Geng, D.; Yue, J.; Tang, Y.; Tian, L.; et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J. Clin. Invest. 2024, 134, e174587. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.; Yang, Y.; Sun, Y.; Zhao, Y.; Zhang, Z.; Qiu, D.; Wu, Y.; Wu, G.; Lei, L. Dux activates metabolism-lactylation-MET network during early iPSC reprogramming with Brg1 as the histone lactylation reader. Nucleic Acids Res. 2024, 52, 5529–5548. [Google Scholar] [CrossRef]
- Zhai, G.; Niu, Z.; Jiang, Z.; Zhao, F.; Wang, S.; Chen, C.; Zheng, W.; Wang, A.; Zang, Y.; Han, Y.; et al. DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc. Natl. Acad. Sci. USA 2024, 121, e2421496121. [Google Scholar] [CrossRef]
- Trujillo, M.N.; Jennings, E.Q.; Hoffman, E.A.; Zhang, H.; Phoebe, A.M.; Mastin, G.E.; Kitamura, N.; Reisz, J.A.; Megill, E.; Kantner, D.; et al. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol. Metab. 2024, 81, 101888. [Google Scholar] [CrossRef]
- Gaffney, D.O.; Jennings, E.Q.; Anderson, C.C.; Marentette, J.O.; Shi, T.; Schou Oxvig, A.M.; Streeter, M.D.; Johannsen, M.; Spiegel, D.A.; Chapman, E.; et al. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem. Biol. 2020, 27, 206–213.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, T.; Li, C.; Wang, D.; Tao, J.; Zhu, X.; Lu, J.; Ni, J.; Yao, Y.F. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg. Microbes Infect. 2025, 14, 2475838. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, A.; Novakovic, B.; Ventriglia, L.; Galang, N.; Tran, K.A.; Li, W.; Matzaraki, V.; van Unen, N.; Schluter, T.; Ferreira, A.V.; et al. Long-term histone lactylation connects metabolic and epigenetic rewiring in innate immune memory. Cell 2025, 188, 2992–3012.e16. [Google Scholar] [CrossRef]
- Dai, X.; Lv, X.; Thompson, E.W.; Ostrikov, K.K. Histone lactylation: Epigenetic mark of glycolytic switch. Trends Genet. 2022, 38, 124–127. [Google Scholar] [CrossRef]
- Izzo, L.T.; Wellen, K.E. Histone lactylation links metabolism and gene regulation. Nature 2019, 574, 492–493. [Google Scholar] [CrossRef]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Le, Z.; Yanxiang Guo, J.; et al. Glucose feeds the TCA cycle via circulating lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, J.; Li, F.; Ge, S. Oncometabolites drive tumorigenesis by enhancing protein acylation: From chromosomal remodelling to nonhistone modification. J. Exp. Clin. Cancer Res. 2022, 41, 144. [Google Scholar] [CrossRef]
- Yao, W.; Hu, X.; Wang, X. Crossing epigenetic frontiers: The intersection of novel histone modifications and diseases. Signal Transduct. Target. Ther. 2024, 9, 232. [Google Scholar] [CrossRef]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef]
- Wu, X.; Xu, M.; Geng, M.; Chen, S.; Little, P.J.; Xu, S.; Weng, J. Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct. Target. Ther. 2023, 8, 220. [Google Scholar] [CrossRef]
- Narita, T.; Weinert, B.T.; Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 2019, 20, 156–174. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Gao, Y.; Yan, C.; Ren, X.; Qi, S.; Liu, G.; Guo, X.; Song, X.; Wang, H.; Rao, J.; et al. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience 2024, 27, 110911. [Google Scholar] [CrossRef] [PubMed]
- Stacpoole, P.W.; Dirain, C.O. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol. Genet. Metab. 2024, 143, 108540. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Xiong, N.; Yan, R.; Li, S.T.; Liu, H.; Mao, Q.; Sun, Y.; Shen, S.; Ye, L.; Gao, P.; et al. PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression. Protein Cell 2025, 16, 49–63. [Google Scholar] [CrossRef]
- Yang, K.; Fan, M.; Wang, X.; Xu, J.; Wang, Y.; Tu, F.; Gill, P.S.; Ha, T.; Liu, L.; Williams, D.L.; et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022, 29, 133–146. [Google Scholar] [CrossRef]
- Li, L.; Chen, K.; Wang, T.; Wu, Y.; Xing, G.; Chen, M.; Hao, Z.; Zhang, C.; Zhang, J.; Ma, B.; et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat. Metab. 2020, 2, 882–892. [Google Scholar] [CrossRef]
- Bhat, K.P.; Umit Kaniskan, H.; Jin, J.; Gozani, O. Epigenetics and beyond: Targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug Discov. 2021, 20, 265–286. [Google Scholar] [CrossRef]
- Levy, D. Lysine methylation signaling of non-histone proteins in the nucleus. Cell Mol. Life Sci. 2019, 76, 2873–2883. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, J.; Zhang, Y.; Li, W.; Xiong, Y.; Fan, Y.; Wu, Y.; Zhao, J.; Shang, C.; Liang, H.; et al. Lactylation-Driven IGF2BP3-Mediated Serine Metabolism Reprogramming and RNA m6A-Modification Promotes Lenvatinib Resistance in HCC. Adv. Sci. 2024, 11, e2401399. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Zhu, M.; Yu, W.; Mao, W.; Mao, D.; Wang, F.; Wan, Y. Histone lactylation regulates early embryonic development through m6A methyltransferase METTL3 in goats. Int. J. Biol. Macromol. 2025, 309, 142858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, R.; Zhang, Z.; Xue, Y. METTL3 regulated by histone lactylation promotes ossification of the ligamentum flavum by enhancing the m6A methylation of BMP2. Mol. Med. 2025, 31, 118. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Han, H.; Wang, L.; Cao, W.; Hu, M.; Li, J.; Wang, J.; Yang, Y.; Xu, X.; Li, G.; et al. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway. Cell Death Differ. 2025, 32, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Sabari, B.R.; Zhang, D.; Allis, C.D.; Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 2017, 18, 90–101. [Google Scholar] [CrossRef]
- Moreno-Yruela, C.; Baek, M.; Monda, F.; Olsen, C.A. Chiral Posttranslational Modification to Lysine epsilon-Amino Groups. Acc. Chem. Res. 2022, 55, 1456–1466. [Google Scholar] [CrossRef]
- Wang, X.J.; Malhi, H. Nonalcoholic Fatty Liver Disease. Ann. Intern. Med. 2018, 169, ITC65–ITC80. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62 (Suppl. S1), S47–S64. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Marjot, T.; Moolla, A.; Cobbold, J.F.; Hodson, L.; Tomlinson, J.W. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr. Rev. 2020, 41, bnz009. [Google Scholar] [CrossRef]
- Stefan, N.; Haring, H.U.; Cusi, K. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 2019, 7, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Raju, C.; Sankaranarayanan, K. Insights on post-translational modifications in fatty liver and fibrosis progression. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167659. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Song, S.; Jiang, W.; Geng, T.; Wang, T.; Xu, Y.; Zhu, Y.; Lu, J.; Xia, Y.; et al. Hexokinase 2-mediated metabolic stress and inflammation burden of liver macrophages via histone lactylation in MASLD. Cell Rep. 2025, 44, 115350. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yan, C.; Liu, J. LDHA-Mediated Histone Lactylation Promotes the Nonalcoholic Fatty Liver Disease Progression Through Targeting The METTL3/YTHDF1/SCD1 m6A Axis. Physiol. Res. 2024, 73, 985–999. [Google Scholar] [CrossRef]
- Gao, R.; Li, Y.; Xu, Z.; Zhang, F.; Xu, J.; Hu, Y.; Yin, J.; Yang, K.; Sun, L.; Wang, Q.; et al. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 2023, 78, 1800–1815. [Google Scholar] [CrossRef]
- Yin, X.; Li, M.; Wang, Y.; Zhao, G.; Yang, T.; Zhang, Y.; Guo, J.; Meng, T.; Du, R.; Li, H.; et al. Herbal medicine formula Huazhuo Tiaozhi granule ameliorates dyslipidaemia via regulating histone lactylation and miR-155-5p biogenesis. Clin. Epigenetics 2023, 15, 175. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, X.; Mu, M.; Zhang, Q.; Zhao, X. TEC-mediated tRF-31R9J regulates histone lactylation and acetylation by HDAC1 to suppress hepatocyte ferroptosis and improve non-alcoholic steatohepatitis. Clin. Epigenetics 2025, 17, 9. [Google Scholar] [CrossRef]
- Magdaleno, F.; Arriazu, E.; Ruiz de Galarreta, M.; Chen, Y.; Ge, X.; Conde de la Rosa, L.; Nieto, N. Cartilage oligomeric matrix protein participates in the pathogenesis of liver fibrosis. J. Hepatol. 2016, 65, 963–971. [Google Scholar] [CrossRef]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef]
- Rho, H.; Terry, A.R.; Chronis, C.; Hay, N. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 2023, 35, 1406–1423.e8. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Zhan, Y. H3K18 lactylation accelerates liver fibrosis progression through facilitating SOX9 transcription. Exp. Cell Res. 2024, 440, 114135. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, J.; Huang, H.; Liu, L.; Ren, L.; Hu, J.; Jiang, X.; Zheng, Y.; Xu, L.; Zhong, F.; et al. The m(6)A reader IGF2BP2 regulates glycolytic metabolism and mediates histone lactylation to enhance hepatic stellate cell activation and liver fibrosis. Cell Death Dis. 2024, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, P.; Xie, Y.; Xie, D.; Wang, H.; Bu, N.; Lin, J.; Wu, M.; Xia, H.; Cheng, C.; et al. Histone lactylation-augmented IRF4 is implicated in arsenite-induced liver fibrosis via modulating Th17 cell differentiation. Chem. Biol. Interact. 2025, 414, 111507. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, R.; Guo, Y.; Hu, B.; Xie, L.; An, Y.; Wen, J.; Liu, Z.; Zhou, M.; Kuang, W.; et al. Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining. Cell Metab. 2025, 37, 824–841.e8. [Google Scholar] [CrossRef] [PubMed]
- Li, L.N.; Li, W.W.; Xiao, L.S.; Lai, W.N. Lactylation signature identifies liver fibrosis phenotypes and traces fibrotic progression to hepatocellular carcinoma. Front. Immunol. 2024, 15, 1433393. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Yao, J.; Song, X.; Wang, H.; Zhang, J.; Li, X. Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment. Curr. Issues Mol. Biol. 2023, 45, 8444–8460. [Google Scholar] [CrossRef]
- Wang, F.X.; Mu, G.; Yu, Z.H.; Shi, Z.A.; Li, X.X.; Fan, X.; Chen, Y.; Zhou, J. Lactylation: A promising therapeutic target in ischemia-reperfusion injury management. Cell Death Discov. 2025, 11, 100. [Google Scholar] [CrossRef]
- Du, S.; Zhang, X.; Jia, Y.; Peng, P.; Kong, Q.; Jiang, S.; Li, Y.; Li, C.; Ding, Z.; Liu, L. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics 2023, 13, 3856–3871. [Google Scholar] [CrossRef]
- Xu, R.; Hao, Y.; Liu, Y.; Ji, B.; Tian, W.; Zhang, W. Functional mechanisms and potential therapeutic strategies for lactylation in liver diseases. Life Sci. 2025, 363, 123395. [Google Scholar] [CrossRef]
- Hong, W.; Zeng, X.; Wang, H.; Tan, X.; Tian, Y.; Hu, H.; Ashrafizadeh, M.; Sethi, G.; Huang, H.; Duan, C. PGC-1alpha loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis. Pharmacol. Res. 2024, 205, 107228. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, F.; Wang, H.; Tong, Y.; Fu, Y.; Wu, K.; Li, J.; Wang, C.; Wang, Z.; Jia, Y.; et al. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int. J. Biol. Sci. 2024, 20, 1413–1435. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Tufail, M.; Jiang, C.H.; Li, N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol. Cancer 2024, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yan, C.; Ma, J.; Peng, P.; Ren, X.; Cai, S.; Shen, X.; Wu, Y.; Zhang, S.; Wang, X.; et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 2023, 5, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Kotsiliti, E. Lactylation and HCC progression. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 131. [Google Scholar] [CrossRef]
- Du, W.; Tan, S.; Peng, Y.; Lin, S.; Wu, Y.; Ding, K.; Chen, C.; Liu, R.; Cao, Y.; Li, Z.; et al. Histone lactylation-driven YTHDC1 promotes hepatocellular carcinoma progression via lipid metabolism remodeling. Cancer Lett. 2024, 611, 217426. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Tang, Y.; Liu, Z.; Liu, Y.; Fu, X.; Guo, S.; Ma, J.; Ma, F.; Zhu, Z.; et al. PD-L1 delactylation-promoted nuclear translocation accelerates liver cancer growth through elevating SQLE transcription activity. Cancer Lett. 2025, 630, 217901. [Google Scholar] [CrossRef]
- Pandkar, M.R.; Sinha, S.; Samaiya, A.; Shukla, S. Oncometabolite lactate enhances breast cancer progression by orchestrating histone lactylation-dependent c-Myc expression. Transl. Oncol. 2023, 37, 101758. [Google Scholar] [CrossRef]
- Lin, J.; Liu, G.; Chen, L.; Kwok, H.F.; Lin, Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin. Cancer Biol. 2022, 86, 1231–1243. [Google Scholar] [CrossRef]
- Sgarra, R.; Battista, S.; Cerchia, L.; Manfioletti, G.; Fedele, M. Mechanism of Action of Lactic Acid on Histones in Cancer. Antioxid. Redox Signal 2024, 40, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Bai, L.; Wang, D.; Ding, W.; Cao, Z.; Yan, P.; Li, Y.; Xi, L.; Wang, Y.; Zheng, X.; et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 2023, 24, e56052. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cai, J.; Qian, X.; Zhang, J.; Zhang, Y.; Meng, X.; Wang, M.; Gao, P.; Zhong, X. TPX2 lactylation is required for the cell cycle regulation and hepatocellular carcinoma progression. Life Sci. Alliance 2025, 8, e202402978. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Chen, Z.; Chang, R.; Yuan, T.; Li, G.; Zhu, C.; Wen, J.; Wei, Y.; Huang, Z.; Ding, Z.; et al. CENPA functions as a transcriptional regulator to promote hepatocellular carcinoma progression via cooperating with YY1. Int. J. Biol. Sci. 2023, 19, 5218–5232. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, T.; Wang, Y.; Wang, G.; Yu, W.; Zhang, J.; Shi, Y.; Li, J.; Ding, J. K90 lactylation orchestrates YAP nuclear sequestration by impairing binding with exportin CRM1 and enhances HCC malignancy. Cancer Lett. 2024, 611, 217386. [Google Scholar] [CrossRef]
- Wei, X.; Zou, L.; Huang, Y.; Qiu, C.; Cheng, G.; Chen, Y.; Rao, J. LDHA-mediated YAP lactylation promotes the tumor progression of hepatocellular carcinoma by inducing YAP dephosphorylation and activation. Biol. Direct 2025, 20, 64. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 79, 181–208. [Google Scholar] [CrossRef]
- Yang, L.; Niu, K.; Wang, J.; Shen, W.; Jiang, R.; Liu, L.; Song, W.; Wang, X.; Zhang, X.; Zhang, R.; et al. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J. Hepatol. 2024, 81, 651–666. [Google Scholar] [CrossRef]
- Huimin, W.; Xin, W.; Shan, Y.; Junwang, Z.; Jing, W.; Yuan, W.; Qingtong, L.; Xiaohui, L.; Jia, Y.; Lili, Y. Lactate promotes the epithelial-mesenchymal transition of liver cancer cells via TWIST1 lactylation. Exp. Cell Res. 2025, 447, 114474. [Google Scholar] [CrossRef]
- Huang, J.; Xie, H.; Li, J.; Huang, X.; Cai, Y.; Yang, R.; Yang, D.; Bao, W.; Zhou, Y.; Li, T.; et al. Histone lactylation drives liver cancer metastasis by facilitating NSF1-mediated ferroptosis resistance after microwave ablation. Redox Biol. 2025, 81, 103553. [Google Scholar] [CrossRef]
- Wang, H.; Xu, M.; Zhang, T.; Pan, J.; Li, C.; Pan, B.; Zhou, L.; Huang, Y.; Gao, C.; He, M.; et al. PYCR1 promotes liver cancer cell growth and metastasis by regulating IRS1 expression through lactylation modification. Clin. Transl. Med. 2024, 14, e70045. [Google Scholar] [CrossRef]
- Chiu, D.K.; Zhang, X.; Cheng, B.Y.; Liu, Q.; Hayashi, K.; Yu, B.; Lee, R.; Zhang, C.; An, X.; Rajadas, J.; et al. Tumor-derived erythropoietin acts as an immunosuppressive switch in cancer immunity. Science 2025, 388, eadr3026. [Google Scholar] [CrossRef]
- Wu, S.; Anand, N.; Guo, Z.; Li, M.; Santiago Figueroa, M.; Jung, L.; Kelly, S.; Franses, J.W. Bridging Immune Evasion and Vascular Dynamics for Novel Therapeutic Frontiers in Hepatocellular Carcinoma. Cancers 2025, 17, 1860. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N. Role of Oncogenic Pathways on the Cancer Immunosuppressive Microenvironment and Its Clinical Implications in Hepatocellular Carcinoma. Cancers 2021, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, A.; De Leo, A.; Yu, X.; Scirocchi, F.; Liu, X.; Peixoto, B.; Scocozza, D.; Pace, A.; Perego, M.; Gardini, A.; et al. Functional Reprogramming of Neutrophils within the Brain Tumor Microenvironment by Hypoxia-Driven Histone Lactylation. Cancer Discov. 2025, 15, 1270–1296. [Google Scholar] [CrossRef] [PubMed]
- Chaudagar, K.; Hieromnimon, H.M.; Kelley, A.; Labadie, B.; Shafran, J.; Rameshbabu, S.; Drovetsky, C.; Bynoe, K.; Solanki, A.; Markiewicz, E.; et al. Suppression of Tumor Cell Lactate-generating Signaling Pathways Eradicates Murine PTEN/p53-deficient Aggressive-variant Prostate Cancer via Macrophage Phagocytosis. Clin. Cancer Res. 2023, 29, 4930–4940. [Google Scholar] [CrossRef]
- Tyl, M.D.; Merengwa, V.U.; Cristea, I.M. Infection-induced lysine lactylation enables herpesvirus immune evasion. Sci. Adv. 2025, 11, eads6215. [Google Scholar] [CrossRef]
- Raychaudhuri, D.; Singh, P.; Chakraborty, B.; Hennessey, M.; Tannir, A.J.; Byregowda, S.; Natarajan, S.M.; Trujillo-Ocampo, A.; Im, J.S.; Goswami, S. Histone lactylation drives CD8(+) T cell metabolism and function. Nat. Immunol. 2024, 25, 2140–2151. [Google Scholar] [CrossRef]
- De Leo, A.; Ugolini, A.; Yu, X.; Scirocchi, F.; Scocozza, D.; Peixoto, B.; Pace, A.; D’Angelo, L.; Liu, J.K.C.; Etame, A.B.; et al. Glucose-driven histone lactylation promotes the immunosuppressive activity of monocyte-derived macrophages in glioblastoma. Immunity 2024, 57, 1105–1123.e8. [Google Scholar] [CrossRef]
- Lopez Krol, A.; Nehring, H.P.; Krause, F.F.; Wempe, A.; Raifer, H.; Nist, A.; Stiewe, T.; Bertrams, W.; Schmeck, B.; Luu, M.; et al. Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17 cells. EMBO Rep. 2022, 23, e54685. [Google Scholar] [CrossRef]
- Ding, C.H.; Yan, F.Z.; Xu, B.N.; Qian, H.; Hong, X.L.; Liu, S.Q.; Luo, Y.Y.; Wu, S.H.; Cai, L.Y.; Zhang, X.; et al. PRMT3 drives PD-L1-mediated immune escape through activating PDHK1-regulated glycolysis in hepatocellular carcinoma. Cell Death Dis. 2025, 16, 158. [Google Scholar] [CrossRef]
- Cai, J.; Song, L.; Zhang, F.; Wu, S.; Zhu, G.; Zhang, P.; Chen, S.; Du, J.; Wang, B.; Cai, Y.; et al. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun. 2024, 44, 1231–1260. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, P.; Cai, Y.; Zhu, G.; Chen, S.; Song, L.; Du, J.; Wang, B.; Dai, W.; Zhou, J.; et al. Lactylation-Driven NUPR1 Promotes Immunosuppression of Tumor-Infiltrating Macrophages in Hepatocellular Carcinoma. Adv. Sci. 2025, 12, e2413095. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhou, J.; Chen, Q.; Xu, X.; Gao, J.; Li, X.; Shao, Q.; Zhou, B.; Zhou, H.; Wei, S.; et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep. 2022, 39, 110986. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiao, Z.; Lu, Z.; Xu, N.; Wei, Q.; Xu, X. Targeted activation of junctional adhesion molecule-like protein+ CD8+ T cells enhances immunotherapy in hepatocellular carcinoma. Chin. J. Cancer Res. 2025, 37, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Fei, Y.; He, Y.; Gao, P.; Zhang, B.; Zhu, M.; Wang, Z.; Wu, L.; Wu, S.; Wang, X.; et al. Lactylation-Driven HECTD2 Limits the Response of Hepatocellular Carcinoma to Lenvatinib. Adv. Sci. 2025, 12, e2412559. [Google Scholar] [CrossRef]
- Fan, M.; Liu, J.S.; Wei, X.L.; Nie, Y.; Liu, H.L. Histone Lactylation-Driven Ubiquitin-Specific Protease 34 Promotes Cisplatin Resistance in Hepatocellular Carcinoma. Gastroenterol. Res. 2025, 18, 23–30. [Google Scholar] [CrossRef]
- Zeng, Y.; Jiang, H.; Chen, Z.; Xu, J.; Zhang, X.; Cai, W.; Zeng, X.; Ma, P.; Lin, R.; Yu, H.; et al. Histone lactylation promotes multidrug resistance in hepatocellular carcinoma by forming a positive feedback loop with PTEN. Cell Death Dis. 2025, 16, 59. [Google Scholar] [CrossRef]
- Liu, Z.; Han, J.; Su, S.; Zeng, Q.; Wu, Z.; Yuan, J.; Yang, J. Histone lactylation facilitates MCM7 expression to maintain stemness and radio-resistance in hepatocellular carcinoma. Biochem. Pharmacol. 2025, 236, 116887. [Google Scholar] [CrossRef]
- Nguyen, N.T.B.; Gevers, S.; Kok, R.N.U.; Burgering, L.M.; Neikes, H.; Akkerman, N.; Betjes, M.A.; Ludikhuize, M.C.; Gulersonmez, C.; Stigter, E.C.A.; et al. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab. 2025, 37, 903–919.e10. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Wu, J.; Chi, Q.; Wang, S.; Liu, W.; Yang, L.; Song, G.; Pan, L.; Xu, K.; Wang, C. Lactylome Analysis Unveils Lactylation-Dependent Mechanisms of Stemness Remodeling in the Liver Cancer Stem Cells. Adv. Sci. 2024, 11, e2405975. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Feng, F.; Wu, J.; Fan, S.; Han, J.; Wang, S.; Yang, L.; Liu, W.; Wang, C.; Xu, K. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol. Res. 2022, 181, 106270. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, M.; Neuzillet, C.; Calderaro, J.; Lafdil, F.; Pawlotsky, J.M.; Rousseau, B. Angiogenesis and immune checkpoint inhibitors as therapies for hepatocellular carcinoma: Current knowledge and future research directions. J. Immunother. Cancer 2019, 7, 333. [Google Scholar] [CrossRef]
- Sampat, K.R.; O’Neil, B. Antiangiogenic therapies for advanced hepatocellular carcinoma. Oncologist 2013, 18, 430–438. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Cao, X.; Guo, D.; Huang, S.; Xie, L.; Wu, M.; Li, J.; Li, C.; Chu, Y.; et al. Semaphorin 6A phase separation sustains a histone lactylation-dependent lactate buildup in pathological angiogenesis. Proc. Natl. Acad. Sci. USA 2025, 122, e2423677122. [Google Scholar] [CrossRef]
- Fan, W.; Zeng, S.; Wang, X.; Wang, G.; Liao, D.; Li, R.; He, S.; Li, W.; Huang, J.; Li, X.; et al. A feedback loop driven by H3K9 lactylation and HDAC2 in endothelial cells regulates VEGF-induced angiogenesis. Genome Biol. 2024, 25, 165. [Google Scholar] [CrossRef]
- Kes, M.M.G.; Van den Bossche, J.; Griffioen, A.W.; Huijbers, E.J.M. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188427. [Google Scholar] [CrossRef]
- Peng, X.; He, Z.; Yuan, D.; Liu, Z.; Rong, P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189164. [Google Scholar] [CrossRef]
- Ye, J.; Gao, X.; Huang, X.; Huang, S.; Zeng, D.; Luo, W.; Zeng, C.; Lu, C.; Lu, L.; Huang, H.; et al. Integrating Single-Cell and Spatial Transcriptomics to Uncover and Elucidate GP73-Mediated Pro-Angiogenic Regulatory Networks in Hepatocellular Carcinoma. Research 2024, 7, 0387. [Google Scholar] [CrossRef]
- Xu, H.; Li, L.; Wang, S.; Wang, Z.; Qu, L.; Wang, C.; Xu, K. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites. Phytomedicine 2023, 118, 154940. [Google Scholar] [CrossRef]
- Hayes, C.; Donohoe, C.L.; Davern, M.; Donlon, N.E. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 2021, 500, 75–86. [Google Scholar] [CrossRef]
- Hu, X.T.; Wu, X.F.; Xu, J.Y.; Xu, X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Xiong, J.; He, J.; Zhu, J.; Pan, J.; Liao, W.; Ye, H.; Wang, H.; Song, Y.; Du, Y.; Cui, B.; et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol. Cell 2022, 82, 1660–1677.e10. [Google Scholar] [CrossRef]
- Singh, M.; Afonso, J.; Sharma, D.; Gupta, R.; Kumar, V.; Rani, R.; Baltazar, F.; Kumar, V. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin. Cancer Biol. 2023, 90, 1–14. [Google Scholar] [CrossRef]
- Certo, M.; Llibre, A.; Lee, W.; Mauro, C. Understanding lactate sensing and signalling. Trends Endocrinol. Metab. 2022, 33, 722–735. [Google Scholar] [CrossRef]
- Zhou, J.; Shao, Q.; Lu, Y.; Li, Y.; Xu, Z.; Zhou, B.; Chen, Q.; Li, X.; Xu, X.; Pan, Y.; et al. Monocarboxylate transporter upregulation in induced regulatory T cells promotes resistance to anti-PD-1 therapy in hepatocellular carcinoma patients. Front. Oncol. 2022, 12, 960066. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liu, W.; Tang, Z.; Ji, X.; Zhou, Y.; Song, S.; Tian, M.; Tao, C.; Huang, R.; Zhu, G.; et al. Monocarboxylate transporter 4 inhibition potentiates hepatocellular carcinoma immunotherapy through enhancing T cell infiltration and immune attack. Hepatology 2023, 77, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Yin, X.; Wu, Z.; Zheng, A.; Feng, L.; Ma, X.; Li, L. Integrated Single-Cell and Spatial Transcriptome Reveal Metabolic Gene SLC16A3 as a Key Regulator of Immune Suppression in Hepatocellular Carcinoma. J. Cell Mol. Med. 2024, 28, e70272. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Gou, Y.; Dong, X.; Zhong, J.; Li, A.; Hao, A.; He, T.C.; Fan, J. Syrosingopine, an anti-hypertensive drug and lactate transporter (MCT1/4) inhibitor, activates hepatic stellate cells and exacerbates liver fibrosis in a mouse model. Genes Dis. 2024, 11, 101169. [Google Scholar] [CrossRef]
- Le Floch, R.; Chiche, J.; Marchiq, I.; Naiken, T.; Ilc, K.; Murray, C.M.; Critchlow, S.E.; Roux, D.; Simon, M.P.; Pouyssegur, J. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 16663–16668. [Google Scholar] [CrossRef]
- Huang, Q.; Li, J.; Xing, J.; Li, W.; Li, H.; Ke, X.; Zhang, J.; Ren, T.; Shang, Y.; Yang, H.; et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J. Hepatol. 2014, 61, 859–866. [Google Scholar] [CrossRef]
- Chen, Y.; Bei, J.; Chen, M.; Cai, W.; Zhou, Z.; Cai, M.; Huang, W.; Lin, L.; Guo, Y.; Liu, M.; et al. Intratumoral Lactate Depletion Based on Injectable Nanoparticles-Hydrogel Composite System Synergizes with Immunotherapy against Postablative Hepatocellular Carcinoma Recurrence. Adv. Healthc. Mater. 2024, 13, e2303031. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, F.; Lu, C.; Wu, R.; Yang, B.; Liao, T.; Du, B.; Wu, F.; Ding, J.; Fang, S.; et al. Lactate-Fueled Theranostic Nanoplatforms for Enhanced MRI-Guided Ferroptosis Synergistic with Immunotherapy of Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces 2025, 17, 9155–9172. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Liu, Z.; Zhang, N.; Wei, W.; Cheng, K.; Sun, H.; Hao, Q. Identification of SIRT3 as an eraser of H4K16la. iScience 2023, 26, 107757. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Su, W.; Zhang, Q.; Niu, L.; Feng, B.; Zhang, Y.; Huang, F.; He, J.; Zhou, Q.; Zhou, X.; et al. Lactylation of HDAC1 Confers Resistance to Ferroptosis in Colorectal Cancer. Adv. Sci. 2025, 12, e2408845. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Li, J.; Li, Y.; Chen, S.; Yan, X.; Xie, Z.; Du, J.; Chen, G.; Song, J.; et al. HDAC2-Mediated METTL3 Delactylation Promotes DNA Damage Repair and Chemotherapy Resistance in Triple-Negative Breast Cancer. Adv. Sci. 2025, 12, e2413121. [Google Scholar] [CrossRef]
- Galle, E.; Wong, C.W.; Ghosh, A.; Desgeorges, T.; Melrose, K.; Hinte, L.C.; Castellano-Castillo, D.; Engl, M.; de Sousa, J.A.; Ruiz-Ojeda, F.J.; et al. H3K18 lactylation marks tissue-specific active enhancers. Genome Biol. 2022, 23, 207. [Google Scholar] [CrossRef]
Target | Metabolic Modulators or Drugs | Biological Processes | Role | References |
---|---|---|---|---|
LDHA | Oxamate | Liver fibrosis | suppress Th17 cell differentiation and inactivate HSCs | [82,85] |
PDH | Rotenone | HCC | lactylation, facilitate MCM7 expression | [130,144] |
PDHK | Dichloroacetate | Liver fibrosis | inhibit HSCs | [82] |
HK | 2-DG | Liver fibrosis | ameliorate liver fibrosis | [84] |
HK | 2-DG | HCC | inhibit lactylation, reduce MCM7 expression | [130] |
HK | 2-DG; combine with lenvatinib | HCC | increase lenvatinib sensitivity and reduce IGF2BP3 lactylation | [61] |
MCT1 | AR-C155858; combine with anti-PD-1 | HCC | downregulate Tregs and upregulating anti-tumor cytokine expression | [147] |
MCT4 | VB124; combine with an-ti-PD-1 | HCC | enhance CD8+ T cell infiltration and cytotoxicity | [148] |
MCT4 | MSC-4381 | HCC | enhance T cell cytotoxicity and reducing exhaustion | [149] |
MCT1/4 | Syrosingopine | Liver fibrosis | activate HSCs and exacerbate liver fibrosis | [150] |
CD147 | Monoclonal antibody 5A12 | HCC | suppress the proliferation of HCC cells | [152] |
MCT1 | AR-C155858 | HCC | suppress the proliferation of HCC cells | [152] |
Lactate | LOX; combine with immunotherapy | HCC | inhibit residual HCC growth and lung metastasis | [153] |
Lactate | LOX; combine with immunotherapy | HCC | enhance ferroptosis in tumors | [154] |
AARS1 | β-alanine | Cancer | reduce p53 lactylation, and mitigates tumorigenesis | [38] |
KAT8 | KAT8-IN-1; MC4033 | IRI | suppress hyperlactatemia-mediated hepatic IRI and ferroptosis | [29] |
Class I HDAC | Apicidin and MS275 | Liver fibrosis | inactivate HSCs | [82] |
SIRT3 | Honokiol | HCC | induce HCC cell apoptosis and prevent HCC outgrowth | [103] |
MCT1 and P300 | AZD3965 and C646 | HCC | abrogate HCC metastasis | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Q.; Liu, M.; Tao, X. Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases. Biomolecules 2025, 15, 1178. https://doi.org/10.3390/biom15081178
Tan Q, Liu M, Tao X. Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases. Biomolecules. 2025; 15(8):1178. https://doi.org/10.3390/biom15081178
Chicago/Turabian StyleTan, Qinghai, Mei Liu, and Xiang Tao. 2025. "Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases" Biomolecules 15, no. 8: 1178. https://doi.org/10.3390/biom15081178
APA StyleTan, Q., Liu, M., & Tao, X. (2025). Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases. Biomolecules, 15(8), 1178. https://doi.org/10.3390/biom15081178