Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Sorting and Selection of Candidate Aptamers
2.2. Structural Modeling of RNA Oligomers
2.3. Spike Protein Structure Preparation for SARS-CoV-2 Wild-Type (WT) (Wuhan-Hu-1 Strain) and Mutant Strains
2.4. Protein and Candidate Aptamer Docking
2.5. Prediction of Aptamer and RBD Complexes Using the AlphaFold3
2.6. Molecular Dynamics (MD) Studies
2.7. Molecular Dynamics Trajectory Analysis
2.8. Binding Free Energy Estimation
2.9. Biolayer Interferometry (BLI)
3. Results and Discussion
3.1. In Silico SELEX Process to Select the Candidate Aptamers
3.2. Candidate Aptamer Interaction with the SARS-CoV-2 and Omicron (BA.1) RBD
3.3. Interactions Between the Top-Ranked Candidate Aptamers and RBD of Representative Omicron Variants (BA.2, XBB.1.5, and EG.5)
3.3.1. Interaction Patterns of Shortlisted Candidate Aptamers with RBD of the BA.2 Spike Protein
3.3.2. Shortlisted Candidate Aptamer Interactions with the RBD of XBB.1.5 Spike Protein
3.3.3. Shortlisted Candidate Aptamer Interactions with the RBD of EG.5 Spike Protein
3.4. Top-Ranked Aptamers Interactions with the RBD of Representative BA.5, EG.5, and XBB.1.5 Variants Using AlphaFold 3 (AF3)
3.5. Molecular Dynamics Simulations
3.5.1. Root Mean Square Deviation (RMSD)
3.5.2. Root Mean Square Fluctuation (RMSF)
3.5.3. Hydrogen Bonds in Docking Complexes
3.5.4. Evaluation of Complexes Using Rg and SASA
3.5.5. Estimation of Binding Free Energy
3.6. Biolayer Interferometry-Based Validation of the Candidate Aptamers
3.7. Protocol Validation Using Aptamers Reported Earlier
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus COVID-19 (SARS-CoV-2)|Johns Hopkins ABX Guide. Available online: https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2_ (accessed on 28 November 2023).
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 28 November 2023).
- Huang, Y.; Yang, C.; Xu, X.-F.; Xu, W.; Liu, S.-W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J. Biomol. Struct. Dyn. 2020, 39, 6306–6316. [Google Scholar] [CrossRef]
- Rane, J.S.; Pandey, P.; Chatterjee, A.; Khan, R.; Kumar, A.; Prakash, A.; Ray, S. Targeting virus–host interaction by novel pyrimidine derivative: An in silico approach towards discovery of potential drug against COVID-19. J. Biomol. Struct. Dyn. 2020, 39, 5768–5778. [Google Scholar] [CrossRef]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef]
- Macke, T.J.; Case, D.A. Modeling Unusual Nucleic Acid Structures. In Molecular Modeling of Nucleic Acids; American Chemical Society: Washington, DC, USA, 1997; pp. 379–393. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Teng, I.-T.; Li, X.; Yadikar, H.A.; Yang, Z.; Li, L.; Lyu, Y.; Pan, X.; Wang, K.K.; Tan, W. Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J. Am. Chem. Soc. 2018, 140, 14314–14323. [Google Scholar] [CrossRef]
- Wang, L.; Bing, T.; Liu, Y.; Zhang, N.; Shen, L.; Liu, X.; Wang, J.; Shangguan, D. Imaging of Neurite Network with an Anti-L1CAM Aptamer Generated by Neurite-SELEX. J. Am. Chem. Soc. 2018, 140, 18066–18073. [Google Scholar] [CrossRef]
- Bruno, J.G.; Carrillo, M.P.; Phillips, T.; Andrews, C.J. A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J. Fluoresc. 2010, 20, 1211–1223. [Google Scholar] [CrossRef]
- Bruno, J.G.; Phillips, T.; Carrillo, M.P.; Crowell, R. Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J. Fluoresc. 2009, 19, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Adamis, A.P.; Miller, J.W.; Bernal, M.-T.; D’Amico, D.J.; Folkman, J.; Yeo, T.-K.; Yeo, K.-T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Arch. Ophthalmol. 1994, 118, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Lupold, S.E.; Hicke, B.J.; Lin, Y.; Coffey, D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002, 62, 4029–4033. [Google Scholar] [PubMed]
- Mascini, M.; Palchetti, I.; Tombelli, S. Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angew. Chem. Int. Ed. Engl. 2012, 51, 1316–1332. [Google Scholar] [CrossRef]
- Liu, J.; You, M.; Pu, Y.; Liu, H.; Ye, M.; Tan, W. Recent Developments in Protein and Cell-Targeted Aptamer Selection and Applications. Curr. Med. Chem. 2011, 18, 4117–4125. [Google Scholar] [CrossRef]
- Bowser, M.T. SELEX: Just another separation? Analyst 2005, 130, 128–130. [Google Scholar] [CrossRef]
- Hamada, M. In silico approaches to RNA aptamer design. Biochimie 2018, 145, 8–14. [Google Scholar] [CrossRef]
- Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- COVID-19 Testing: What You Need to Know|CDC. Available online: https://www.cdc.gov/covid/testing/ (accessed on 28 November 2023).
- Binnicker, M.J. Challenges and Controversies to Testing for COVID-19. J. Clin. Microbiol. 2020, 58, e01695-20. [Google Scholar] [CrossRef]
- Valent, F.; Doimo, A.; Mazzilis, G.; Pipan, C. RT-PCR tests for SARS-CoV-2 processed at a large Italian Hospital and false-negative results among confirmed COVID-19 cases. Infect. Control Hosp. Epidemiol. 2021, 42, 498–499. [Google Scholar] [CrossRef]
- Vargas-Montes, M.; Cardona, N.; Moncada, D.M.; Molina, D.A.; Zhang, Y.; Gómez-Marín, J.E. Enzyme-Linked Aptamer Assay (ELAA) for Detection of Toxoplasma ROP18 Protein in Human Serum. Front. Cell. Infect. Microbiol. 2019, 9, 386. [Google Scholar] [CrossRef]
- Xi, H.; Jiang, H.; Juhas, M.; Zhang, Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS Omega 2021, 6, 25846–25859. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, Z.; Roushani, M. SARS-CoV-2 virus label-free electrochemical nanohybrid MIP-aptasensor based on Ni3(BTC)2 MOF as a high-performance surface substrate. Microchim. Acta 2022, 189, 287. [Google Scholar] [CrossRef]
- Kukushkin, V.; Ambartsumyan, O.; Astrakhantseva, A.; Gushchin, V.; Nikonova, A.; Dorofeeva, A.; Zverev, V.; Gambaryan, A.; Tikhonova, D.; Sovetnikov, T.; et al. Lithographic SERS Aptasensor for Ultrasensitive Detection of SARS-CoV-2 in Biological Fluids. Nanomaterials 2022, 12, 3854. [Google Scholar] [CrossRef]
- Behbahani, M.; Mohabatkar, H.; Hosseini, B. In silico design of quadruplex aptamers against the spike protein of SARS-CoV-2. Inform. Med. Unlocked 2021, 26, 100757. [Google Scholar] [CrossRef]
- Andress, C.; Kappel, K.; Villena, M.E.; Cuperlovic-Culf, M.; Yan, H.; Li, Y. DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design. PLoS Comput. Biol. 2023, 19, e1010774. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, W.-Y.; Hwu, E.-T.; Hu, W.-P. In-Silico Selection of Aptamer Targeting SARS-CoV-2 Spike Protein. Int. J. Mol. Sci. 2022, 23, 5810. [Google Scholar] [CrossRef]
- Chushak, Y.G.; Martin, J.A.; Chávez, J.L.; Kelley-Loughnane, N.; Stone, M.O. Computational design of RNA libraries for in vitro selection of aptamers. Methods Mol. Biol. 2014, 1111, 1–15. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Biesiada, M.; Pachulska-Wieczorek, K.; Adamiak, R.W.; Purzycka, K.J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016, 103, 120–127. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, S.-Y. Modeling Protein–Protein or Protein–DNA/RNA Complexes Using the HDOCK Webserver. In Methods in Molecular Biology; Humana: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Gajula, M.; Kumar, A.; Ijaq, J. Protocol for Molecular Dynamics Simulations of Proteins. Bio-Protocol 2016, 6, 159–166. [Google Scholar] [CrossRef]
- Kollman, P.A. Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules. Acc. Chem. Res. 1996, 29, 461–469. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Lynn, A. G_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Pathak, Y.; Mishra, A.; Choudhir, G.; Kumar, A.; Tripathi, V. Rifampicin and Letermovir as potential repurposed drug candidate for COVID-19 treatment: Insights from an in-silico study. Pharmacol. Rep. 2021, 73, 926–938. [Google Scholar] [CrossRef]
- Mukherjee, M.; Appaiah, P.; Sistla, S.; Bk, B.; Bhatt, P. Bio-Layer Interferometry-Based SELEX and Label-Free Detection of Patulin Using Generated Aptamer. J. Agric. Food Chem. 2022, 70, 6239–6246. [Google Scholar] [CrossRef]
- Zhang, Z.; Nomura, N.; Muramoto, Y.; Ekimoto, T.; Uemura, T.; Liu, K.; Yui, M.; Kono, N.; Aoki, J.; Ikeguchi, M.; et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat. Commun. 2022, 13, 4399. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, Z.; Yu, L.; Shi, D.; Zhu, M.; Yao, H.; Li, L. Interactome analysis of the nucleocapsid protein of SARS-CoV-2 virus. Pathogens 2021, 10, 1155. [Google Scholar] [CrossRef]
- Germer, K.; Leonard, M.; Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. Int. J. Biochem. Mol. Biol. 2013, 4, 27–40. [Google Scholar]
- Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Anal. Chem. 2020, 92, 9895–9900. [Google Scholar] [CrossRef]
- Mironov, V.; Shchugoreva, I.A.; Artyushenko, P.V.; Morozov, D.; Borbone, N.; Oliviero, G.; Zamay, T.N.; Moryachkov, R.V.; Kolovskaya, O.S.; Lukyanenko, K.A.; et al. Structure- and Interaction-Based Design of Anti-SARS-CoV-2 Aptamers. Chem. Eur. J. 2022, 28, e202104481. [Google Scholar] [CrossRef] [PubMed]
- Hewins, B.; Rahman, M.; Bermejo-Martin, J.F.; Kelvin, A.A.; Richardson, C.D.; Rubino, S.; Kumar, A.; Ndishimye, P.; Ostadgavahi, A.T.; Mahmud-Al-Rafat, A.; et al. Alpha, Beta, Delta, Omicron, and SARS-CoV-2 Breakthrough Cases: Defining Immunological Mechanisms for Vaccine Waning and Vaccine-Variant Mismatch. Front. J. Women Stud. 2022, 2. [Google Scholar] [CrossRef]
- Kudriavtsev, A.V.; Vakhrusheva, A.V.; Novoseletsky, V.N.; Bozdaganyan, M.E.; Shaitan, K.V.; Kirpichnikov, M.P.; Sokolova, O.S. Immune Escape Associated with RBD Omicron Mutations and SARS-CoV-2 Evolution Dynamics. Viruses 2022, 14, 1603. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Bhattacharya, M.; Sharma, A.R.; Mallik, B. Omicron (B.1.1.529)—A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein. Int. J. Biol. Macromol. 2022, 219, 980–997. [Google Scholar] [CrossRef]
- Miller, N.L.; Clark, T.; Raman, R.; Sasisekharan, R. Insights on the mutational landscape of the SARS-CoV-2 Omicron variant receptor-binding domain. Cell Rep. Med. 2022, 3, 100527. [Google Scholar] [CrossRef]
- Gilson, M.; Given, J.; Bush, B.; McCammon, J. The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 1997, 72, 1047–1069. [Google Scholar] [CrossRef]
- Owoloye, A.J.; Ligali, F.C.; Enejoh, O.A.; Musa, A.Z.; Aina, O.; Idowu, E.T.; Oyebola, K.M. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. PLoS ONE 2022, 17, e0268269. [Google Scholar] [CrossRef]
- Devi, A.; Chaitanya, N.S.N. Designing of peptide aptamer targeting the receptor-binding domain of spike protein of SARS-CoV-2: An in silico study. Mol. Divers. 2022, 26, 157–169. [Google Scholar] [CrossRef]
- Halder, S.; Thakur, A.; Keshry, S.S.; Jana, P.; Karothia, D.; Das Jana, I.; Acevedo, O.; Swain, R.K.; Mondal, A.; Chattopadhyay, S.; et al. SELEX based aptamers with diagnostic and entry inhibitor therapeutic potential for SARS-CoV-2. Sci. Rep. 2023, 13, 14560. [Google Scholar] [CrossRef]
- Farouk, A.-E.; Baig, M.H.; Khan, M.I.; Park, T.; Alotaibi, S.S.; Dong, J.-J. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: A viroinformatics study. Saudi J. Biol. Sci. 2021, 28, 3262–3269. [Google Scholar] [CrossRef]
- Williams, J.K.; Wang, B.; Sam, A.; Hoop, C.L.; Case, D.A.; Baum, J. Molecular dynamics analysis of a flexible loop at the binding interface of the SARS-CoV-2 spike protein receptor-binding domain. Proteins Struct. Funct. Bioinform. 2022, 90, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Khrenova, M.; Nikiforova, L.; Grabovenko, F.; Orlova, N.; Sinegubova, M.; Kolesov, D.; Zavyalova, E.; Spiridonova, V.; Zatsepin, T.; Zvereva, M. In vitro Selection of an Aptamer Targeting SARS-CoV-2 Spike Protein with Nanopore Sequence Identification Reveals Discrimination Between the Authentic Strain and Omicron. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.; Richardson, C.D.; Kelvin, D.J. Potential of Natural Alkaloids From Jadwar (Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach. Front. Mol. Biosci. 2022, 9, 898874. [Google Scholar] [CrossRef] [PubMed]
- Dutt, M.; Kumar, A.; Rout, M.; Dehury, B.; Martinez, G.; Ndishimye, P.; Kelvin, A.A.; Kelvin, D.J. Drug repurposing for Mpox: Discovery of small molecules as potential inhibitors against DNA-dependent RNA polymerase using molecular modeling approach. J. Cell. Biochem. 2023, 124, 701–715. [Google Scholar] [CrossRef]
- Kothandan, R.; Uthayasooriyan, P.; Vairamani, S. Search for RNA aptamers against non-structural protein of SARS-CoV-2: Design using molecular dynamics approach. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 64. [Google Scholar] [CrossRef]
- Piplani, S.; Singh, P.K.; Winkler, D.A.; Petrovsky, N. Author Correction: In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci. Rep. 2021, 11, 18610. [Google Scholar] [CrossRef]
- Willems, J.-P.; Valentine, A.M.; Gurbiel, R.; Lippard, S.J.; Hoffman, B.M. Small molecule binding to the mixed-valent Diiron center of methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) as revealed by ENDOR spectroscopy. J. Am. Chem. Soc. 1998, 120, 9410–9416. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Wei, X.; Wan, S.; Huang, M.; Song, T.; Lu, Y.; Weng, X.; Lin, Z.; Chen, H.; et al. Aptamer Blocking Strategy Inhibits SARS-CoV-2 Virus Infection. Angew. Chem. Int. Ed. Engl. 2021, 60, 10266–10272. [Google Scholar] [CrossRef]
- Valero, J.; Civit, L.; Dupont, D.M.; Selnihhin, D.; Reinert, L.S.; Idorn, M.; Israels, B.A.; Bednarz, A.M.; Bus, C.; Asbach, B.; et al. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc. Natl. Acad. Sci. USA 2021, 118, e2112942118. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef]
Variant | Aptamer | IpTM/pTMscore | Hydrogen Bonds | Other Interactions |
---|---|---|---|---|
BA.2 | Apt23 | 0.35/0.76 | Tyr117 (3.15 Å), Phe158 (2.19 Å), Ser162 (3.02 Å) | Salt bridges: Arg161 (2.84 Å), Arg166 (2.76 Å) |
Apt32 | 0.51/0.8 | Arg71(0.90 Å), Asn73 (2.66 Å), Tyr117 (3.52 Å), Arg166 (3.19 Å), Pro167 (3.06 Å), Tyr169 (2.69 Å), Gly172 (2.87 Å) | Hydrophobic: Arg161 (3.97 Å), Thr168 (3.84 Å) π-Stacking: His173 (3.81 Å) Salt bridges: Arg166 (3.46 Å) | |
Apt62 | 0.51/0.8 | Tyr89 (3.05 Å), Leu123 (3.54 Å), Phe154 (3.04 Å), Asn155 (2.12, 3.26 Å), Tyr157 (2.96, 3.26 Å), Arg161 (2.95 Å), Arg166 (2.63 Å), Tyr169 (2.25 Å) | Hydrophobic: Tyr169A (3.33 Å), His173 (3.64 Å) π-Stacking: Phe124 (4.59 Å) π-Cation Interactions: Arg166 (4.98 Å), His173A (4.05 Å) Salt bridges: Arg166 (5.37 Å) | |
EG.5 | Apt23 | 0.5/0.76 | Tyr117 (2.73 Å), Tyr121 (2.30, 3.06 Å), Gln161 (2.94 Å), Ser162 (1.62, 3.20 Å), Tyr169 (1.96 Å), Hi173 (2.54 Å) | π-Stacking: Tyr117 (3.91 Å), Tyr169 (4.04, 5.33 Å) π-Cation interactions: Tyr117 (3.71 Å) Salt bridges: Arg71 (4.46 Å) |
Apt32 | 0.44/0.74 | Arg71 (2.31, 2.47, 2.38, 1.97 Å), Tyr117 (2.74, 2.86 Å), Tyr121 (1.98 Å), Gln161 (2.53 Å), Ser162 (3.44 Å), Gly170 (2.45 Å) | Hydrophobic: Tyr169 (2.82 Å), His173 (3.53 Å) π-Cation interactions: His173 (4.19 Å) Salt bridges: Glu74 (4.08 Å) | |
Apt62 | 0.43/0.78 | Arg71 (1.88, 2.55 Å), Asn107 (3.31 Å), Lys108 (2.69 Å), Pro113 (1.04 Å), Tyr117 (3.02 Å), Arg166 (2.98 Å), Thr168 (3.11 Å), Val171 (2.42 Å), His173 (2.81 Å), Gln174 (2.38, 2.61 Å) | Hydrophobic: Phe39 (3.25 Å), Asn107 (3.96 Å), Lys108 (3.78 Å) π-Stacking: Tyr117 (3.85 Å) π-Cation interactions: Arg166 (4.30 Å) Salt bridges: Lys46 (5.05 Å), Lys108 (4.80 Å), Arg166 (4.77, 4.90 Å) | |
XBB.1.5 | Apt23 | 0.26/ 0.74 | Arg71 (3.25 Å), Arg166 (3.46 Å), Gly172 (1.61 Å) | π-Stacking: His173 (4.87 Å) Salt bridges: Arg166 (5.37 Å), His173 (5.14 Å) |
Apt32 | 0.4/0.75 | Arg71 (3.55 Å), Ser162 (3.39 Å), Arg166 (3.12 Å), Thr168 (2.38 Å), Tyr169 (2.35 Å), His173 (2.99 Å) | π-Stacking: His173 (3.52, 4.12 Å) Salt bridges: Arg166 (4.70 Å) | |
Apt62 | 0.38/0.77 | Arg71 (3.49 Å), Asn73 (3.16 Å), Asn85 (3.67 Å), Asn105 (2.59 Å), Lys108 (2.84 Å), Tyr121 (2.46 Å), Ser162 (2.58 Å), Arg166 (2.95, 3.18 Å), Thr168 (3.09 Å), Tyr169 (3.35, 3.64 Å), Val171 (3.12 Å), Gly172 (2.64 Å) | Hydrophobic: Asn107 (3.82 Å) π-Stacking: Phe42 (4.51 Å) Salt bridges: Lys46 (4.66 Å), Arg71 (5.42 Å), Arg166 (5.44 Å) |
Ligand | Van Der Waals Energy (kJ/mol) | Electrostatic Energy (kJ/mol) | Polar Solvation Energy (kJ/mol) | SASA Energy (kJ/mol) | Binding Energy (kJ/mol) |
---|---|---|---|---|---|
Aptamer 11 | −540.941 ± 32.469 | −5240.469 ± 204.737 | 1184.224 ± 144.540 | −55.906 ± 3.279 | −4653.091 ± 170.939 |
Aptamer 22 | −405.856 ± 31.896 | −5299.972 ± 194.629 | 845.522 ± 130.716 | −39.284 ± 3.265 | −4899.591 ± 207.097 |
Aptamer 23 | −472.468 ± 36.798 | −6132.275 ± 278.192 | 1459.135 ± 136.837 | −52.844 ± 2.892 | −5198.452 ± 263.879 |
Aptamer 32 | −524.211 ± 21.638 | −6123.863 ± 152.738 | 1256.218 ± 135.285 | −47.602 ± 2.356 | −5439.458 ± 176.559 |
Aptamer 40 | −462.640 ± 35.759 | −5638.644 ± 215.213 | 1352.672 ± 175.234 | −47.850 ± 3.213 | −4796.462 ± 134.095 |
Aptamer 62 | −407.368 ± 24.506 | −6022.193 ± 149.595 | 1270.769 ± 126.799 | −46.032 ± 2.465 | −5204.824 ± 156.228 |
Candidate Aptamer | Mean | SD | Mean | SD | Mean | SD |
---|---|---|---|---|---|---|
11 | 4.25 × 10−7 | 1.46 × 10−7 | 4.29 × 104 | 1.47 × 104 | 1.72 × 10−2 | 3.54 × 10−5 |
22 | 5.45 × 10−6 | 1.70 × 10−6 | 4.27 × 103 | 8.61 × 102 | 2.25 × 10−2 | 2.57 × 10−3 |
23 | 2.93 × 10−5 | 1.04 × 10−5 | 9.62 × 102 | 2.05 × 102 | 2.71 × 10−2 | 4.04 × 10−3 |
40 | 5.71 × 10−7 | 1.73 × 10−7 | 3.62 × 104 | 7.86 × 103 | 2.00 × 10−2 | 1.78 × 10−3 |
62 | 2.85 × 10−7 | 1.41 × 10−7 | 4.50 × 104 | 1.89 × 104 | 1.15 × 10−2 | 9.33 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shekar, P.V.; Kumar, A.; Mulgaonkar, N.; Kashyap, S.; Choudhir, G.; Fernando, S.; Rustgi, S. Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent. Biomolecules 2025, 15, 805. https://doi.org/10.3390/biom15060805
Shekar PV, Kumar A, Mulgaonkar N, Kashyap S, Choudhir G, Fernando S, Rustgi S. Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent. Biomolecules. 2025; 15(6):805. https://doi.org/10.3390/biom15060805
Chicago/Turabian StyleShekar, Prasanna V., Anuj Kumar, Nirmitee Mulgaonkar, Samneet Kashyap, Gourav Choudhir, Sandun Fernando, and Sachin Rustgi. 2025. "Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent" Biomolecules 15, no. 6: 805. https://doi.org/10.3390/biom15060805
APA StyleShekar, P. V., Kumar, A., Mulgaonkar, N., Kashyap, S., Choudhir, G., Fernando, S., & Rustgi, S. (2025). Aptamer Development for SARS-CoV-2 and Omicron Variants Using the Spike Protein Receptor Binding Domain as a Potential Diagnostic Tool and Therapeutic Agent. Biomolecules, 15(6), 805. https://doi.org/10.3390/biom15060805