Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. LA and MFAT Preparation
2.3. Lipid Extraction from LA and MFAT
2.4. LC-MS/MS Untargeted Method
2.5. Lipidomic Data Processing
2.6. Fatty Acids Profile After Triacylglycerols Hydrolysis of Lipoaspirate and MFAT
2.7. Statistical Analysis
3. Results
3.1. Main Lipid Class Composition of Total Lipid Content
3.2. Composition of Lipid Subclasses
4. Discussion
Limits and Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAR | Acylcarinitine |
Cer-AP | Ceramide alpha-hydroxy fatty acid-phytospingosine |
Cer-EOS | Ceramide Esterified omega-hydroxy fatty acid-sphingosine |
Cer-HDS | Ceramide hydroxy fatty acid-dihydrosphingosine |
Cer-HS | Ceramide hydroxy fatty acid-sphingosine |
Cer-NS | Ceramide |
CL | Cardiolipin |
DG | Diacylglycerol |
DHCer | Dihydroceramide |
EtherLPC | Ether-linked lysophosphatidylcholine |
EtherLPE | Ether-linked lysophosphatidylethanolamine |
EtherPC | Ether-linked phosphatidylcholine |
EtherPE | Ether-linked phosphatidylethanolamine |
EtherTG | Ether-linked triacylglycerol |
FA | Fatty acid derivative |
GL | Glycerolipid |
LA | Lipoaspirate |
LPC | Lysophophatidylcholine |
LPE | Lysophosphatidylethanolamine |
MFAT | Micro-fragmented adipose tissue |
MG | Monoacylglycerol |
MSCs | Mesenchymal stem cells |
NAE | N acyl ethanolamine |
NAGly | N acyl glycine |
NAGlySer | N acyl glycil serine |
NAOrn | N acyl ornithine |
OxTG | Oxidized triglyceride |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
PI | Phosphatidylinositol |
PL | Phospholipid |
PS | Phosphatidylserine |
SHexCer | Sulfatide |
SM | Sphingomyelin |
SP | Sphingolipid |
ST | Sterol lipid |
TG | Triacylglycerol |
References
- Raghav, P.K.; Mann, Z.; Ahlawat, S.; Mohanty, S. Mesenchymal Stem Cell-Based Nanoparticles and Scaffolds in Regenerative Medicine. Eur. J. Pharmacol. 2022, 918, 174657. [Google Scholar] [CrossRef] [PubMed]
- Antich-Rosselló, M.; Forteza-Genestra, M.A.; Monjo, M.; Ramis, J.M. Platelet-Derived Extracellular Vesicles for Regenerative Medicine. Int. J. Mol. Sci. 2021, 22, 8580. [Google Scholar] [CrossRef]
- Gui, C.; Parson, J.; Meyer, G.A. Harnessing Adipose Stem Cell Diversity in Regenerative Medicine. APL Bioeng. 2021, 5, 021501. [Google Scholar] [CrossRef]
- D’souza, N.; Rossignoli, F.; Golinelli, G.; Grisendi, G.; Spano, C.; Candini, O.; Osturu, S.; Catani, F.; Paolucci, P.; Horwitz, E.M.; et al. Mesenchymal Stem/Stromal Cells as a Delivery Platform in Cell and Gene Therapies. BMC Med. 2015, 13, 186. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Prockop, D.J. Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current Views. Stem Cells 2007, 25, 2896–2902. [Google Scholar] [CrossRef]
- Horwitz, E.M.; Dominici, M. How Do Mesenchymal Stromal Cells Exert Their Therapeutic Benefit? Cytotherapy 2008, 10, 771–774. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Mak, C.; Bojanic, C.; To, K.; Khan, W. Meta-Analysis of Adipose Tissue Derived Cell-Based Therapy for the Treatment of Knee Osteoarthritis. Cells 2021, 10, 1365. [Google Scholar] [CrossRef]
- Bellei, B.; Migliano, E.; Tedesco, M.; Caputo, S.; Picardo, M. Maximizing Non-Enzymatic Methods for Harvesting Adipose-Derived Stem from Lipoaspirate: Technical Considerations and Clinical Implications for Regenerative Surgery. Sci. Rep. 2017, 7, 10015. [Google Scholar] [CrossRef]
- Vezzani, B.; Shaw, I.; Lesme, H.; Yong, L.; Khan, N.; Tremolada, C.; Péault, B. Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction. Stem Cells Transl. Med. 2018, 7, 876–886. [Google Scholar] [CrossRef]
- Chaput, B.; Bertheuil, N.; Escubes, M.; Grolleau, J.L.; Garrido, I.; Laloze, J.; Espagnolle, N.; Casteilla, L.; Sensebé, L.; Varin, A. Mechanically Isolated Stromal Vascular Fraction Provides a Valid and Useful Collagenase-Free Alternative Technique: A Comparative Study. Plast. Reconstr. Surg. 2016, 138, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Goulas, P.; Karakwta, M.; Zatagias, A.; Bakoutsi, M.; Zevgaridis, A.; Ioannidis, A.; Krokou, D.; Michalopoulos, A.; Zevgaridis, V.; Koliakos, G. A Simple and Effective Mechanical Method for Adipose-Derived Stromal Vascular Fraction Isolation. Cureus 2024, 16, e57137. [Google Scholar] [CrossRef]
- Fu, H.; Wang, C. Micro-Fragmented Adipose Tissue—An Innovative Therapeutic Approach: A Narrative Review. Medicine 2025, 104, e41724. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, E.; Keough, N.; Frank, R.M.; Rodeo, S.A. Microfragmented Adipose Tissue Has No Advantage Over Platelet-Rich Plasma and Bone Marrow Aspirate Injections for Symptomatic Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2025, 53, 988–998. [Google Scholar] [CrossRef]
- Tremolada, C.; Colombo, V.; Ventura, C. Adipose Tissue and Mesenchymal Stem Cells: State of the Art and Lipogems® Technology Development. Curr. Stem Cell Rep. 2016, 2, 304–312. [Google Scholar] [CrossRef]
- Laureti, S.; Gionchetti, P.; Cappelli, A.; Vittori, L.; Contedini, F.; Rizzello, F.; Golfieri, R.; Campieri, M.; Poggioli, G. Refractory Complex Crohn’s Perianal Fistulas: A Role for Autologous Microfragmented Adipose Tissue Injection. Inflamm. Bowel Dis. 2020, 26, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, G.; De Caro, A.; Napoli, F.; Chiapale, D.; Trada, P.; Camera, A. Micro-Fragmented Adipose Tissue Injection Associated with Arthroscopic Procedures in Patients with Symptomatic Knee Osteoarthritis. BMC Musculoskelet. Disord. 2018, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Randelli, P.; Menon, A.; Ragone, V.; Creo, P.; Bergante, S.; Randelli, F.; De Girolamo, L.; Alfieri Montrasio, U.; Banfi, G.; Cabitza, P.; et al. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability. Stem Cells Int. 2016, 2016, 4373410. [Google Scholar] [CrossRef]
- Shi, Z.; He, J.; He, J.; Xu, Y. Micro-Fragmented Adipose Tissue Regulated the Biological Functions of Osteoarthritis Synoviocytes by Upregulating MiR-92a-3p Expression. Tissue Cell 2022, 74, 101716. [Google Scholar] [CrossRef]
- Guo, B.; Sawkulycz, X.; Heidari, N.; Rogers, R.; Liu, D.; Slevin, M. Characterisation of Novel Angiogenic and Potent Anti-Inflammatory Effects of Micro-Fragmented Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 3271. [Google Scholar] [CrossRef]
- Paolella, F.; Manferdini, C.; Gabusi, E.; Gambari, L.; Filardo, G.; Kon, E.; Mariani, E.; Lisignoli, G. Effect of Microfragmented Adipose Tissue on Osteoarthritic Synovial Macrophage Factors. J. Cell. Physiol. 2019, 234, 5044–5055. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, G.; Coccè, V.; Pastorino, F.; Paroni, R.; Dei Cas, M.; Restelli, F.; Pollo, B.; Gatti, L.; Tremolada, C.; Berenzi, A.; et al. Microfragmented Human Fat Tissue Is a Natural Scaffold for Drug Delivery: Potential Application in Cancer Chemotherapy. J. Control. Release 2019, 302, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, G.; Pessina, A.; Paroni, R.; Bercich, L.; Paino, F.; Dei Cas, M.; Cadei, M.; Caruso, A.; Schiariti, M.; Restelli, F.; et al. Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice. Cancers 2021, 13, 5505. [Google Scholar] [CrossRef]
- Greenwood, V.; Clausen, P.; Matuska, A.M. Micro-Fragmented Adipose Tissue Cellular Composition Varies by Processing Device and Analytical Method. Sci. Rep. 2022, 12, 16107. [Google Scholar] [CrossRef]
- Morano, C.; Roda, G.; Paroni, R.; Dei Cas, M. Tip-Tip Filtration Ameliorates Single-Phase Extraction Methods for Plasma Large-Scale Lipidomics Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1189, 123099. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vandergheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Dei Cas, M.; Paroni, R.; Saccardo, A.; Casagni, E.; Arnoldi, S.; Gambaro, V.; Saresella, M.; Mario, C.; La Rosa, F.; Marventano, I.; et al. A Straightforward LC-MS/MS Analysis to Study Serum Profile of Short and Medium Chain Fatty Acids. J. Chromatogr. B 2020, 1154, 121982. [Google Scholar] [CrossRef]
- Hu, L.; Xie, G.; Lan, Q.; Yu, Z.; Hu, L.; Zhu, L. Quantitative UPLC-MS/MS to Detect DMPC and DPPC Applied to Paraquat Poisoning in Cells and Serum. Chromatographia 2022, 85, 147–153. [Google Scholar] [CrossRef]
- Giorgini, A.; Selleri, F.; Zambianchi, F.; Cataldo, G.; Francioni, E.; Catani, F. Autologous Micro-Fragmented Adipose Tissue Associated with Arthroscopy in Moderate–Severe Knee Osteoarthritis: Outcome at Two Year Follow-Up. BMC Musculoskelet. Disord. 2022, 23, 963. [Google Scholar] [CrossRef]
- Kariminekoo, S.; Movassaghpour, A.; Rahimzadeh, A.; Talebi, M.; Shamsasenjan, K.; Akbarzadeh, A. Implications of Mesenchymal Stem Cells in Regenerative Medicine. Artif. Cells Nanomedicine Biotechnol. 2016, 44, 749–757. [Google Scholar] [CrossRef]
- Gutowski, K.A.; Baker, S.B.; Coleman, S.R.; Khoobehi, K.; Lorenz, H.P.; Massey, M.F.; Pusic, A.; Rubin, J.P. Current Applications and Safety of Autologous Fat Grafts: A Report of the ASPS Fat Graft Task Force. Plast. Reconstr. Surg. 2009, 124, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Cicione, C.; Vadalà, G.; Di Giacomo, G.; Tilotta, V.; Ambrosio, L.; Russo, F.; Zampogna, B.; Cannata, F.; Papalia, R.; Denaro, V. Micro-Fragmented and Nanofat Adipose Tissue Derivatives: In Vitro Qualitative and Quantitative Analysis. Front. Bioeng. Biotechnol. 2023, 11, 911600. [Google Scholar] [CrossRef] [PubMed]
- Al-Sari, N.; Suvitaival, T.; Mattila, I.; Ali, A.; Ahonen, L.; Trost, K.; Henriksen, T.F.; Pociot, F.; Dragsted, L.O.; Legido-Quigley, C. Lipidomics of Human Adipose Tissue Reveals Diversity between Body Areas. PLoS ONE 2020, 15, e0228521. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, Z.; Opländer, C.; Almakadi, S.; Fritz, A.; Vogt, M.; Pallua, N. Conventional vs. Micro-Fat Harvesting: How Fat Harvesting Technique Affects Tissue-Engineering Approaches Using Adipose Tissue-Derived Stem/Stromal Cells. J. Plast. Reconstr. Aesthet. Surg. 2013, 66, 1271–1278. [Google Scholar] [CrossRef]
- Eyroh Clinical Study: The Effect of Micro Fragmented Adipose Tissue (MFAT) on Knee Osteoarthritis 2020. Available online: https://www.clinicaltrials.gov/study/NCT03467919 (accessed on 1 July 2025).
- Ragni, E.; Viganò, M.; Torretta, E.; Orfei, C.P.; Colombini, A.; Tremolada, C.; Gelfi, C.; de Girolamo, L. Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators. J. Clin. Med. 2022, 11, 2231. [Google Scholar] [CrossRef]
- Casari, G.; Resca, E.; Giorgini, A.; Candini, O.; Petrachi, T.; Piccinno, M.S.; Foppiani, E.M.; Pacchioni, L.; Starnoni, M.; Pinelli, M.; et al. Microfragmented Adipose Tissue Is Associated with Improved Ex Vivo Performance Linked to HOXB7 and B-FGF Expression. Stem Cell Res. Ther. 2021, 12, 481. [Google Scholar] [CrossRef]
- Hohmann, E.; Keough, N.; Frank, R.M.; Rodeo, S. Micro-Fragmented Adipose Tissue Demonstrates Comparable Clinical Efficacy to Other Orthobiologic Injections in Treating Symptomatic Knee Osteoarthritis: A Systematic Review of Level I to IV Clinical Studies. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 41, 418–441. [Google Scholar] [CrossRef]
- Pils, V.; Terlecki-Zaniewicz, L.; Schosserer, M.; Grillari, J.; Lämmermann, I. The Role of Lipid-Based Signalling in Wound Healing and Senescence. Mech. Ageing Dev. 2021, 198, 111527. [Google Scholar] [CrossRef]
- Salagean, A.; Nechifor-Boila, A.; Bajwa, N.; Pastorello, Y.; Slevin, M. Micro-Fragmented Adipose Tissue as a Natural Scaffold for Targeted Drug Delivery in Brain Cancer. Int. J. Mol. Sci. 2023, 24, 1530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morano, C.; Dei Cas, M.; Alessandri, G.; Coccè, V.; Paino, F.; Bignotto, M.; Doneda, L.; Tremolada, C.; Pessina, A.; Paroni, R. Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics. Biomolecules 2025, 15, 964. https://doi.org/10.3390/biom15070964
Morano C, Dei Cas M, Alessandri G, Coccè V, Paino F, Bignotto M, Doneda L, Tremolada C, Pessina A, Paroni R. Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics. Biomolecules. 2025; 15(7):964. https://doi.org/10.3390/biom15070964
Chicago/Turabian StyleMorano, Camillo, Michele Dei Cas, Giulio Alessandri, Valentina Coccè, Francesca Paino, Monica Bignotto, Luisa Doneda, Carlo Tremolada, Augusto Pessina, and Rita Paroni. 2025. "Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics" Biomolecules 15, no. 7: 964. https://doi.org/10.3390/biom15070964
APA StyleMorano, C., Dei Cas, M., Alessandri, G., Coccè, V., Paino, F., Bignotto, M., Doneda, L., Tremolada, C., Pessina, A., & Paroni, R. (2025). Lipid Profile Characterization of Human Micro-Fragmented Adipose Tissue via Untargeted Lipidomics. Biomolecules, 15(7), 964. https://doi.org/10.3390/biom15070964