Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Insulin Monomer Preparation and Thioflavin–T–Based Fluorescence Experiments
2.3. TEM Experiments
2.4. CD Experiments
2.5. DLS Experiments
2.6. FTIR Experiments
2.7. Solid–State NMR Experiments
2.8. Solution–State NMR Experiments
2.9. Cellular Toxicity
3. Results and Discussion
3.1. Anionic Phospholipids Below Their Critical Micelle Concentration Augment Insulin Aggregation
3.2. Small Soluble Cytotoxic Oligomers Are Generated Alongside Larger Fibrils
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasconcelos, B.; Stancu, I.-C.; Buist, A.; Bird, M.; Wang, P.; Vanoosthuyse, A.; Van Kolen, K.; Verheyen, A.; Kienlen-Campard, P.; Octave, J.-N. Heterotypic Seeding of Tau Fibrillization by Pre-Aggregated Abeta Provides Potent Seeds for Prion-like Seeding and Propagation of Tau-Pathology in Vivo. Acta Neuropathol. 2016, 131, 549–569. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Masuda-Suzukake, M.; Falcon, B. Like Prions: The Propagation of Aggregated Tau and α-Synuclein in Neurodegeneration. Brain 2017, 140, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Nakajo, S.; Tu, P.-H.; Tomita, T.; Nakaya, K.; Lee, V.M.; Trojanowski, J.Q.; Iwatsubo, T. Aggregation of Alpha-Synuclein in Lewy Bodies of Sporadic Parkinson’s Disease and Dementia with Lewy Bodies. Am. J. Pathol. 1998, 152, 879. [Google Scholar] [PubMed]
- Patel, A.; Lee, H.O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M.Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T.M. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162, 1066–1077. [Google Scholar] [CrossRef]
- Gurlo, T.; Ryazantsev, S.; Huang, C.; Yeh, M.W.; Reber, H.A.; Hines, O.J.; O’Brien, T.D.; Glabe, C.G.; Butler, P.C. Evidence for Proteotoxicity in β Cells in Type 2 Diabetes: Toxic Islet Amyloid Polypeptide Oligomers Form Intracellularly in the Secretory Pathway. Am. J. Pathol. 2010, 176, 861–869. [Google Scholar] [CrossRef]
- Karkhaneh, L.; Hosseinkhani, S.; Azami, H.; Karamlou, Y.; Sheidaei, A.; Nasli-Esfahani, E.; Razi, F.; Ebrahim-Habibi, A. Comprehensive Investigation of Insulin-Induced Amyloidosis Lesions in Patients with Diabetes at Clinical and Histological Levels: A Systematic Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 103083. [Google Scholar] [CrossRef]
- Nagase, T.; Iwaya, K.; Iwaki, Y.; Kotake, F.; Uchida, R.; Oh-i, T.; Sekine, H.; Miwa, K.; Murakami, S.; Odaka, T.; et al. Insulin-Derived Amyloidosis and Poor Glycemic Control: A Case Series. Am. J. Med. 2014, 127, 450–454. [Google Scholar] [CrossRef]
- Endo, J.O.; Röcken, C.; Lamb, S.; Harris, R.M.; Bowen, A.R. Nodular Amyloidosis in a Diabetic Patient with Frequent Hypoglycemia: Sequelae of Repeatedly Injecting Insulin without Site Rotation. J. Am. Acad. Dermatol. 2010, 63, e113–e114. [Google Scholar] [CrossRef]
- Swift, B.; Hawkins, P.N.; Richards, C.; Gregory, R. Examination of Insulin Injection Sites: An Unexpected Finding of Localized Amyloidosis. Diabet. Med. 2002, 19, 881–882. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Wang, J.; Buse, J.B.; Gu, Z. Advances in Transdermal Insulin Delivery. Adv. Drug Deliv. Rev. 2019, 139, 51–70. [Google Scholar] [CrossRef]
- Weiss, M.; Steiner, D.F.; Philipson, L.H. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Steiner, D.F.; Cunningham, D.; Spigelman, L.; Aten, B. Insulin Biosynthesis: Evidence for a Precursor. Science (1979) 1967, 157, 697–700. [Google Scholar] [CrossRef]
- Schmidt, H.H.H.W.; Warner, T.D.; Ishii, K.; Sheng, H.; Murad, F. Insulin Secretion from Pancreatic B Cells Caused by L-Arginine-Derived Nitrogen Oxides. Science (1979) 1992, 255, 721–723. [Google Scholar] [CrossRef]
- Leibiger, I.B.; Leibiger, B.; Berggren, P.-O. Insulin Signaling in the Pancreatic β-Cell. Annu. Rev. Nutr. 2008, 28, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Permutt, M.A. Biosynthesis of Insulin. In The Islets of Langerhans. Biochemistry, Physiology and Pathology; Academic Press: New York, NY, USA; London, UK; Toronto, ON, Canda, 1981; pp. 75–95. [Google Scholar]
- Marchetti, P.; Bugliani, M.; De Tata, V.; Suleiman, M.; Marselli, L. Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes. Front. Cell Dev. Biol. 2017, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef] [PubMed]
- De Meyts, P. Insulin and Its Receptor: Structure, Function and Evolution. Bioessays 2004, 26, 1351–1362. [Google Scholar] [CrossRef]
- Eaton, R.P.; Allen, R.C.; Schade, D.S.; Standefer, J.C. “Normal” Insulin Secretion: The Goal of Artificial Insulin Delivery Systems? Diabetes Care 1980, 3, 270–273. [Google Scholar] [CrossRef]
- Knopp, J.L.; Holder-Pearson, L.; Chase, J.G. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J. Diabetes Sci. Technol. 2019, 13, 597–600. [Google Scholar] [CrossRef]
- Wallia, A.; Molitch, M.E. Insulin Therapy for Type 2 Diabetes Mellitus. JAMA 2014, 311, 2315–2325. [Google Scholar] [CrossRef]
- Smirnova, E.; Safenkova, I.; Stein-Margolina, V.; Shubin, V.; Polshakov, V.; Gurvits, B. PH-Responsive Modulation of Insulin Aggregation and Structural Transformation of the Aggregates. Biochimie 2015, 109, 49–59. [Google Scholar] [CrossRef]
- Grudzielanek, S.; Smirnovas, V.; Winter, R. The Effects of Various Membrane Physical–Chemical Properties on the Aggregation Kinetics of Insulin. Chem. Phys. Lipids 2007, 149, 28–39. [Google Scholar] [CrossRef]
- Hong, Y.; Meng, L.; Chen, S.; Leung, C.W.T.; Da, L.-T.; Faisal, M.; Silva, D.-A.; Liu, J.; Lam, J.W.Y.; Huang, X.; et al. Monitoring and Inhibition of Insulin Fibrillation by a Small Organic Fluorogen with Aggregation-Induced Emission Characteristics. J. Am. Chem. Soc. 2012, 134, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Dathe, M.; Gast, K.; Zirwer, D.; Welfle, H.; Mehlis, B. Insulin Aggregation in Solution. Int. J. Pept. Protein Res. 1990, 36, 344–349. [Google Scholar] [CrossRef]
- Schmit, J.D.; Ghosh, K.; Dill, K. What Drives Amyloid Molecules To Assemble into Oligomers and Fibrils? Biophys. J. 2011, 100, 450–458. [Google Scholar] [CrossRef]
- Nielsen, L.; Khurana, R.; Coats, A.; Frokjaer, S.; Brange, J.; Vyas, S.; Uversky, V.N.; Fink, A.L. Effect of Environmental Factors on the Kinetics of Insulin Fibril Formation: Elucidation of the Molecular Mechanism. Biochemistry 2001, 40, 6036–6046. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, H.; Saito, J.; Tanabe, A.; Amada, T.; Asakura, T.; Kitagawa, K.; Asada, S. Characterization of Novel Insulin Fibrils That Show Strong Cytotoxicity Under Physiological PH. J. Pharm. Sci. 2016, 105, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Grudzielanek, S.; Velkova, A.; Shukla, A.; Smirnovas, V.; Tatarek-Nossol, M.; Rehage, H.; Kapurniotu, A.; Winter, R. Cytotoxicity of Insulin within Its Self-Assembly and Amyloidogenic Pathways. J. Mol. Biol. 2007, 370, 372–384. [Google Scholar] [CrossRef]
- Iwaya, K.; Zako, T.; Fukunaga, J.; Sörgjerd, K.M.; Ogata, K.; Kogure, K.; Kosano, H.; Noritake, M.; Maeda, M.; Ando, Y. Toxicity of Insulin-Derived Amyloidosis: A Case Report. BMC Endocr. Disord. 2019, 19, 1–6. [Google Scholar] [CrossRef]
- Jiménez, J.L.; Nettleton, E.J.; Bouchard, M.; Robinson, C.V.; Dobson, C.M.; Saibil, H.R. The Protofilament Structure of Insulin Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2002, 99, 9196–9201. [Google Scholar] [CrossRef]
- Suladze, S.; Sarkar, R.; Rodina, N.; Bokvist, K.; Krewinkel, M.; Scheps, D.; Nagel, N.; Bardiaux, B.; Reif, B. Atomic Resolution Structure of Full-Length Human Insulin Fibrils. Proc. Natl. Acad. Sci. USA 2024, 121, e2401458121. [Google Scholar] [CrossRef]
- Chung, H.S. Characterizing Heterogeneity in Amyloid Formation Processes. Curr. Opin. Struct. Biol. 2024, 89, 102951. [Google Scholar] [CrossRef] [PubMed]
- Fändrich, M.; Nyström, S.; Nilsson, K.P.R.; Böckmann, A.; LeVine III, H.; Hammarström, P. Amyloid Fibril Polymorphism: A Challenge for Molecular Imaging and Therapy. J. Intern. Med. 2018, 283, 218–237. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Amyloid Formation by Globular Proteins under Native Conditions. Nat. Chem. Biol. 2009, 5, 15–22. [Google Scholar] [CrossRef]
- Tycko, R. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron 2015, 86, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C. Molecular Rules Governing the Structural Polymorphism of Amyloid Fibrils in Neurodegenerative Diseases. Structure 2023, 31, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.C.; True, H.L. Prion Strains and Amyloid Polymorphism Influence Phenotypic Variation. PLoS Pathog. 2014, 10, e1004328. [Google Scholar] [CrossRef]
- Yuzu, K.; Lindgren, M.; Nyström, S.; Zhang, J.; Mori, W.; Kunitomi, R.; Nagase, T.; Iwaya, K.; Hammarström, P.; Zako, T. Insulin Amyloid Polymorphs: Implications for Iatrogenic Cytotoxicity. RSC Adv. 2020, 10, 37721–37727. [Google Scholar] [CrossRef]
- Wang, L.; Hall, C.E.; Uchikawa, E.; Chen, D.; Choi, E.; Zhang, X.; Bai, X. Structural Basis of Insulin Fibrillation. Sci. Adv. 2023, 9, eadi1057. [Google Scholar] [CrossRef]
- Ishigaki, M.; Morimoto, K.; Chatani, E.; Ozaki, Y. Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging. Biophys. J. 2020, 118, 2997–3007. [Google Scholar] [CrossRef]
- Kastelic, M.; Kalyuzhnyi, Y.V.; Hribar-Lee, B.; Dill, K.A.; Vlachy, V. Protein Aggregation in Salt Solutions. Proc. Natl. Acad. Sci. USA 2015, 112, 6766–6770. [Google Scholar] [CrossRef]
- Pfefferkorn, C.M.; McGlinchey, R.P.; Lee, J.C. Effects of PH on Aggregation Kinetics of the Repeat Domain of a Functional Amyloid, Pmel17. Proc. Natl. Acad. Sci. USA 2010, 107, 21447–21452. [Google Scholar] [CrossRef] [PubMed]
- Tõugu, V.; Tiiman, A.; Palumaa, P. Interactions of Zn (II) and Cu (II) Ions with Alzheimer’s Amyloid-Beta Peptide. Metal Ion Binding, Contribution to Fibrillization and Toxicity. Metallomics 2011, 3, 250–261. [Google Scholar] [CrossRef]
- Singh, B.P.; Morris, R.J.; Kunath, T.; MacPhee, C.E.; Horrocks, M.H. Lipid-induced Polymorphic Amyloid Fibril Formation by A-synuclein. Protein Sci. 2023, 32, e4736. [Google Scholar] [CrossRef]
- Chen, S.W.; Barritt, J.D.; Cascella, R.; Bigi, A.; Cecchi, C.; Banchelli, M.; Gallo, A.; Jarvis, J.A.; Chiti, F.; Dobson, C.M.; et al. Structure–Toxicity Relationship in Intermediate Fibrils from α-Synuclein Condensates. J. Am. Chem. Soc. 2024, 146, 10537–10549. [Google Scholar] [CrossRef] [PubMed]
- Grigolato, F.; Colombo, C.; Ferrari, R.; Rezabkova, L.; Arosio, P. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation. ACS Nano 2017, 11, 11358–11367. [Google Scholar] [CrossRef]
- Tycko, R. Physical and Structural Basis for Polymorphism in Amyloid Fibrils. Protein Sci. 2014, 23, 1528–1539. [Google Scholar] [CrossRef]
- Close, W.; Neumann, M.; Schmidt, A.; Hora, M.; Annamalai, K.; Schmidt, M.; Reif, B.; Schmidt, V.; Grigorieff, N.; Fändrich, M. Physical Basis of Amyloid Fibril Polymorphism. Nat. Commun. 2018, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, S.A.; Uspenskaya, M.V.; Leclercq, J.; Falgarone, T.; Zhouravleva, G.A.; Kajava, A. V AmyloComp: A Bioinformatic Tool for Prediction of Amyloid Co-Aggregation. J. Mol. Biol. 2024, 436, 168437. [Google Scholar] [CrossRef]
- Bondarev, S.A.; Antonets, K.S.; Kajava, A.V.; Nizhnikov, A.A.; Zhouravleva, G.A. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int. J. Mol. Sci. 2018, 19, 2292. [Google Scholar] [CrossRef]
- Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A New Era for Understanding Amyloid Structures and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 755–773. [Google Scholar] [CrossRef]
- Fändrich, M. Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. J. Mol. Biol. 2012, 421, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Kodali, R.; Wetzel, R. Polymorphism in the Intermediates and Products of Amyloid Assembly. Curr. Opin. Struct. Biol. 2007, 17, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Cannon, D.; Eichhorn, S.J.; Donald, A.M. Structure of Spherulites in Insulin, β-Lactoglobulin, and Amyloid β. ACS Omega 2016, 1, 915–922. [Google Scholar] [CrossRef]
- Amdursky, N.; Gazit, E.; Rosenman, G. Formation of Low-Dimensional Crystalline Nucleus Region during Insulin Amyloidogenesis Process. Biochem. Biophys. Res. Commun. 2012, 419, 232–237. [Google Scholar] [CrossRef]
- Chun, S.Y.; Son, M.K.; Park, C.R.; Lim, C.; Kim, H.I.; Kwak, K.; Cho, M. Direct Observation of Protein Structural Transitions through Entire Amyloid Aggregation Processes in Water Using 2D-IR Spectroscopy. Chem. Sci. 2022, 13, 4482–4489. [Google Scholar] [CrossRef] [PubMed]
- Matveyenka, M.; Rizevsky, S.; Kurouski, D. Unsaturation in the Fatty Acids of Phospholipids Drastically Alters the Structure and Toxicity of Insulin Aggregates Grown in Their Presence. J. Phys. Chem. Lett. 2022, 13, 4563–4569. [Google Scholar] [CrossRef]
- Rizevsky, S.; Matveyenka, M.; Kurouski, D. Nanoscale Structural Analysis of a Lipid-Driven Aggregation of Insulin. J. Phys. Chem. Lett. 2022, 13, 2467–2473. [Google Scholar] [CrossRef]
- Colomer, V.; Kicska, G.A.; Rindler, M.J. Secretory Granule Content Proteins and the Luminal Domains of Granule Membrane Proteins Aggregate in Vitro at Mildly Acidic PH (*). J. Biol. Chem. 1996, 271, 48–55. [Google Scholar] [CrossRef]
- Westerbacka, J.; Kotronen, A.; Fielding, B.A.; Wahren, J.; Hodson, L.; Perttilä, J.; Seppänen–Laakso, T.; Suortti, T.; Arola, J.; Hultcrantz, R.; et al. Splanchnic Balance of Free Fatty Acids, Endocannabinoids, and Lipids in Subjects With Nonalcoholic Fatty Liver Disease. Gastroenterology 2010, 139, 1961–1971.e1. [Google Scholar] [CrossRef]
- Matveyenka, M.; Rizevsky, S.; Pellois, J.-P.; Kurouski, D. Lipids Uniquely Alter Rates of Insulin Aggregation and Lower Toxicity of Amyloid Aggregates. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2023, 1868, 159247. [Google Scholar] [CrossRef]
- Kardos, J.; Nyiri, M.P.; Moussong, É.; Wien, F.; Molnár, T.; Murvai, N.; Tóth, V.; Vadászi, H.; Kun, J.; Jamme, F.; et al. Guide to the Structural Characterization of Protein Aggregates and Amyloid Fibrils by CD Spectroscopy. Protein Sci. 2025, 34, e70066. [Google Scholar] [CrossRef]
- Critical Micelle Concentrations (CMCs)—Avanti® Polar Lipids. Available online: https://avantiresearch.com/tech-support/physical-properties/cmcs (accessed on 4 July 2025).
- Matveyenka, M.; Rizevsky, S.; Kurouski, D. Elucidation of the Effect of Phospholipid Charge on the Rate of Insulin Aggregation and Structure and Toxicity of Amyloid Fibrils. ACS Omega 2023, 8, 12379–12386. [Google Scholar] [CrossRef] [PubMed]
- Meisl, G.; Kirkegaard, J.B.; Arosio, P.; Michaels, T.C.T.; Vendruscolo, M.; Dobson, C.M.; Linse, S.; Knowles, T.P.J. Molecular Mechanisms of Protein Aggregation from Global Fitting of Kinetic Models. Nat. Protoc. 2016, 11, 252–272. [Google Scholar] [CrossRef]
- Basic, A. Insulin Amyloid Formation: Effects of Additives and Environmental Factors Encountered During Production Scale HPLC Purification; Uppsala University: Uppsala, Sweden, 2016. [Google Scholar]
- Li, L.; Lv, Z.; Man, Z.; Xu, Z.; Wei, Y.; Geng, H.; Fu, H. Polarity-Active NIR Probes with Strong Two-Photon Absorption and Ultrahigh Binding Affinity of Insulin Amyloid Fibrils. Chem. Sci. 2021, 12, 3308–3313. [Google Scholar] [CrossRef]
- Dear, A.J.; Teng, X.; Ball, S.R.; Lewin, J.; Horne, R.I.; Clow, D.; Stevenson, A.; Harper, N.; Yahya, K.; Yang, X.; et al. Molecular Mechanism of α-Synuclein Aggregation on Lipid Membranes Revealed. Chem. Sci. 2024, 15, 7229–7242. [Google Scholar] [CrossRef]
- Cevc, G.; Marsh, D. Phospholipid Bilayers: Physical Principles and Models; Wiley-Interscience: Hoboken, NJ, USA, 1987; Volume 16, ISBN 047109255X. [Google Scholar]
- Riske, K.A.; Döbereiner, H.-G.; Lamy-Freund, M.T. Gel-Fluid Transition in Dilute versus Concentrated DMPG Aqueous Dispersions. J. Phys. Chem. B 2002, 106, 239–246. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Sengupta, U.; Puangmalai, N.; Bhatt, N.; Kayed, R. Polymorphic Alpha-Synuclein Oligomers: Characterization and Differential Detection with Novel Corresponding Antibodies. Mol. Neurobiol. 2023, 60, 2691–2705. [Google Scholar] [CrossRef]
- Levine Iii, H. Alzheimer’s β-Peptide Oligomer Formation at Physiologic Concentrations. Anal. Biochem. 2004, 335, 81–90. [Google Scholar] [CrossRef]
- Ratha, B.N.; Kar, R.K.; Brender, J.R.; Pariary, R.; Sahoo, B.; Kalita, S.; Bhunia, A. High-resolution Structure of a Partially Folded Insulin Aggregation Intermediate. Proteins Struct. Funct. Bioinform. 2020, 88, 1648–1659. [Google Scholar] [CrossRef]
- Taraban, M.B.; Truong, H.C.; Feng, Y.; Jouravleva, E.V.; Anisimov, M.A.; Yu, Y.B. Water Proton NMR for in Situ Detection of Insulin Aggregates. J. Pharm. Sci. 2015, 104, 4132–4141. [Google Scholar] [CrossRef] [PubMed]
- McCalpin, S.D.; Widanage, M.C.D.; Fu, R.; Ramamoorthy, A. On-Pathway Oligomer of Human Islet Amyloid Polypeptide Induced and Stabilized by Mechanical Rotation during Magic Angle Spinning Nuclear Magnetic Resonance. J. Phys. Chem. Lett. 2023, 14, 7644–7649. [Google Scholar] [CrossRef]
- Iyer, A.; Roeters, S.J.; Kogan, V.; Woutersen, S.; Claessens, M.M.A.E.; Subramaniam, V. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. J. Am. Chem. Soc. 2017, 139, 15392–15400. [Google Scholar] [CrossRef] [PubMed]
- Hollósi, M.; Majer, Z.; Rónai, A.Z.; Magyar, A.; Medzihradszky, K.; Holly, S.; Perczel, A.; Fasman, G.D. CD and Fourier Transform Ir Spectroscopic Studies of Peptides. II. Detection of β-Turns in Linear Peptides. Biopolymers 1994, 34, 177–185. [Google Scholar] [CrossRef]
- Krimm, S.; Bandekar, J. Vibrational Analysis of Peptides, Polypeptides, and Proteins. V. Normal Vibrations of Β-turns. Biopolym. Orig. Res. Biomol. 1980, 19, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Grudzielanek, S.; Jansen, R.; Winter, R. Solvational Tuning of the Unfolding, Aggregation and Amyloidogenesis of Insulin. J. Mol. Biol. 2005, 351, 879–894. [Google Scholar] [CrossRef]
- Mori, A.; Imai, Y.; Hattori, N. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 3301. [Google Scholar] [CrossRef]
- Berthelot, K.; Cullin, C.; Lecomte, S. What Does Make an Amyloid Toxic: Morphology, Structure or Interaction with Membrane? Biochimie 2013, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Shi, J.-M.; Bai, C.-J.; Wang, H.; Li, H.-Y.; Wu, Y.; Ji, S.-R. Intra-Membrane Oligomerization and Extra-Membrane Oligomerization of Amyloid-β Peptide Are Competing Processes as a Result of Distinct Patterns of Motif Interplay. J. Biol. Chem. 2012, 287, 748–756. [Google Scholar] [CrossRef]
- Butterfield, S.M.; Lashuel, H.A. Amyloidogenic Protein–Membrane Interactions: Mechanistic Insight from Model Systems. Angew. Chem. Int. Ed. 2010, 49, 5628–5654. [Google Scholar] [CrossRef]
- Pandey, A.P.; Haque, F.; Rochet, J.-C.; Hovis, J.S. Clustering of α-Synuclein on Supported Lipid Bilayers: Role of Anionic Lipid, Protein, and Divalent Ion Concentration. Biophys. J. 2009, 96, 540–551. [Google Scholar] [CrossRef]
- Gellermann, G.P.; Appel, T.R.; Tannert, A.; Radestock, A.; Hortschansky, P.; Schroeckh, V.; Leisner, C.; Lutkepohl, T.; Shtrasburg, S.; Rocken, C.; et al. Raft Lipids as Common Components of Human Extracellular Amyloid Fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 6297–6302. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Mechler, A.; Martin, L.L.; Aguilar, M.-I.; Small, D.H. Cholesterol and Anionic Phospholipids Increase the Binding of Amyloidogenic Transthyretin to Lipid Membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskaite, J.; Pinheiro, T.J.T. Aggregation and Fibrillization of Prions in Lipid Membranes. In Proceedings of the Biochemical Society Symposia; Portland Press Limited: London, UK, 2005; Volume 72, pp. 211–222. [Google Scholar]
- Evangelisti, E.; Cascella, R.; Becatti, M.; Marrazza, G.; Dobson, C.M.; Chiti, F.; Stefani, M.; Cecchi, C. Binding Affinity of Amyloid Oligomers to Cellular Membranes Is a Generic Indicator of Cellular Dysfunction in Protein Misfolding Diseases. Sci. Rep. 2016, 6, 32721. [Google Scholar] [CrossRef]
- Cerf, E.; Sarroukh, R.; Tamamizu-Kato, S.; Breydo, L.; Derclaye, S.; Dufrêne, Y.F.; Narayanaswami, V.; Goormaghtigh, E.; Ruysschaert, J.-M.; Raussens, V. Antiparallel β-Sheet: A Signature Structure of the Oligomeric Amyloid β-Peptide. Biochem. J. 2009, 421, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Kayed, R.; Lasagna-Reeves, C.A. Molecular Mechanisms of Amyloid Oligomers Toxicity. J. Alzheimer’s Dis. 2013, 33, S67–S78. [Google Scholar] [CrossRef]
- Ladiwala, A.R.A.; Litt, J.; Kane, R.S.; Aucoin, D.S.; Smith, S.O.; Ranjan, S.; Davis, J.; VanNostrand, W.E.; Tessier, P.M. Conformational Differences between Two Amyloid β Oligomers of Similar Size and Dissimilar Toxicity. J. Biol. Chem. 2012, 287, 24765–24773. [Google Scholar] [CrossRef]
- Morgado, I.; Garvey, M. Lipids in Amyloid-β Processing, Aggregation, and Toxicity. In Lipids in Protein Misfolding; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–94. [Google Scholar]
- Korshavn, K.J.; Satriano, C.; Lin, Y.; Zhang, R.; Dulchavsky, M.; Bhunia, A.; Ivanova, M.I.; Lee, Y.H.; La Rosa, C.; Lim, M.H.; et al. Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. J. Biol. Chem. 2017, 292, 4638–4650. [Google Scholar] [CrossRef]
- Lau, T.-L.; Ambroggio, E.E.; Tew, D.J.; Cappai, R.; Masters, C.L.; Fidelio, G.D.; Barnham, K.J.; Separovic, F. Amyloid-β Peptide Disruption of Lipid Membranes and the Effect of Metal Ions. J. Mol. Biol. 2006, 356, 759–770. [Google Scholar] [CrossRef]
- Smith, D.P.; Smith, D.G.; Curtain, C.C.; Boas, J.F.; Pilbrow, J.R.; Ciccotosto, G.D.; Lau, T.-L.; Tew, D.J.; Perez, K.; Wade, J.D. Copper-Mediated Amyloid-β Toxicity Is Associated with an Intermolecular Histidine Bridge. J. Biol. Chem. 2006, 281, 15145–15154. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, D.; Zheng, J. Repurposing Antimicrobial Protegrin-1 as a Dual-Function Amyloid Inhibitor via Cross–Seeding. ACS Chem. Neurosci. 2023, 14, 3143–3155. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, Y.; Zhang, D.; Liu, Y.; Nussinov, R.; Zheng, J. Exploring Pathological Link between Antimicrobial and Amyloid Peptides. Chem. Soc. Rev. 2024, 53, 8713–8763. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y. Advancements and Future Directions in Research of the Roles of Insulin in Amyloid Diseases. Biophys. Chem. 2022, 281, 106720. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Weiss, M.A. Comparative 2D NMR Studies of Human Insulin and Despentapeptide Insulin: Sequential Resonance Assignment and Implications for Protein Dynamics and Receptor Recognition. Biochemistry 1991, 30, 5505–5515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, J.; Wolszczak, A.; Kaur, N.; Dickwella Widanage, M.C.; McCalpin, S.D.; Fu, R.; Ali, J.; Ramamoorthy, A. Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers. Biomolecules 2025, 15, 994. https://doi.org/10.3390/biom15070994
Saha J, Wolszczak A, Kaur N, Dickwella Widanage MC, McCalpin SD, Fu R, Ali J, Ramamoorthy A. Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers. Biomolecules. 2025; 15(7):994. https://doi.org/10.3390/biom15070994
Chicago/Turabian StyleSaha, Jhinuk, Audrey Wolszczak, Navneet Kaur, Malitha C. Dickwella Widanage, Samuel D. McCalpin, Riqiang Fu, Jamel Ali, and Ayyalusamy Ramamoorthy. 2025. "Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers" Biomolecules 15, no. 7: 994. https://doi.org/10.3390/biom15070994
APA StyleSaha, J., Wolszczak, A., Kaur, N., Dickwella Widanage, M. C., McCalpin, S. D., Fu, R., Ali, J., & Ramamoorthy, A. (2025). Anionic Lipid Catalyzes the Generation of Cytotoxic Insulin Oligomers. Biomolecules, 15(7), 994. https://doi.org/10.3390/biom15070994