A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning
Abstract
1. Introduction
2. Related Work
3. Materials and Methods
3.1. Experimental Design
3.2. RNA Sequencing and Processing
3.3. Overview of Machine Learning Pipeline
3.4. Preprocessing and Cross-Validation
3.5. Hybrid Feature Selection Approaches
3.5.1. Variance Threshold: Initial Filtering
- is the value of feature for sample
- is the mean value of feature j
3.5.2. Univariate Feature Selection: ANOVA F-Test
3.5.3. Recursive Feature Elimination with Random Forest
3.5.4. LASSO Regularization: Final Feature Selection
3.6. Classification Models
3.6.1. Logistic Regression
3.6.2. Random Forest
3.6.3. XGBoost (EXtream Gradient Boosting)
3.6.4. Support Vector Machine
3.6.5. AdaBoost
3.6.6. Decision Tree
3.6.7. Naïve Bayes
3.7. Selection of Robust Features Across Cross-Validation Folds
4. Results
4.1. Identified mRNA Biomarkers
4.2. Validation of mRNA Biomarkers Using Droplet Digital-PCR (ddPCR)
4.3. Model Training and Validation
- TP = True Positives (real positives predicted as positives);
- FN = False Negatives (real positives incorrectly predicted as negatives);
- FP = False Positives (real negatives incorrectly predicted as positives);
- TN = True Negatives (real negatives correctly predicted as negatives).
- Accuracy
- 2.
- Sensitivity (Recall or True positive rate)
- 3.
- Specificity
- 4.
- F1 score
- 5.
- Area Under the Curve (AUC)
Model | Average Accuracy | Average Sensitivity | Average Specificity | Average F1 Score | Average AUC |
---|---|---|---|---|---|
Logistic Regression | 0.9667 ± 0.07 (0.90, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 0.9333 ± 0.15 (0.89, 1.00) | 0.9714 ± 0.06 (0.92, 1.00) | 0.9444 ± 0.12 (0.87, 1.00) |
Random Forest | 0.9667 ± 0.07 (0.93, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 0.9333 ± 0.15 (0.90, 1.00) | 0.9714 ± 0.06 (0.94, 1.00) | 1.0000 ± 0.14 (0.90, 1.00) |
XGBoost | 0.8667 ± 0.14 (0.74, 0.99) | 0.9500 ± 0.11 (0.85, 1.00) | 0.7667 ± 0.22 (0.57, 0.96) | 0.8929 ± 0.11 (0.80, 0.99) | 0.8583 ± 0.15 (0.72, 0.99) |
AdaBoost | 0.8667 ± 0.14 (0.67, 0.91) | 0.9333 ± 0.28 (0.51, 0.99) | 0.7667 ± 0.24 (0.63, 1.00) | 0.8878 ± 0.18 (0.62, 0.94) | 0.8500 ± 0.15 (0.66, 0.92) |
Decision Tree | 0.9000 ± 0.17 (0.85, 0.98) | 0.9333 ± 0.29 (0.91, 1.00) | 0.8333 ± 0.24 (0.80, 1.00) | 0.9092 ± 0.21 (0.84, 1.00) | 0.8833 ± 0.18 (0.83, 0.98) |
SVM | 0.8333 ± 0.17 (0.69, 0.98) | 1.0000 ± 0.00 (1.00, 1.00) | 0.6333 ± 0.34 (0.33, 0.93) | 0.8778 ± 0.13 (0.77, 0.99) | 0.8889 ± 0.19 (0.72, 1.00) |
Naive Bayes | 0.9000 ± 0.09 (0.82, 0.98) | 1.0000 ± 0.00 (1.00, 1.00) | 0.7667 ± 0.22 (0.57, 0.96) | 0.9206 ± 0.07 (0.86, 0.99) | 0.8833 ± 0.11 (0.79, 0.98) |
5. Discussion
6. Limitations and Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castiglione, A.; Möller, C. Usher syndrome. Audiol. Res. 2022, 12, 42–65. [Google Scholar] [CrossRef] [PubMed]
- Vernon, M. Sociological and psychological factors associated with hearing loss. J. Speech Hear. Res. 1969, 12, 541–563. [Google Scholar] [CrossRef] [PubMed]
- Fortnum, H.M.; Davis, A.; Summerfield, A.Q.; Marshall, D.H.; Davis, A.C.; Bamford, J.M.; Yoshinaga-Itano, C.; Hind, S. Prevalence of permanent childhood hearing impairment in the United Kingdom and implications for universal neonatal hearing screening: Questionnaire based ascertainment study Commentary: Universal newborn hearing screening: Implications for coordinating and developing services for deaf and hearing impaired children. Bmj 2001, 323, 536. [Google Scholar]
- Davenport Slh, O.G. The heterogeneity of Usher’s syndrome. In Proceedings of the 5th International Conference of Birth Defects, Montreal, QC, Canada, 21–27 August 1977; p. 215. [Google Scholar]
- Velde, H.M.; Reurink, J.; Held, S.; Li, C.H.; Yzer, S.; Oostrik, J.; Weeda, J.; Haer-Wigman, L.; Yntema, H.G.; Roosing, S.; et al. Usher syndrome type IV: Clinically and molecularly confirmed by novel ARSG variants. Hum. Genet. 2022, 141, 1723–1738. [Google Scholar] [CrossRef]
- Otterstedde, C.R.; Spandau, U.; Blankenagel, A.; Kimberling, W.J.; Reisser, C. A new clinical classification for Usher’s syndrome based on a new subtype of Usher’s syndrome type I. Laryngoscope 2001, 111, 84–86. [Google Scholar] [CrossRef]
- Mathur, P.; Yang, J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim. Et Biophys. Acta Mol. Basis Dis. 2015, 1852, 406–420. [Google Scholar] [CrossRef]
- Ullah, F.; Zeeshan Ali, M.; Ahmad, S.; Muzammal, M.; Khan, S.; Khan, J.; Ahmad Khan, M. Current updates on genetic spectrum of usher syndrome. Nucleosides Nucleotides Nucleic Acids 2024, 44, 1–24. [Google Scholar] [CrossRef]
- Fuster-García, C.; García-Bohórquez, B.; Rodríguez-Muñoz, A.; Aller, E.; Jaijo, T.; Millán, J.M.; García-García, G. Usher syndrome: Genetics of a human ciliopathy. Int. J. Mol. Sci. 2021, 22, 6723. [Google Scholar] [CrossRef]
- Millán, J.M.; Aller, E.; Jaijo, T.; Blanco-Kelly, F.; Gimenez-Pardo, A.; Ayuso, C. An update on the genetics of usher syndrome. Journal of ophthalmology. J. Ophthalmol. 2011, 2011, 417217. [Google Scholar] [CrossRef]
- Smith, R.J.H.; Berlin, C.I.; Hejtmancik, J.F.; Keats, B.J.B.; Kimberling, W.J.; Lewis, R.A.; Möller, C.G.; Pelias, M.Z.; Tranebjærǵ, L. Clinical diagnosis of the Usher syndromes. Am. J. Med. Genet. 1994, 50, 32–38. [Google Scholar] [CrossRef]
- Mets, M.B.; Young, N.M.; Pass, A.; Lasky, J.B. Early diagnosis of Usher syndrome in children. Trans. Am. Ophthalmol. Soc. 2000, 98, 237. [Google Scholar]
- Stabej, P.L.Q.; Saihan, Z.; Rangesh, N.; Steele-Stallard, H.B.; Ambrose, J.; Coffey, A.; Emmerson, J.; Haralambous, E.; Hughes, Y.; Steel, K.P.; et al. Comprehensive sequence analysis of nine Usher syndrome genes in the UK National Collaborative Usher Study. J. Med. Genet. 2012, 49, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W.V.; Bell, T.A.; Schaening, C. Messenger RNA modifications: Form, distribution, and function. Science 2016, 352, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Dreyfuss, G.; Kim, V.N.; Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 2002, 3, 195–205. [Google Scholar] [CrossRef]
- Jansen, F.; Kalbe, B.; Scholz, P.; Mikosz, M.; Wunderlich, K.A.; Kurtenbach, S.; Nagel-Wolfrum, K.; Wolfrum, U.; Hatt, H.; Osterloh, S. Impact of the Usher syndrome on olfaction. Hum. Mol. Genet. 2016, 25, 524–533. [Google Scholar] [CrossRef]
- Toms, M.; Pagarkar, W.; Moosajee, M. Usher syndrome: Clinical features, molecular genetics and advancing therapeutics. Ther. Adv. Ophthalmol. 2020, 12, 2515841420952194. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ohtsubo, M.; Iwasaki, S.; Hotta, Y.; Mizuta, K.; Mineta, H.; Minoshima, S. Hair roots as an mRNA source for mutation analysis of Usher syndrome-causing genes. J. Hum. Genet. 2010, 55, 701–703. [Google Scholar] [CrossRef]
- Van der Valk, W.H.; van Beelen, E.S.; Steinhart, M.R.; Nist-Lund, C.; Osorio, D.; de Groot, J.C.; Locher, H. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep. 2023, 42, 112623. [Google Scholar] [CrossRef]
- Maeda, T.; Mandai, M.; Sugita, S.; Kime, C.; Takahashi, M. Strategies of pluripotent stem cell-based therapy for retinal degeneration: Update and challenges. Trends Mol. Med. 2022, 28, 388–404. [Google Scholar] [CrossRef]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous induced stem-cell—Derived retinal cells for macular degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef]
- Doda, D.; Alonso Jimenez, S.; Rehrauer, H.; Carreño, J.F.; Valsamides, V.; Di Santo, S.; Widmer, H.R.; Edge, A.; Locher, H.; van der Valk, W.H.; et al. Human pluripotent stem cell-derived inner ear organoids recapitulate otic development in vitro. Development 2023, 150, dev201865. [Google Scholar] [CrossRef] [PubMed]
- Cham, L.B.; Rosas-Umbert, M.; Lin, L.; Tolstrup, M.; Sogaard, O.S. Single-Cell Analysis Reveals That CD47 mRNA Expression Correlates with Immune Cell Activation, Antiviral Isgs, and Cytotoxicity. Cell Physiol. Biochem. 2024, 58, 322–335. [Google Scholar] [PubMed]
- Gladkikh, A.A.; Potashnikova, D.M.; Tatarskiy, V., Jr.; Yastrebova, M.; Khamidullina, A.; Barteneva, N.; Vorobjev, I. Comparison of the mRNA expression profile of B-cell receptor components in normal CD 5-high B-lymphocytes and chronic lymphocytic leukemia: A key role of ZAP70. Cancer Med. 2017, 6, 2984–2997. [Google Scholar] [CrossRef] [PubMed]
- Hennig, C.; Ilginus, C.; Boztug, K.; Skokowa, J.; Marodi, L.; Szaflarska, A.; Sassb, M.; Pignata, C.; Kilic, S.S.; Caragol, I.; et al. High-content cytometry and transcriptomic biomarker profiling of human B-cell activation. J. Allergy Clin. Immunol. 2014, 133, 172–180. [Google Scholar] [CrossRef]
- Manet, E.; Bourillot, P.Y.; Waltzer, L.; Sergeant, A. EBV genes and B cell proliferation. Crit. Rev. Oncol. Hematol. 1998, 28, 129–137. [Google Scholar] [CrossRef]
- Zhang, X.; Jonassen, I.; Goksøyr, A. Machine learning approaches for biomarker discovery using gene expression data. In Bioinformatics; Nakaya, H.I., Ed.; Exon Publications: Brisbane, Australia, 2021; pp. 53–64. [Google Scholar]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Xu, L.; Bolch, S.N.; Santiago, C.P.; Dyka, F.M.; Akil, O.; Lobanova, E.S.; Wang, Y.; Martemyanov, K.A.; Hauswirth, W.W.; Smith, W.C.; et al. Clarin-1 expression in adult mouse and human retina highlights a role of Müller glia in Usher syndrome. J. Pathol. 2020, 250, 195–204. [Google Scholar] [CrossRef]
- Tom, W.A.; Chandel, D.S.; Jiang, C.; Krzyzanowski, G.; Fernando, N.; Olou, A.; Fernando, M.R. Genotype characterization and miRNA expression profiling in Usher syndrome cell lines. Int. J. Mol. Sci. 2024, 25, 9993. [Google Scholar] [CrossRef]
- Thelagathoti, R.K.; Tom, W.A.; Jiang, C.; Chandel, D.S.; Krzyzanowski, G.; Olou, A.; Fernando, R.M. A Network Analysis Approach to Detect and Differentiate Usher Syndrome Types Using miRNA Expression Profiles: A Pilot Study. BioMedInformatics 2024, 4, 2271–2286. [Google Scholar] [CrossRef]
- Moon, K.R.; Van Dijk, D.; Wang, Z.; Gigante, S.; Burkhardt, D.B.; Chen, W.S.; Yim, K.; Elzen, A.v.D.; Hirn, M.J.; Coifman, R.R.; et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 2019, 37, 1482–1492. [Google Scholar] [CrossRef]
- Olaniran, O.R.; Abdullah, M.A.A.B. Bayesian Random Forest for the Classification of High-Dimensional mRNA Cancer Samples. In Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) Transcending Boundaries, Embracing Multidisciplinary Diversities, Langkawi, MA, USA, 7–8 November 2017; Springer: Singapore, 2019; pp. 253–259. [Google Scholar]
- Clarke, R.; Ressom, H.W.; Wang, A.; Xuan, J.; Liu, M.C.; Gehan, E.A.; Wang, Y. The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data. Nat. Rev. Cancer 2008, 8, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meng, W.Y.; Li, R.Z.; Wang, Y.W.; Qian, X.; Chan, C.; Yu, Z.-F.; Fan, X.-X.; Pan, H.-D.; Xie, C.; et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl. Oncol. 2021, 14, 100907. [Google Scholar] [CrossRef] [PubMed]
- Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature selection for high-dimensional data. Prog. Artif. Intell. 2016, 5, 65–75. [Google Scholar] [CrossRef]
- Ng, S.; Masarone, S.; Watson, D.; Barnes, M.R. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023, 394, 17–31. [Google Scholar] [CrossRef]
- Almugren, N.; Alshamlan, H. A survey on hybrid feature selection methods in microarray gene expression data for cancer classification. IEEE Access 2019, 7, 78533–78548. [Google Scholar] [CrossRef]
- Shaban, W.M. Insight into breast cancer detection: New hybrid feature selection method. Neural Comput. Appl. 2023, 35, 6831–6853. [Google Scholar] [CrossRef]
- Guan, D.; Yuan, W.; Lee, Y.K.; Najeebullah, K.; Rasel, M.K. A review of ensemble learning based feature selection. IETE Tech. Rev. 2014, 31, 190–198. [Google Scholar] [CrossRef]
- Alyasiri, O.M.; Cheah, Y.N.; Abasi, A.K.; Al-Janabi, O.M. Wrapper and hybrid feature selection methods using metaheuristic algorithms for English text classification: A systematic review. IEEE Access 2022, 10, 39833–39852. [Google Scholar] [CrossRef]
- Syed, A.H.; Khan, T.; Alromema, N. A hybrid feature selection approach to screen a novel set of blood biomarkers for early COVID-19 mortality prediction. Diagnostics 2022, 12, 1604. [Google Scholar] [CrossRef]
- Colombelli, F.; Kowalski, T.W.; Recamonde-Mendoza, M. A hybrid ensemble feature selection design for candidate biomarkers discovery from transcriptome profiles. Knowl. Based Syst. 2022, 254, 109655. [Google Scholar] [CrossRef]
- Thavavel, V.; Karthiyayini, M. Hybrid feature selection framework for identification of Alzheimer’s biomarkers. Indian J. Sci. Technol 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Thelagathoti, R.K.; Chandel, D.S.; Tom, W.A.; Jiang, C.; Krzyzanowski, G.; Olou, A.; Fernando, M.R. Machine Learning-Based Ensemble Feature Selection and Nested Cross-Validation for miRNA Biomarker Discovery in Usher Syndrome. Bioengineering 2025, 12, 497. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Goy, G.; Mitra, R.; Eischen, C.M.; Jabeer, A.; Bakir-Gungor, B. Mircorrnet: Machine learning-based integration of miRNA and mRNA expression profiles, combined with feature grouping and ranking. PeerJ 2021, 9, e11458. [Google Scholar] [CrossRef]
- Chinnaswamy, A.; Srinivasan, R. Hybrid feature selection using correlation coefficient and particle swarm optimization on microarray gene expression data. In Innovations in Bio-Inspired Computing and Applications, Proceedings of the 6th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2015), Kochi, India, 16–18 December 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 229–239. [Google Scholar]
- Kong, G.; Wang, J.; Zhu, H.; Fan, Y. Messenger RNA Subcellular Localization via Hybrid Feature Extraction and Ensemble Learning. In Proceedings of the International Conference on Neural Information Processing, Auckland, New Zealand, 2–6 December 2024; Springer: Singapore, 2025; pp. 193–207. [Google Scholar]
- Han, Y.; Zhou, Y.; Li, H.; Gong, Z.; Liu, Z.; Wang, H.; Wang, B.; Ye, X.; Liu, Y. Identification of diagnostic mRNA biomarkers in whole blood for ankylosing spondylitis using WGCNA and machine learning feature selection. Front. Immunol. 2022, 13, 956027. [Google Scholar] [CrossRef]
- Metselaar, P.I.; Mendoza-Maldonado, L.; Yim, A.Y.F.L.; Abarkan, I.; Henneman, P.; Te Velde, A.A.; Schönhuth, A.; Bosch, J.A.; Kraneveld, A.D.; Lopez-Rincon, A. Recursive ensemble feature selection provides a robust mRNA expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci. Rep. 2021, 11, 4541. [Google Scholar] [CrossRef]
- Kidwai, S.; Barbiero, P.; Meijerman, I.; Tonda, A.; Perez-Pardo, P.; Lio, P.; van der Maitland-Zee, A.H.; Oberski, D.L.; Kraneveld, A.D.; Lopez-Rincon, A. A robust mRNA signature obtained via recursive ensemble feature selection predicts the responsiveness of omalizumab in moderate-to-severe asthma. Clin. Transl. Allergy 2023, 13, e12306. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast a006Ed bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Mahesh, T.R.; Kumar, V.V.; Kumar, V.D.; Geman, O.; Margala, M.; Guduri, M. The stratified K-folds cross-validation and class-balancing methods with high-performance ensemble classifiers for breast cancer classification. Healthc. Anal. 2023, 4, 100247. [Google Scholar]
- Venkatesh, B.; Anuradha, J. A review of feature selection and its methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef]
- Cruz, J.; Mamani, W.; Romero, C.; Pineda, F. Selection of characteristics by hybrid method: RFE, ridge, lasso, and Bayesian for the power forecast for a photovoltaic system. SN Comput. Sci. 2021, 2, 202. [Google Scholar] [CrossRef]
- Bhati, N.S.; Khari, M. An ensemble model for network intrusion detection using adaboost, random forest and logistic regression. In Proceedings of the Applications of Artificial Intelligence and Machine Learning: Select Proceedings of ICAAAIML 2021; Springer Nature Singapore: Singapore, 2022; pp. 777–789. [Google Scholar] [CrossRef]
- Nemade, V.; Fegade, V. Machine learning techniques for breast cancer prediction. Procedia Comput. Sci. 2023, 218, 1314–1320. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley and Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Academic Press: Cambridge, MA, USA, 2020; pp. 101–121. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Rennie, J.D.; Shih, L.; Teevan, J.; Karger, D.R. Tackling the poor assumptions of naive bayes text classifiers. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 616–623. [Google Scholar]
- Wang, H.; Liang, Q.; Hancock, J.T.; Khoshgoftaar, T.M. Feature selection strategies: A comparative analysis of SHAP-value and importance-based methods. J. Big Data 2024, 11, 44. [Google Scholar] [CrossRef]
- Dodd, D.W.; Gagnon, K.T.; Corey, D.R. Digital quantitation of potential therapeutic target RNAs. Nucleic Acid Ther. 2013, 23, 188–194. [Google Scholar] [CrossRef]
- Campomenosi, P.; Gini, E.; Noonan, D.M.; Poli, A.; D’Antona, P.; Rotolo, N.; Dominioni, L.; Imperatori, A. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.I.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.W. Regulation of cell fate in the sensory epithelia of the inner ear. Nat. Rev. Neurosci. 2006, 7, 837–849. [Google Scholar] [CrossRef]
- Petit, C.; Richardson, G.P. Linking genes underlying deafness to hair-bundle development and function. Nat. Neurosci. 2009, 12, 703–710. [Google Scholar] [CrossRef]
- Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia 2001, 42, 8–12. [Google Scholar] [CrossRef]
- Coyle, J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 2006, 26, 363–382. [Google Scholar] [CrossRef]
- Ripps, H.; Shen, W. Taurine: A “very essential” amino acid. Mol. Vis. 2012, 18, 2673. [Google Scholar]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef]
- Abel, T.; Zukin, R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008, 8, 57–64. [Google Scholar] [CrossRef]
- Shepherd, J.D.; Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 2007, 23, 613–643. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Fajans, S.S.; Bell, G.I. MODY: History, genetics, pathophysiology, and clinical decision making. Diabetes Care 2011, 34, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.A.N.; Sato, A. The HLA system. N. Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef]
Predicted Positive | Predicted Negative | |
---|---|---|
Actual Positive | TP | FN |
Actual Negative | FP | TN |
Model | Accuracy | Sensitivity | Specificity | F1 Score | AUC |
---|---|---|---|---|---|
Logistic Regression | 0.8667 ± 0.18 (0.71, 1.00) | 0.9000 ± 0.22 (0.70, 1.00) | 0.8667 ± 0.30 (0.61, 1.00) | 0.8833 ± 0.16 (0.74, 1.00) | 0.9333 ± 0.15 (0.80, 1.00) |
Random Forest | 0.9000 ± 0.15 (0.77, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 0.8000 ± 0.30 (0.54, 1.00) | 0.9214 ± 0.11 ](0.82, 1.00) | 0.9778 ± 01.d0 (0.87, 1.00) |
XGBoost | 0.9667 ± 0.07 (0.90, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 0.9333 ± 0.15 (0.85, 1.00) | 0.9714 ± 0.06 (0.92, 1.00) | 0.9667 ± 0.07 (0.90, 1.00) |
AdaBoost | 0.8867 ± 0.14 (0.74, 0.99) | 0.9333 ± 0.00 (1.00, 1.00) | 0.8000 ± 0.30 (0.44, 0.96) | 0.9111 ± 0.11 (0.81, 0.99) | 0.8667 ± 0.15 (0.72, 0.98) |
Decision Tree | 0.9667 ± 0.12 (0.93, 0.94) | 0.9500 ± 0.30 (0.94, 1.00) | 1.0000 ± 0.24 (0.93, 1.00) | 0.9714 ± 0.19 (0.94, 0.97) | 0.9750 ± 0.12 (0.91, 1.00) |
SVM | 0.7333 ± 0.28 (0.49, 0.98) | 0.8000 ± 0.30 (0.54, 1.00) | 0.6667 ± 0.33 (0.37, 0.96) | 0.7500 ± 0.28 (0.51, 0.99) | 0.5778 ± 0.41 (0.22, 0.94) |
Naive Bayes | 1.0000 ± 0.00 (1.00, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) | 1.0000 ± 0.00 (1.00, 1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thelagathoti, R.K.; Tom, W.A.; Chandel, D.S.; Jiang, C.; Krzyzanowski, G.; Olou, A.; Fernando, M.R. A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning. Biomolecules 2025, 15, 963. https://doi.org/10.3390/biom15070963
Thelagathoti RK, Tom WA, Chandel DS, Jiang C, Krzyzanowski G, Olou A, Fernando MR. A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning. Biomolecules. 2025; 15(7):963. https://doi.org/10.3390/biom15070963
Chicago/Turabian StyleThelagathoti, Rama Krishna, Wesley A. Tom, Dinesh S. Chandel, Chao Jiang, Gary Krzyzanowski, Appolinaire Olou, and M. Rohan Fernando. 2025. "A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning" Biomolecules 15, no. 7: 963. https://doi.org/10.3390/biom15070963
APA StyleThelagathoti, R. K., Tom, W. A., Chandel, D. S., Jiang, C., Krzyzanowski, G., Olou, A., & Fernando, M. R. (2025). A Hybrid Sequential Feature Selection Approach for Identifying New Potential mRNA Biomarkers for Usher Syndrome Using Machine Learning. Biomolecules, 15(7), 963. https://doi.org/10.3390/biom15070963