Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics
Abstract
:1. Introduction
2. Overview of Feature Selection Techniques
2.1. Fundamentals and Workflow of Feature Selection Techniques in High-Dimensional Data Analysis
2.2. Categorization of Feature Selection Techniques and Their Operational Mechanisms
2.2.1. Filter Methods
2.2.2. Wrapper Methods
2.2.3. Embedded Methods
Name | Advantages | Limitations | Refs. |
---|---|---|---|
L1-regularized LASSO |
|
| [92,93] |
Elastic Net |
|
| [94,95] |
Sparse LASSO |
|
| [96,97] |
Group LASSO |
|
| [98,99] |
Fused LASSO |
|
| [100,101] |
Adaptive LASSO |
|
| [102,103] |
2.2.4. Swarm Intelligence
2.3. Comparative Evaluation of Feature Selection Techniques: Advantages and Limitations
3. Applications of Feature Selection in Tumor Subtype Classification
3.1. Application Cases of Feature Selection Techniques in Tumor Subtype Classification
3.2. Impact of Tumor Subtype Classification on Clinical Outcomes
4. Challenges and Limitations
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, M.; Wang, H.; Sun, H.; Zhu, J.; Zhao, W.; Fang, Q.; Yu, J.; Chen, P.; Wu, S.; et al. A Narrative Review of Tumor Heterogeneity and Challenges to Tumor Drug Therapy. Ann. Transl. Med. 2021, 9, 1351. [Google Scholar] [CrossRef] [PubMed]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor Heterogeneity: Preclinical Models, Emerging Technologies, and Future Applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, J.W.; Park, M. Comparison of Cancer Subtype Identification Methods Combined with Feature Selection Methods in Omics Data Analysis. BioData Min. 2023, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Källberg, D.; Vidman, L.; Rydén, P. Comparison of Methods for Feature Selection in Clustering of High-Dimensional RNA-Sequencing Data to Identify Cancer Subtypes. Front. Genet. 2021, 12, 632620. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Sanz-Pamplona, R.; Nadal, E.; Grasselli, J.; Pernas, S.; Dienstmann, R.; Moreno, V.; Tabernero, J.; Salazar, R. Intrinsic Cancer Subtypes-next Steps into Personalized Medicine. Cell Oncol. 2015, 38, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Rai, S.; Pandey, A.; Singh, N.K.; Srivastava, S. Molecular Subtypes of Colorectal Cancer: An Emerging Therapeutic Opportunity for Personalized Medicine. Genes Dis. 2021, 8, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, Advances and Future Approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-Omics Data Integration Considerations and Study Design for Biological Systems and Disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, V.; Pržulj, N. Methods for Biological Data Integration: Perspectives and Challenges. J. R. Soc. Interface 2015, 12, 20150571. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature Selection for High-Dimensional Data. Prog. Artif. Intell. 2016, 5, 65–75. [Google Scholar] [CrossRef]
- Ghaddar, B.; Naoum-Sawaya, J. High Dimensional Data Classification and Feature Selection Using Support Vector Machines. Eur. J. Oper. Res. 2018, 265, 993–1004. [Google Scholar] [CrossRef]
- Jović, A.; Brkić, K.; Bogunović, N. A Review of Feature Selection Methods with Applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Mladenić, D. Feature Selection for Dimensionality Reduction. In Proceedings of the Subspace, Latent Structure and Feature Selection, Bohinj, Slovenia, 23–25 February 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 84–102. [Google Scholar]
- Huda, S.; Yearwood, J.; Jelinek, H.F.; Hassan, M.M.; Fortino, G.; Buckland, M. A Hybrid Feature Selection with Ensemble Classification for Imbalanced Healthcare Data: A Case Study for Brain Tumor Diagnosis. IEEE Access 2016, 4, 9145–9154. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Ru, X.; Sun, P.; Wang, J. A Hybrid Feature Selection Algorithm and Its Application in Bioinformatics. PeerJ Comput. Sci. 2022, 8, e933. [Google Scholar] [CrossRef]
- Ahn, J.S.; Shin, S.; Yang, S.-A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.-Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.; Mahmoud, H.; Abd El-Hafeez, T.; E ElAraby, M. The Power of Deep Learning in Simplifying Feature Selection for Hepatocellular Carcinoma: A Review. BMC Med. Inf. Decis. Mak. 2024, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv. 2018, 50, 1–45. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature Selection in Machine Learning: A New Perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Chang, Q. Feature Selection Methods for Big Data Bioinformatics: A Survey from the Search Perspective. Methods 2016, 111, 21–31. [Google Scholar] [CrossRef]
- Sánchez-Maroño, N.; Alonso-Betanzos, A.; Tombilla-Sanromán, M. Filter Methods for Feature Selection—A Comparative Study. In Proceedings of the Intelligent Data Engineering and Automated Learning—IDEAL 2007, Birmingham, UK, 16–19 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 178–187. [Google Scholar]
- Maldonado, S.; Weber, R. A Wrapper Method for Feature Selection Using Support Vector Machines. Inf. Sci. 2009, 179, 2208–2217. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Liu, Q. An Embedded Feature Selection Method for Imbalanced Data Classification. IEEE/CAA J. Autom. Sin. 2019, 6, 703–715. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A Survey on Feature Selection Methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Hu, Y.; Shangguan, J.; Song, Q.; Xu, J.; Wang, H.; Xue, M.; Wang, L.; Zhang, Y. Identification of Key Biomarkers for STAD Using Filter Feature Selection Approaches. Sci. Rep. 2022, 12, 19854. [Google Scholar] [CrossRef] [PubMed]
- Sugai, Y.; Kadoya, N.; Tanaka, S.; Tanabe, S.; Umeda, M.; Yamamoto, T.; Takeda, K.; Dobashi, S.; Ohashi, H.; Takeda, K.; et al. Impact of Feature Selection Methods and Subgroup Factors on Prognostic Analysis with CT-Based Radiomics in Non-Small Cell Lung Cancer Patients. Radiat. Oncol. 2021, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Khanna, M.; Singh, L.K.; Shrivastava, K.; Singh, R. An Enhanced and Efficient Approach for Feature Selection for Chronic Human Disease Prediction: A Breast Cancer Study. Heliyon 2024, 10, e26799. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, E.; Heydarheydari, S.; Saberi, A.; JafarpoorNesheli, S.; Rezaeijo, S.M. Breast Cancer Prediction with Transcriptome Profiling Using Feature Selection and Machine Learning Methods. BMC Bioinform. 2022, 23, 410. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Ru, X.; Sun, P.; Wang, J. Identification of Gene Signatures for COAD Using Feature Selection and Bayesian Network Approaches. Sci. Rep. 2022, 12, 8761. [Google Scholar] [CrossRef]
- Cai, Z.; Xu, D.; Zhang, Q.; Zhang, J.; Ngai, S.-M.; Shao, J. Classification of Lung Cancer Using Ensemble-Based Feature Selection and Machine Learning Methods. Mol. BioSystems 2015, 11, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Wang, J. Functional Proteomic Profiling Analysis in Four Major Types of Gastrointestinal Cancers. Biomolecules 2023, 13, 701. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.d.R.; Islam, M.M.M.; Kim, J.-M. Feature Selection Techniques for Increasing Reliability of Fault Diagnosis of Bearings. In Proceedings of the 2016 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2016; pp. 396–399. [Google Scholar]
- Saeys, Y.; Inza, I.; Larrañaga, P. A Review of Feature Selection Techniques in Bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- Fortino, V.; Kinaret, P.; Fyhrquist, N.; Alenius, H.; Greco, D. A Robust and Accurate Method for Feature Selection and Prioritization from Multi-Class OMICs Data. PLoS ONE 2014, 9, e107801. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, J.; Cunningham, P. Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse It Gets. In Proceedings of the Research and Development in Intelligent Systems XXI, Cambridge, UK, 13–15 December 2004; Springer: London, UK, 2005; pp. 33–43. [Google Scholar]
- Abiodun, E.O.; Alabdulatif, A.; Abiodun, O.I.; Alawida, M.; Alabdulatif, A.; Alkhawaldeh, R.S. A Systematic Review of Emerging Feature Selection Optimization Methods for Optimal Text Classification: The Present State and Prospective Opportunities. Neural Comput. Applic 2021, 33, 15091–15118. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rincon, A.; Mendoza-Maldonado, L.; Martinez-Archundia, M.; Schönhuth, A.; Kraneveld, A.D.; Garssen, J.; Tonda, A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers 2020, 12, 1785. [Google Scholar] [CrossRef] [PubMed]
- Remeseiro, B.; Bolon-Canedo, V. A Review of Feature Selection Methods in Medical Applications. Comput. Biol. Med. 2019, 112, 103375. [Google Scholar] [CrossRef] [PubMed]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef]
- Alhassan, A.M.; Wan Zainon, W.M.N. Review of Feature Selection, Dimensionality Reduction and Classification for Chronic Disease Diagnosis. IEEE Access 2021, 9, 87310–87317. [Google Scholar] [CrossRef]
- Jiang, Q.; Jin, M. Feature Selection for Breast Cancer Classification by Integrating Somatic Mutation and Gene Expression. Front. Genet. 2021, 12, 629946. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; An, N.; Chen, G.; Li, L.; Alterovitz, G. Accelerating Wrapper-Based Feature Selection with K-Nearest-Neighbor. Knowl.-Based Syst. 2015, 83, 81–91. [Google Scholar] [CrossRef]
- Hou, C.; Nie, F.; Yi, D.; Wu, Y. Feature Selection via Joint Embedding Learning and Sparse Regression. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence—Volume Volume Two, Barcelona, Spain, 16–22 July 2022; AAAI Press: Barcelona, Spain, 2011; pp. 1324–1329. [Google Scholar]
- Rostami, M.; Berahmand, K.; Nasiri, E.; Forouzandeh, S. Review of Swarm Intelligence-Based Feature Selection Methods. Eng. Appl. Artif. Intell. 2021, 100, 104210. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A.; Benítez, J.M.; Herrera, F. A Review of Microarray Datasets and Applied Feature Selection Methods. Inf. Sci. 2014, 282, 111–135. [Google Scholar] [CrossRef]
- Zivkovic, M.; Stoean, C.; Chhabra, A.; Budimirovic, N.; Petrovic, A.; Bacanin, N. Novel Improved Salp Swarm Algorithm: An Application for Feature Selection. Sensors 2022, 22, 1711. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, Y.; Chen, K.; Li, Y.; Guo, J. Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient. Neural Process Lett. 2020, 51, 1771–1787. [Google Scholar] [CrossRef]
- Liu, D.; Cho, S.-Y.; Sun, D.-M.; Qiu, Z.-D. A Spearman Correlation Coefficient Ranking for Matching-Score Fusion on Speaker Recognition. In Proceedings of the TENCON 2010—2010 IEEE Region 10 Conference, Fukuoka, Japan, 21–24 November 2010; pp. 736–741. [Google Scholar]
- Sulaiman, M.A.; Labadin, J. Feature Selection Based on Mutual Information. In Proceedings of the 2015 9th International Conference on IT in Asia (CITA), Sarawak, Malaysia, 4–5 August 2015; pp. 1–6. [Google Scholar]
- Lewis, D.D. Feature Selection and Feature Extraction for Text Categorization. In Proceedings of the Workshop on Speech and Natural Language, Harriman, NY, USA, 23–26 February 1992; pp. 212–217. [Google Scholar]
- Battiti, R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans. Neural Netw. Learn. Syst. 1994, 5, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Long, F.; Ding, C. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Fleuret, F. Fast Binary Feature Selection with Conditional Mutual Information. J. Mach. Learn. Res. 2004, 5, 1531–1555. [Google Scholar]
- Bennasar, M.; Hicks, Y.; Setchi, R. Feature Selection Using Joint Mutual Information Maximisation. Expert. Syst. Appl. 2015, 42, 8520–8532. [Google Scholar] [CrossRef]
- Lin, D.; Tang, X. Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion; Springer: Berlin/Heidelberg, Germany, 2006; pp. 68–82. [Google Scholar]
- Wang, J.; Wei, J.-M.; Yang, Z.; Wang, S.-Q. Feature Selection by Maximizing Independent Classification Information. IEEE Trans. Knowl. Data Eng. 2017, 29, 828–841. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, S.; Jiang, S. A Feature Selection Method via Analysis of Relevance, Redundancy, and Interaction. Expert. Syst. Appl. 2021, 183, 115365. [Google Scholar] [CrossRef]
- Meyer, P.E.; Schretter, C.; Bontempi, G. Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity. IEEE J. Sel. Top. Signal Process. 2008, 2, 261–274. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for Filter Methods for Feature Selection in High-Dimensional Classification Data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Ververidis, D.; Kotropoulos, C. Sequential Forward Feature Selection with Low Computational Cost. In Proceedings of the 2005 13th European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4. [Google Scholar]
- Borboudakis, G.; Tsamardinos, I. Forward-Backward Selection with Early Dropping. J. Mach. Learn. Res. 2019, 20, 1–39. [Google Scholar]
- Haq, A.U.; Li, J.; Memon, M.H.; Hunain Memon, M.; Khan, J.; Marium, S.M. Heart Disease Prediction System Using Model of Machine Learning and Sequential Backward Selection Algorithm for Features Selection. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–4. [Google Scholar]
- Chen, X.; Jeong, J.C. Enhanced Recursive Feature Elimination. In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA 2007), Cincinnati, OH, USA, 13–15 December 2007; pp. 429–435. [Google Scholar]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High Dimensional Data. BMC Genet. 2018, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.K.; Suganthan, P.N.; Yao, X. Feature Selection for Microarray Data Using Least Squares SVM and Particle Swarm Optimization. In Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, La Jolla, CA, USA, 15 November 2005; pp. 1–8. [Google Scholar]
- Shoorehdeli, M.A.; Teshnehlab, M.; Moghaddam, H.A. Feature Subset Selection for Face Detection Using Genetic Algorithms and Particle Swarm Optimization. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA, 23–25 April 2006; pp. 686–690. [Google Scholar]
- Tan, F.; Fu, X.; Zhang, Y.; Bourgeois, A.G. A Genetic Algorithm-Based Method for Feature Subset Selection. Soft Comput. 2007, 12, 111–120. [Google Scholar] [CrossRef]
- Unler, A.; Murat, A.; Chinnam, R.B. mr2PSO: A Maximum Relevance Minimum Redundancy Feature Selection Method Based on Swarm Intelligence for Support Vector Machine Classification. Inf. Sci. 2011, 181, 4625–4641. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans. Evol. Computat. 2016, 20, 606–626. [Google Scholar] [CrossRef]
- Alba, E.; Garcia-Nieto, J.; Jourdan, L.; Talbi, E.-G. Gene Selection in Cancer Classification Using PSO/SVM and GA/SVM Hybrid Algorithms. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 284–290. [Google Scholar]
- Huang, C.-L.; Dun, J.-F. A Distributed PSO–SVM Hybrid System with Feature Selection and Parameter Optimization. Appl. Soft Comput. 2008, 8, 1381–1391. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Shin, K.S.; Jeong, M.K. An Evolutionary Algorithm with the Partial Sequential Forward Floating Search Mutation for Large-Scale Feature Selection Problems. J. Oper. Res. Soc. 2015, 66, 529–538. [Google Scholar] [CrossRef]
- Cho, H.-W.; Kim, S.B.; Jeong, M.K.; Park, Y.; Ziegler, T.R.; Jones, D.P. Genetic Algorithm-Based Feature Selection in High-Resolution NMR Spectra. Expert. Syst. Appl. 2008, 35, 967–975. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. New Fitness Functions in Binary Particle Swarm Optimisation for Feature Selection. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Xue, B.; Zhang, M.; Browne, W.N. Novel Initialisation and Updating Mechanisms in PSO for Feature Selection in Classification. In Proceedings of the Applications of Evolutionary Computation, Vienna, Austria, 3–5 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 428–438. [Google Scholar]
- da Silva, S.F.; Ribeiro, M.X.; Neto, J.D.E.B.; Traina, C., Jr.; Traina, A.J. Improving the Ranking Quality of Medical Image Retrieval Using a Genetic Feature Selection Method. Decis. Support. Syst. 2011, 51, 810–820. [Google Scholar] [CrossRef]
- Sousa, P.; Cortez, P.; Vaz, R.; Rocha, M.; Rio, M. Email Spam Detection: A Symbiotic Feature Selection Approach Fostered by Evolutionary Computation. Int. J. Inf. Technol. Decis. Mak. 2013, 12, 863–884. [Google Scholar] [CrossRef]
- Canuto, A.M.P.; Nascimento, D.S.C. A Genetic-Based Approach to Features Selection for Ensembles Using a Hybrid and Adaptive Fitness Function. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Yusta, S.C. Different Metaheuristic Strategies to Solve the Feature Selection Problem. Pattern Recognit. Lett. 2009, 30, 525–534. [Google Scholar] [CrossRef]
- Muthukrishnan, R.; Rohini, R. LASSO: A Feature Selection Technique in Predictive Modeling for Machine Learning. In Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 18–20. [Google Scholar]
- Yamada, M.; Jitkrittum, W.; Sigal, L.; Xing, E.P.; Sugiyama, M. High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso. Neural Comput. 2014, 26, 185–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Sun, L.; Wang, W.; Chen, T.; Guo, M.; Zhang, P. A Feature Selection Method Combined with Ridge Regression and Recursive Feature Elimination in Quantitative Analysis of Laser Induced Breakdown Spectroscopy. Plasma Sci. Technol. 2020, 22, 074002. [Google Scholar] [CrossRef]
- Cawley, G.C. Causal & Non-Causal Feature Selection for Ridge Regression. In Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI 2008, Hong Kong, China, 3–4 June 2018; pp. 107–128. [Google Scholar]
- Rashid, M.; Kamruzzaman, J.; Imam, T.; Wibowo, S.; Gordon, S. A Tree-Based Stacking Ensemble Technique with Feature Selection for Network Intrusion Detection. Appl. Intell. 2022, 52, 9768–9781. [Google Scholar] [CrossRef]
- Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving Performance of Intrusion Detection System Using Ensemble Methods and Feature Selection. In Proceedings of the Australasian Computer Science Week Multiconference, Brisband, Australia, 29 January–2 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Xu, Z.; Huang, G.; Weinberger, K.Q.; Zheng, A.X. Gradient Boosted Feature Selection. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 522–531. [Google Scholar]
- Chen, C.; Zhang, Q.; Yu, B.; Yu, Z.; Lawrence, P.J.; Ma, Q.; Zhang, Y. Improving Protein-Protein Interactions Prediction Accuracy Using XGBoost Feature Selection and Stacked Ensemble Classifier. Comput. Biol. Med. 2020, 123, 103899. [Google Scholar] [CrossRef]
- Cantor, E.; Guauque-Olarte, S.; León, R.; Chabert, S.; Salas, R. Knowledge-Slanted Random Forest Method for High-Dimensional Data and Small Sample Size with a Feature Selection Application for Gene Expression Data. BioData Min. 2024, 17, 34. [Google Scholar] [CrossRef]
- Prasetiyowati, M.I.; Maulidevi, N.U.; Surendro, K. Feature Selection to Increase the Random Forest Method Performance on High Dimensional Data. Int. J. Adv. Intell. Inform. 2020, 6, 303. [Google Scholar] [CrossRef]
- Fakhr, M.W.; Youssef, E.-N.S.; El-Mahallawy, M.S. L1-Regularized Least Squares Sparse Extreme Learning Machine for Classification. In Proceedings of the 2015 International Conference on Information and Communication Technology Research (ICTRC), Abu Dhabi, United Arab Emirates, 17–19 May 2015; pp. 222–225. [Google Scholar]
- Demir-Kavuk, O.; Kamada, M.; Akutsu, T.; Knapp, E.-W. Prediction Using Step-Wise L1, L2 Regularization and Feature Selection for Small Data Sets with Large Number of Features. BMC Bioinform. 2011, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Hu, G. A Two-Layer Feature Selection Method Using Genetic Algorithm and Elastic Net. Expert. Syst. Appl. 2021, 166, 114072. [Google Scholar] [CrossRef]
- Jenul, A.; Schrunner, S.; Liland, K.H.; Indahl, U.G.; Futsæther, C.M.; Tomic, O. RENT—Repeated Elastic Net Technique for Feature Selection. IEEE Access 2021, 9, 152333–152346. [Google Scholar] [CrossRef]
- Rasmussen, M.A.; Bro, R. A Tutorial on the Lasso Approach to Sparse Modeling. Chemom. Intell. Lab. Syst. 2012, 119, 21–31. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y. Sparse Group LASSO Based Uncertain Feature Selection. Int. J. Mach. Learn. Cyber. 2014, 5, 201–210. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Z.; Ji, S.; Tao, D.; Tan, T. Feature Selection Based on Structured Sparsity: A Comprehensive Study. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1490–1507. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Q.; Wang, W. Heterogeneous Feature Selection With Multi-Modal Deep Neural Networks and Sparse Group LASSO. IEEE Trans. Multimed. 2015, 17, 1936–1948. [Google Scholar] [CrossRef]
- Cui, L.; Bai, L.; Wang, Y.; Yu, P.S.; Hancock, E.R. Fused Lasso for Feature Selection Using Structural Information. Pattern Recognit. 2021, 119, 108058. [Google Scholar] [CrossRef]
- Xin, B.; Kawahara, Y.; Wang, Y.; Hu, L.; Gao, W. Efficient Generalized Fused Lasso and Its Applications. ACM Trans. Intell. Syst. Technol. 2016, 7, 60. [Google Scholar] [CrossRef]
- Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Shortreed, S.M.; Ertefaie, A. Outcome-Adaptive Lasso: Variable Selection for Causal Inference. Biometrics 2017, 73, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.H.; Xue, B.; Zhang, M. A Survey on Swarm Intelligence Approaches to Feature Selection in Data Mining. Swarm Evol. Comput. 2020, 54, 100663. [Google Scholar] [CrossRef]
- Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review. Appl. Sci. 2018, 8, 1521. [Google Scholar] [CrossRef]
- Kashef, S.; Nezamabadi-pour, H. An Advanced ACO Algorithm for Feature Subset Selection. Neurocomputing 2015, 147, 271–279. [Google Scholar] [CrossRef]
- Nayar, N.; Gautam, S.; Singh, P.; Mehta, G. Ant Colony Optimization: A Review of Literature and Application in Feature Selection. In Proceedings of the Inventive Computation and Information Technologies, Coimbatore, India, 24–25 September 2020; Springer Nature: Singapore, 2021; pp. 285–297. [Google Scholar]
- Haznedar, B.; Arslan, M.T.; Kalinli, A. Optimizing ANFIS Using Simulated Annealing Algorithm for Classification of Microarray Gene Expression Cancer Data. Med. Biol. Eng. Comput. 2021, 59, 497–509. [Google Scholar] [CrossRef]
- Acharya, S.; Saha, S.; Thadisina, Y. Multiobjective Simulated Annealing-Based Clustering of Tissue Samples for Cancer Diagnosis. IEEE J. Biomed. Health Inform. 2016, 20, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Hancer, E.; Xue, B.; Zhang, M. Differential Evolution for Filter Feature Selection Based on Information Theory and Feature Ranking. Knowl.-Based Syst. 2018, 140, 103–119. [Google Scholar] [CrossRef]
- El Aboudi, N.; Benhlima, L. Review on Wrapper Feature Selection Approaches. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016; pp. 1–5. [Google Scholar]
- Maldonado, J.; Riff, M.C.; Neveu, B. A Review of Recent Approaches on Wrapper Feature Selection for Intrusion Detection. Expert. Syst. Appl. 2022, 198, 116822. [Google Scholar] [CrossRef]
- Bajer, D.; Dudjak, M.; Zorić, B. Wrapper-Based Feature Selection: How Important Is the Wrapped Classifier? In Proceedings of the 2020 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 14–16 October 2020; pp. 97–105. [Google Scholar]
- Wang, S.; Tang, J.; Liu, H. Embedded Unsupervised Feature Selection. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 470–476. [Google Scholar] [CrossRef]
- Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef]
- Ramos-González, J.; López-Sánchez, D.; Castellanos-Garzón, J.A.; de Paz, J.F.; Corchado, J.M. A CBR Framework with Gradient Boosting Based Feature Selection for Lung Cancer Subtype Classification. Comput. Biol. Med. 2017, 86, 98–106. [Google Scholar] [CrossRef]
- Chen, J.W.; Dhahbi, J. Lung Adenocarcinoma and Lung Squamous Cell Carcinoma Cancer Classification, Biomarker Identification, and Gene Expression Analysis Using Overlapping Feature Selection Methods. Sci. Rep. 2021, 11, 13323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Ru, X.; Sun, P.; Wang, J. The Weight-Based Feature Selection (WBFS) Algorithm Classifies Lung Cancer Subtypes Using Proteomic Data. Entropy 2023, 25, 1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Ru, X.; Sun, P.; Wang, J. Using Feature Selection and Bayesian Network Identify Cancer Subtypes Based on Proteomic Data. J. Proteom. 2023, 280, 104895. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Qiu, Q.; Fu, J.; Cui, K.; Chen, X.; Xing, L.; Sun, X. Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer. Cancer Manag. Res. 2021, 13, 307–317. [Google Scholar] [CrossRef]
- Ma, M.; Liu, R.; Wen, C.; Xu, W.; Xu, Z.; Wang, S.; Wu, J.; Pan, D.; Zheng, B.; Qin, G.; et al. Predicting the Molecular Subtype of Breast Cancer and Identifying Interpretable Imaging Features Using Machine Learning Algorithms. Eur. Radiol. 2022, 32, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Pozzoli, S.; Soliman, A.; Bahri, L.; Branca, R.M.; Girdzijauskas, S.; Brambilla, M. Domain Expertise–Agnostic Feature Selection for the Analysis of Breast Cancer Data*. Artif. Intell. Med. 2020, 108, 101928. [Google Scholar] [CrossRef] [PubMed]
- Cascianelli, S.; Galzerano, A.; Masseroli, M. Supervised Relevance-Redundancy Assessments for Feature Selection in Omics-Based Classification Scenarios. J. Biomed. Inf. 2023, 144, 104457. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, W.; Wei, H.; Zhang, X.; Yuan, S.; Qiao, X.; Chen, Y.-W. Machine Learning for Histologic Subtype Classification of Non-Small Cell Lung Cancer: A Retrospective Multicenter Radiomics Study. Front. Oncol. 2020, 10, 608598. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.P.; Saha, I.; Sarkar, A.; Maulik, U. Machine Learning Integrated Ensemble of Feature Selection Methods Followed by Survival Analysis for Predicting Breast Cancer Subtype Specific miRNA Biomarkers. Comput. Biol. Med. 2021, 131, 104244. [Google Scholar] [CrossRef]
- MotieGhader, H.; Masoudi-Sobhanzadeh, Y.; Ashtiani, S.H.; Masoudi-Nejad, A. mRNA and microRNA Selection for Breast Cancer Molecular Subtype Stratification Using Meta-Heuristic Based Algorithms. Genomics 2020, 112, 3207–3217. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hicks, C. Breast Cancer Type Classification Using Machine Learning. J. Pers. Med. 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Feng, Y.; Wu, X.; Li, R.; Shi, J.; Chang, W.; Wang, J. ForestSubtype: A Cancer Subtype Identifying Approach Based on High-Dimensional Genomic Data and a Parallel Random Forest. BMC Bioinform. 2023, 24, 289. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yu, L.; Gao, L. Cancer Classification Based on Multiple Dimensions: SNV Patterns. Comput. Biol. Med. 2022, 151, 106270. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Mali, K. Breast Cancer Subtypes Classification with Hybrid Machine Learning Model. Methods Inf. Med. 2022, 61, 68–83. [Google Scholar] [CrossRef]
- Huang, M.; Ye, X.; Imakura, A.; Sakurai, T. Sequential Reinforcement Active Feature Learning for Gene Signature Identification in Renal Cell Carcinoma. J. Biomed. Inform. 2022, 128, 104049. [Google Scholar] [CrossRef]
- Maulik, U.; Mukhopadhyay, A.; Chakraborty, D. Gene-Expression-Based Cancer Subtypes Prediction Through Feature Selection and Transductive SVM. IEEE Trans. Biomed. Eng. 2013, 60, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bø, T.H.; Jonassen, I.; Myklebost, O.; Hovig, E. Tumor Classification and Marker Gene Prediction by Feature Selection and Fuzzy C-Means Clustering Using Microarray Data. BMC Bioinform. 2003, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Mendonca-Neto, R.; Li, Z.; Fenyö, D.; Silva, C.T.; Nakamura, F.G.; Nakamura, E.F. A Gene Selection Method Based on Outliers for Breast Cancer Subtype Classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 2547–2559. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Pascual, T.; De Angelis, C.; Gutierrez, C.; Llombart-Cussac, A.; Wang, T.; Cortés, J.; Rexer, B.; Paré, L.; Forero, A.; et al. HER2-Enriched Subtype and ERBB2 Expression in HER2-Positive Breast Cancer Treated with Dual HER2 Blockade. JNCI J. Natl. Cancer Inst. 2020, 112, 46–54. [Google Scholar] [CrossRef]
- Llombart-Cussac, A.; Cortés, J.; Paré, L.; Galván, P.; Bermejo, B.; Martínez, N.; Vidal, M.; Pernas, S.; López, R.; Muñoz, M.; et al. HER2-Enriched Subtype as a Predictor of Pathological Complete Response Following Trastuzumab and Lapatinib without Chemotherapy in Early-Stage HER2-Positive Breast Cancer (PAMELA): An Open-Label, Single-Group, Multicentre, Phase 2 Trial. Lancet Oncol. 2017, 18, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Potlitz, F.; Link, A.; Schulig, L. Advances in the Discovery of New Chemotypes through Ultra-Large Library Docking. Expert. Opin. Drug Discov. 2023, 18, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef]
- Speiser, J.L. A Random Forest Method with Feature Selection for Developing Medical Prediction Models with Clustered and Longitudinal Data. J. Biomed. Inf. 2021, 117, 103763. [Google Scholar] [CrossRef]
- Karalis, V.D. The Integration of Artificial Intelligence into Clinical Practice. Appl. Biosci. 2024, 3, 14–44. [Google Scholar] [CrossRef]
- Yao, J.; Wang, S.; Zhu, X.; Huang, J. Imaging Biomarker Discovery for Lung Cancer Survival Prediction. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Athens, Greece, 17–21 October 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 649–657. [Google Scholar]
- Miller, H.A.; van Berkel, V.H.; Frieboes, H.B. Lung Cancer Survival Prediction and Biomarker Identification with an Ensemble Machine Learning Analysis of Tumor Core Biopsy Metabolomic Data. Metabolomics 2022, 18, 57. [Google Scholar] [CrossRef]
- Leite, A.F.; Vasconcelos, K.D.F.; Willems, H.; Jacobs, R. Radiomics and Machine Learning in Oral Healthcare. Proteom. Clin. Appl. 2020, 14, e1900040. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, T.; Liu, H. Recent Advances in Feature Selection and Its Applications. Knowl. Inf. Syst. 2017, 53, 551–577. [Google Scholar] [CrossRef]
- Goh, W.W.B.; Wong, L. Evaluating Feature-Selection Stability in next-Generation Proteomics. J. Bioinform. Comput. Biol. 2016. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability of Feature Selection Algorithm: A Review. J. King Saud. Univ.—Comput. Inf. Sci. 2022, 34, 1060–1073. [Google Scholar] [CrossRef]
- Sangeetha, S.K.B.; Mathivanan, S.K.; Karthikeyan, P.; Rajadurai, H.; Shivahare, B.D.; Mallik, S.; Qin, H. An Enhanced Multimodal Fusion Deep Learning Neural Network for Lung Cancer Classification. Syst. Soft Comput. 2024, 6, 200068. [Google Scholar] [CrossRef]
- Waqas, A.; Tripathi, A.; Ramachandran, R.P.; Stewart, P.A.; Rasool, G. Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review. Front. Artif. Intell. 2024, 7, 1408843. [Google Scholar] [CrossRef]
- Boehm, K.M.; Aherne, E.A.; Ellenson, L.; Nikolovski, I.; Alghamdi, M.; Vázquez-García, I.; Zamarin, D.; Long Roche, K.; Liu, Y.; Patel, D.; et al. Multimodal Data Integration Using Machine Learning Improves Risk Stratification of High-Grade Serous Ovarian Cancer. Nat. Cancer 2022, 3, 723–733. [Google Scholar] [CrossRef]
Algorithm | Relevance | Redundancy | Complementarity | Interactivity | Objective Function |
---|---|---|---|---|---|
MIM [52] | ✓ | ✗ | ✗ | ✗ | |
MIFS [53] | ✓ | ✓ | ✗ | ✗ | |
mRMR [54] | ✓ | ✓ | ✗ | ✗ | |
CMIM [55] | ✓ | ✓ | ✗ | ✗ | |
JMI [56] | ✓ | ✓ | ✗ | ✗ | |
CIFE [57] | ✓ | ✓ | ✗ | ✗ | |
MRI [58] | ✓ | ✓ | ✓ | ✗ | |
MRMI [59] | ✓ | ✓ | ✗ | ✓ | |
DISR [60] | ✓ | ✓ | ✓ | ✓ |
Algorithms | Search Strategy | Evaluation Criteria | Ref. |
---|---|---|---|
LSEFS | PSO | SVM | [67] |
Hybrid feature selection | PSO, GA | SVM | [68] |
GA-based feature selection | GA | SVM | [69] |
mr2PSO | PSO | SVM | [70] |
GA-based feature selection | GA | SVM | [71] |
PSO–SVM | PSO | SVM | [72] |
PSO–SVM | PSO | SVM | [73] |
EAwPS | GA | KNN | [74] |
GA-based feature selection | GA | KNN | [75] |
PSO-based feature selection | BPSO | KNN | [76] |
IniPG | PSO | KNN | [77] |
GA-based feature selection | GA | NB | [78] |
GA-based feature selection | GA | NB | [79] |
GA-based feature selection | GA | NB | [80] |
GRASP | GA | ANN | [81] |
Algorithm | Advantages | Limitations | Refs. |
---|---|---|---|
Filter methods |
|
| [20,110] |
Wrapper methods |
|
| [111,112,113] |
Embedded methods |
|
| [114,115] |
Swarm intelligence |
|
| [46,71,105] |
Tumor Organ | Tumor Subtype | Data Type | Methodology | Biomarkers or Features | Refs. |
---|---|---|---|---|---|
Lung | LUAD, LUSC | Gene expression | Gradient boosting | SFTA2, TRIM29, AKR1B0, KRT5, PKP1 | [116] |
Lung | LUAD, LUSC | Gene expression | RF | KRT17, KRT14, KRT6A, TRIM29, KRT5, NECTIN1, TUBA1C, S100A2 | [117] |
Lung | LUAD, LUSC | Proteomic data | Weight-based feature selection | TFRC, BRD4, CD26, INPP4B, IGFBP2, DUSP4 | [118] |
Glioma | LGG, HGG | Proteomic data | pyHSICLasso, XGBoost, RF | CYCLIND1, CYCLINE2, ERK2, IGF1R_pY1135Y1136, PAI1, PDK1, PR | [119] |
Kidney | KIRC, KIRP, KICH | Proteomic data | pyHSICLasso, XGBoost, RF | CKIT, FASN, MEK1, PR, ARAF_pS299 | [119] |
Lung | LUAD, LUSC | Proteomic data | pyHSICLasso, XGBoost, RF | INPP48, DUSP4, MIG6, CD26, TFRC, NF2, HER3 | [119] |
Lung | LUAD, LUSC | Radiomic data | LASSO | LGSRE, HGZE, ZP, IDMCM, LNE | [120] |
Breast | TNBC, Others | Imaging data | RF, SHAP | Mass_Indistinct, Mass_Spiculated, US_Mass_one_para, Calc_amorphous | [121] |
Breast | Basal, LUMB | Proteomic data | Wrapper method, spectral clustering | CENPU, KIAA0101, NUSAP1, PBK, RRM2, TOP2A | [122] |
Breast | TNBC, Others | Circulating miRNAs | Ensemble recursive feature selection | hsa-miR-378, hsa-miR-221, hsa-miR-630, hsa-miR-145, hsa-miR-342-3p | [39] |
Breast | Basal, HER2-enriched, LUMA, LUMB, Normal-like | Omics data | Relevance–Redundancy assessment (ReRa) | - | [123] |
Lung | LUAD, LUSC | Radiomic data | mRMR, SFS, LASSO | wavelet-LLH _ firstorder _ Skewness, Wavelet-HHL _ glcm _ ClusterShade | [124] |
Breast | LUMA, LUMB, HER2-enriched, Basal | miRNA expression | Ensemble of 8 feature selection methods (e.g., MIM, mRMR) | hsa-miR-25-3p, hsa-miR-505-5p, hsa-miR-29b-2-5p, hsa-miR-10a-5p, hsa-miR-140-3p, hsa-miR-30c-2-3p, hsa-miR-193a-5p | [125] |
Breast | LUMA, LUMB, Basal, ERBB2 | miRNA expression | 11 meta-heuristic algorithms (e.g., PSO, GA) | miR-135, miR-188, miR-449, miR-29, miR-101, miR-105, miR-190, miR-33 | [126] |
Breast | TNBC, Non-TNBC | Gene expression | False discovery rates (FDRs) gene selection | ESR1, MLPH, FSIP1, C5AR2, GATA3, TBC1D9, CT62, TFF1, PRR15, CA12, AGR3 | [127] |
Breast | LUMA, LUMB, Basal, HER2-enriched | Gene expression | Forest subtype | PCAT29, GATA3, CCDC170, SPDEF, SLC7A13, BIRC5, SPAG5, C5AR2 | [128] |
Multi-cancer | Multi-subtypes | Single nucleotide variants | Multi-dimensional SNVs feature definition | - | [129] |
Breast | TNBC, Non-TNBC | Clinicopathological data | GA, SVM-RFE, LASSO | - | [130] |
Kidney | KIRC, KIRP, KICH | mRNA expression, lncRNA expression | Sequential reinforcement active feature learning (SRAFL) | LINC00887, TTC21B-AS1, SLC47A1P1, SLC10A2, AL109946.1, UQCRB, OR2T10, ENPP7P8 | [131] |
Leukemia | ALL, AML | Gene expression | Transductive SVM (TSVM) | M27891_at, Y07604_at | [132] |
SRBCT | EWS, NB, BL, RMS | Gene expression | TSVM | 784224, 812105, 207274, 782811, 344134 | [132] |
MLL | ALL, MLL, AML | Gene expression | TSVM | 31375_at, 31385_at, 31394_at, 31441_at | [132] |
DLBCL | DLBCL, FL | Gene expression | TSVM | M59829_at, X53961_at, U46006_s_at, X85785_rna1_at | [132] |
Leukemia | ALL, AML | Gene expression | Self-organizing maps (SOMs), fuzzy C-means clustering (FCC), Fisher’s linear discriminant | - | [133] |
Brain | MD, Mglio, Rhab, PNET, Ncer | Gene expression | SOM, FCC, Fisher’s linear discriminant | - | [133] |
Lung | LADC, SQCLC, SCLC | DNA methylation | mRMR, RF | - | [32] |
Breast | LUMA, LUMB, Basal, HER2-enriched | Gene expression | Outlier-based gene selection (OGS) | AGR2, AGR3, EN1, FOXA1, FOXC1, FZD9, KIAA1324, PRR15, SPDEF, TMC5, C1orf106, CEACAM5, FBXO10, GRIK3, GRPR | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Z.; Wang, Y. Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics. Biomolecules 2025, 15, 81. https://doi.org/10.3390/biom15010081
Wang J, Zhang Z, Wang Y. Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics. Biomolecules. 2025; 15(1):81. https://doi.org/10.3390/biom15010081
Chicago/Turabian StyleWang, Jihan, Zhengxiang Zhang, and Yangyang Wang. 2025. "Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics" Biomolecules 15, no. 1: 81. https://doi.org/10.3390/biom15010081
APA StyleWang, J., Zhang, Z., & Wang, Y. (2025). Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics. Biomolecules, 15(1), 81. https://doi.org/10.3390/biom15010081