The Association of COL1A2 rs17166249 and rs412777 Polymorphisms on the Bone Mineral Density in Polish Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. DNA Isolation and Genotyping
2.3. Statistical Methods
3. Results
3.1. Basic Characteristics of the Study Participants
3.2. Distribution of COL1A2 Genotypes and Alleles in the Studied Groups
3.3. Association Between Genotypes and Alleles with Bone Mineral Density Parameters
3.4. COL1A2 Two-Locus Association with Low Bone Mineral Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
OI | Osteogenesis imperfecta |
SNP | Single nucleotide polymorphism |
References
- Bijelic, R.; Milicevic, S.; Balaban, J. Risk Factors for Osteoporosis in Postmenopausal Women. Med. Med. Archives 2017, 71, 25. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Feng, L.; Pei, Y.; Gu, Z.; Chen, T.; Feng, Z. Low BMI, Blood Calcium and Vitamin D, Kyphosis Time, and Outdoor Activity Time Are Independent Risk Factors for Osteoporosis in Postmenopausal Women. Front. Endocrinol. 2023, 14, 1154927. [Google Scholar] [CrossRef]
- Long, G.; Liu, C.; Liang, T.; Zhang, Z.; Qin, Z.; Zhan, X. Predictors of Osteoporotic Fracture in Postmenopausal Women: A Meta-Analysis. J. Orthop. Surg. Res. 2023, 18, 574. [Google Scholar] [CrossRef]
- Urano, T.; Inoue, S. Genetics of Osteoporosis. BiochemBiophys Res. Commun. 2014, 452, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Bai, W.; Zheng, H. Twelve Years of GWAS Discoveries for Osteoporosis and Related Traits: Advances, Challenges and Applications. Bone Res. 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, V.; Sekaran, S.; Dhanasekaran, A.; Warrier, S. Type 1 Collagen: Synthesis, Structure and Key Functions in Bone Mineralization. Differentiation 2024, 136, 100757. [Google Scholar] [CrossRef]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; Jan de Beur, S.M.; Khosla, S.; Lane, N.E.; et al. The Clinical Diagnosis of Osteoporosis: A Position Statement from the National Bone Health Alliance Working Group. Osteoporos. Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef]
- Batkovskyte, D.; Swolin-Eide, D.; Hammarsjö, A.; Sæther, K.B.; Thunström, S.; Lundin, J.; Eisfeldt, J.; Lindstrand, A.; Nordgren, A.; Åström, E.; et al. Structural Variants in COL1A1 and COL1A2 in Osteogenesis Imperfecta. Am. J. Med. Genet. A 2025, 197, e63935. [Google Scholar] [CrossRef] [PubMed]
- Venable, E.; Knight, D.R.T.; Thoreson, E.K.; Baudhuin, L.M. COL1A1 and COL1A2 Variants in Ehlers-Danlos Syndrome Phenotypes and COL1—related Overlap Disorder. Am. J. Med. Genet. C Semin. Med. Genet. 2023, 193, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Sałacińska, K.; Pinkier, I.; Rutkowska, L.; Chlebna-Sokół, D.; Jakubowska-Pietkiewicz, E.; Michałus, I.; Kępczyński, Ł.; Salachna, D.; Jamsheer, A.; Bukowska-Olech, E.; et al. Novel Mutations Within Collagen Alpha1(I) and Alpha2(I) Ligand-Binding Sites, Broadening the Spectrum of Osteogenesis Imperfecta—Current Insights Into Collagen Type I Lethal Regions. Front Genet. 2021, 12, 692978. [Google Scholar] [CrossRef]
- Vasan, N.S.; Kuivaniemi, H.; Vogel, B.E.; Minor, R.R.; Wootton, J.A.; Tromp, G.; Weksberg, R.; Prockop, D.J. A Mutation in the pro Alpha 2(I) Gene (COL1A2) for Type I Procollagen in Ehlers-Danlos Syndrome Type VII: Evidence Suggesting That Skipping of Exon 6 in RNA Splicing May Be a Common Cause of the Phenotype. Am. J. Hum. Genet. 1991, 48, 305–317. [Google Scholar]
- Forlino, A.; Keene, D.R.; Schmidt, K.; Marini, J.C. An A2(I) Glycine to Aspartate Substitution Is Responsible for the Presence of a Kink in Type I Collagen in a Lethal Case of Osteogenesis Imperfecta. Matrix Biol. 1998, 17, 575–584. [Google Scholar] [CrossRef]
- Vomund, A.N.; Braddock, S.R.; Krause, G.F.; Phillips, C.L. Potential Modifier Role of the R618Q Variant of Proα2(I)Collagen in Type I Collagen Fibrillogenesis: In Vitro Assembly Analysis. Mol. Genet. Metab. 2004, 82, 144–153. [Google Scholar] [CrossRef]
- Nuytinck, L.; Dalgleish, R.; Spotila, L.; Renard, J.-P.; Van Regemorter, N.; De Paepe, A. Substitution of Glycine-661 by Serine in the A1(I) and A2(1) Chains of Type I Collagen Results in Different Clinical and Biochemical Phenotypes. Hum. Genet. 1996, 97, 324–329. [Google Scholar] [CrossRef]
- Garnero, P.; Borel, O.; Grant, S.F.A.; Ralston, S.H.; Delmas, P.D. Collagen Iα1 Sp1 Polymorphism, Bone Mass, and Bone Turnover in Healthy French Premenopausal Women: The OFELY Study. J. Bone Miner. Res. 1998, 13, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, K.; Rubin, C.-J.; Brändström, H.; Karlsson, M.K.; Holmberg, A.; Ohlsson, C.; Mellström, D.; Orwoll, E.; Mallmin, H.; Kindmark, A.; et al. Heterozygosity for a Coding SNP in COL1A2 Confers a Lower BMD and an Increased Stroke Risk. Biochem. Res. Commun. 2009, 384, 501–505. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.; Kong, J.; Li, Y.; Wang, H.; Zhao, H.; Wu, Z. Insertion/Deletion Polymorphism in the 3′ Untranslated Region of COL1A2 Disrupts Its Interaction with MicroRNA-382 and Leads to Decreased Susceptibility to Osteoporotic Fracture. J. Cell Biochem. 2019, 120, 12402–12411. [Google Scholar] [CrossRef]
- Styrkarsdottir, U.; Thorleifsson, G.; Eiriksdottir, B.; Gudjonsson, S.A.; Ingvarsson, T.; Center, J.R.; Nguyen, T.V.; Eisman, J.A.; Christiansen, C.; Thorsteinsdottir, U.; et al. Two Rare Mutations in the COL1A2 Gene Associate With Low Bone Mineral Density and Fractures in Iceland. J. Bone Miner. Res. 2016, 31, 173–179. [Google Scholar] [CrossRef]
- Moreno, V.; Gonzalez, J.R.; Pelegri, D. SNPassoc: SNPs-Based Whole Genome Association Studies. CRAN: Contrib. Packages 2006, 29. [Google Scholar] [CrossRef]
- Motlani, V.; Motlani, G.; Pamnani, S.; Sahu, A.; Acharya, N. Changed Endocrinology in Postmenopausal Women: A Comprehensive View. Cureus 2023, 15, e51287. [Google Scholar] [CrossRef] [PubMed]
- Burger, H.G. Physiology and Endocrinology of the Menopause. Medicine 2006, 34, 27–30. [Google Scholar] [CrossRef]
- Jha, S.S.; Srivastava, A.; Kambhampati, S.B.S.; Elhence, A. Introduction to Osteoporosis, Osteomalacia, and Fragility Fractures. Indian J. Orthop. 2023, 57, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal Osteoporosis. Nat. Rev. Dis. Primers 2016, 2, 16069. [Google Scholar] [CrossRef] [PubMed]
- Al Anouti, F.; Taha, Z.; Shamim, S.; Khalaf, K.; Al Kaabi, L.; Alsafar, H. An Insight into the Paradigms of Osteoporosis: From Genetics to Biomechanics. Bone Rep. 2019, 11, 100216. [Google Scholar] [CrossRef]
- Huang, Q.-Y.; Kung, A.W.C. Genetics of Osteoporosis. Mol. Genet. Metab. 2006, 88, 295–306. [Google Scholar] [CrossRef]
- Kamiński, A.; Bogacz, A.; Niezgoda-Nowak, J.T.; Podralska, M.; Górska, A.; Soczawa, M.; Czerny, B. The VDR Rs1544410 and Rs11568820 Variants and the Risk of Osteoporosis in the Polish Population. Int. J. Mol. Sci. 2025, 26, 481. [Google Scholar] [CrossRef]
- Morris, J.A.; Kemp, J.P.; Youlten, S.E.; Laurent, L.; Logan, J.G.; Chai, R.C.; Vulpescu, N.A.; Forgetta, V.; Kleinman, A.; Mohanty, S.T.; et al. An Atlas of Genetic Influences on Osteoporosis in Humans and Mice. Nat. Genet. 2019, 51, 258–266. [Google Scholar] [CrossRef]
- Chen, X.-D.; Xiao, P.; Lei, S.-F.; Liu, Y.-Z.; Guo, Y.-F.; Deng, F.-Y.; Tan, L.-J.; Zhu, X.-Z.; Chen, F.-R.; Recker, R.R.; et al. Gene Expression Profiling in Monocytes and SNP Association Suggest the Importance of the STAT1 Gene for Osteoporosis in Both Chinese and Caucasians. J. Bone Miner. Res. 2010, 25, 339–355. [Google Scholar] [CrossRef]
- Rivadeneira, F.; Uitterlinden, A.G. Osteoporosis Genes Identified by Genome-Wide Association Studies. In Genetics of Bone Biology and Skeletal Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 377–395. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, B.; Persikov, A.V. A Two-Step Dance Commits Collagen to Folding. Proc. Natl. Acad. Sci. USA 2024, 121, e2422338121. [Google Scholar] [CrossRef] [PubMed]
- Malfait, F. Total Absence of the 2(I) Chain of Collagen Type I Causes a Rare Form of Ehlers-Danlos Syndrome with Hypermobility and Propensity to Cardiac Valvular Problems. J. Med. Genet. 2005, 43, e36. [Google Scholar] [CrossRef]
- Nicholls, A.; Pope, F.M.; Schloon, H. Biochemical heterogeneity of Osteogenesis Imperfecta: New variant. Lancet 1979, 313, 1193. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Zhang, X.; Zeng, F.; Yuan, M.; Liu, M.; Wang, Q.K.; Liu, J.Y. Identification and Molecular Characterization of Two Novel Mutations in COL1A2 in Two Chinese Families with Osteogenesis Imperfecta. J. Genet. Genom. 2011, 38, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Sałacińska, K.; Pinkier, I.; Rutkowska, L.; Chlebna-Sokół, D.; Jakubowska-Pietkiewicz, E.; Michałus, I.; Kępczyński, Ł.; Salachna, D.; Wieczorek-Cichecka, N.; Piotrowicz, M.; et al. NGS Analysis of Collagen Type I Genes in Polish Patients with Osteogenesis Imperfecta: A Nationwide Multicenter Study. Front. Endocrinol. 2023, 14, 1149982. [Google Scholar] [CrossRef]
- Li, L.; Bin, M.; Li, S.; Xiao, J.; Wang, H.; Zhang, J.; Ren, X.; Wang, Y.; Wu, Y.; Cao, Y.; et al. Genotypic and Phenotypic Characterization of Chinese Patients with Osteogenesis Imperfecta. Hum. Mutat. 2019, 40, 588–600. [Google Scholar] [CrossRef]
- Available online: https://databases.lovd.nl (accessed on 25 February 2025).
- Marini, J.C.; Forlino, A.; Cabral, W.A.; Barnes, A.M.; San Antonio, J.D.; Milgrom, S.; Hyland, J.C.; Körkkö, J.; Prockop, D.J.; De Paepe, A.; et al. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align with Collagen Binding Sites for Integrins and Proteoglycans. Hum. Mutat. 2007, 28, 209–221. [Google Scholar] [CrossRef]
- Rose, N.J.; Mackay, K.; Byers, P.H.; Dalgleish, R. A Gly859Ser Substitution in the Triple Helical Domain of the A2 Chain of Type I Collagen Resulting in Osteogenesis Imperfecta Type III in Two Unrelated Individuals. Hum. Mutat. 1994, 3, 391–394. [Google Scholar] [CrossRef]
- Nuytinck, L.; Wettinck, K.; Freund, M.; Van Maldergem, L.; Fabry, G.; De Paepe, A. Osteogenesis Imperfecta Phenotypes Resulting from Serine for Glycine Substitutions in the Alpha2(I) Collagen Chain. Eur. J. Hum. Genet. 1997, 5, 161–167. [Google Scholar] [PubMed]
- Bodian, D.L.; Chan, T.-F.; Poon, A.; Schwarze, U.; Yang, K.; Byers, P.H.; Kwok, P.-Y.; Klein, T.E. Mutation and Polymorphism Spectrum in Osteogenesis Imperfecta Type II: Implications for Genotype–Phenotype Relationships. Hum. Mol. Genet. 2009, 18, 463–471. [Google Scholar] [CrossRef]
- Hu, W.; He, J.; Zhang, H.; Wang, C.; Gu, J.; Yue, H.; Ke, Y.; Hu, Y.; Fu, W.; Li, M.; et al. No Association between Polymorphisms and Haplotypes of COL1A1 and COL1A2 Genes and Osteoporotic Fracture in Postmenopausal Chinese Women. Acta. Pharmacol. Sin. 2011, 32, 947–955. [Google Scholar] [CrossRef]
- Saha, D.; Goswami, R.; Majumdar, K.K.; Sikdar, N.; Pramanik, S. Evaluating the Association Between Dental Fluorosis and Polymorphisms in Bone Development and Mineralization Genes Among Population from a Fluoride Endemic Region of Eastern India. Biol. Trace Elem. Res. 2021, 199, 1–8. [Google Scholar] [CrossRef]
- Kallala, R.; Slimani, A.; Gassara, Y.; Garrach, B.; Chouchen, S.; Foddha, H.; Rouis, A.; Kenani, A. The Association between Dental Fluorosis and COL1A2 Gene Polymorphism among a Tunisian Population. BMC Oral. Health 2024, 24, 376. [Google Scholar] [CrossRef]
- Escobar-García, D.; Mejía-Saavedra, J.; Jarquín-Yáñez, L.; Molina-Frechero, N.; Pozos-Guillén, A. Collagenase 1A2 (COL1A2) Gene A/C Polymorphism in Relation to Severity of Dental Fluorosis. Community Dent. Oral. Epidemiol. 2016, 44, 162–168. [Google Scholar] [CrossRef]
- Ryan-Moore, E.; Mavrommatis, Y.; Waldron, M. Systematic Review and Meta-Analysis of Candidate Gene Association Studies With Fracture Risk in Physically Active Participants. Front. Genet. 2020, 11, 551. [Google Scholar] [CrossRef]
- Lopes, L.R.; Guimarães, J.A.M.; Amaral, M.V.G.; Pereira, C.G.; Wainchtock, V.S.; Goes, R.A.; de Miranda, V.A.R.; Perini, J.A. Polimorfismos Genéticos No Gene COL1A2 e o Risco de Tendinopatia: Estudo de Caso-Controle. Rev. Bras. Ortop. 2023, 58, 478–486. [Google Scholar] [CrossRef]
- Blades, H.Z.; Arundel, P.; Carlino, W.A.; Dalton, A.; Crook, J.S.; Freeman, J.V.; Bishop, N.J. Collagen Gene Polymorphisms Influence Fracture Risk and Bone Mass Acquisition during Childhood and Adolescent Growth. Bone 2010, 47, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Majchrzycki, M.; Bartkowiak-Wieczorek, J.; Bogacz, A.; Szyfter-Harris, J.; Wolski, H.; Klejewski, A.; Goch, M.; Drews, K.; Barlik, M.; Ożarowski, M.; et al. The Importance of Polymorphic Variants of Collagen 1A2 Gene (COL1A2) in the Development of Osteopenia and Osteoporosis in Postmenopausal Women. Ginekol. Pol. 2017, 88, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.M.C.; Choy, D.T.K.; Li, M.; Woo, J.; Chung, T.; Sham, A. The Relationship Between COLI A1 Polymorphisms (Sp 1) and COLI A2 Polymorphisms (Eco R1 and Puv II) with Bone Mineral Density in Chinese Men and Women. Calcif. Tissue Int. 2004, 75, 133–137. [Google Scholar] [CrossRef] [PubMed]
Variable | Controls (N = 355) | Osteopenia (N = 96) | Osteoporosis (N = 119) | p |
---|---|---|---|---|
Age (years) | 53.91 ± 8.69 | 53.51 ± 8.37 | 56.45 ± 8.91 | 0.014 |
Age, n (%) <50 50–59 ≥60 | 81 (22.82) 192 (54.08) 82 (23.10) | 24 (25.00) 57 (59.38) 15 (15.62) | 20 (16.81) 56 (47.06) 43 (36.13) | 0.009 |
Birthweight (g) | 3623.40 ± 432.60 | 3152.50 ± 387.34 | 3041.84 ± 493.72 | <0.001 |
Age at menarche (years) | 14.00 [12.00;15.00] | 13.00 [11.00;16.00] | 12.00 [11.00;14.00] | <0.001 |
Age at menopause (years) | 50.00 [47.50;53.00] | 50.00 [47.00;55.00] | 49.00 [45.00;50.00] | <0.001 |
Years since menopause | 6.00 [3.00;9.00] | 5.00 [2.00;9.00] | 10.00 [5.00;14.00] | <0.001 |
Childbearing years | 37.00 [34.00;40.00] | 38.00 [34.00;40.00] | 36.00 [33.00;39.00] | 0.026 |
Number of pregnancies | 2.00 [1.00;3.00] | 2.00 [1.00;2.00] | 2.00 [1.00;2.00] | 0.966 |
BMI, n (%) <25 ≥25 | 201 (56.62%) 154 (43.38%) | 46 (47.92%) 50 (52.08%) | 66 (55.46%) 53 (44.54%) | 0.312 |
BMD L2–L4 (g/cm2) | 1.21 [1.12;1.27] | 0.97 [0.94;1.02] | 0.82 [0.79;0.87] | <0.001 |
L2-L4 YA (%) | 101.00 [94.00;106.00] | 81.00 [78.00;85.50] | 68.00 [66.00;73.00] | <0.001 |
L2-L4 AM (%) | 107.00 [102.00;119.00] | 89.00 [84.00;94.00] | 77.00 [74.00;82.00] | <0.001 |
T-score | −0.04 [−0.67;0.57] | −1.90 [−2.17;−1.44] | −3.14 [−3.38;−2.71] | <0.001 |
Z-score | 0.58 [−0.11;1.63] | −0.87 [−1.38;−0.41] | −1.84 [−2.40;−1.17] | <0.001 |
SNP | Model | Genotype/Allele | Controls N (%) | Osteopenia N (%) | OR (95%CI) | p Crude | p adj. | Osteoporosis N (%) | OR (95%CI) | p Crude | p adj. |
---|---|---|---|---|---|---|---|---|---|---|---|
rs17166249 | Codominant | CC | 152 (42.8) | 35 (36.5) | 1.00 | 0.528 | 0.564 | 38 (31.9) | 1.00 | 0.106 | 0.584 |
CT | 164 (46.2) | 49 (51.0) | 1.30 (0.80–2.11) | 65 (54.6) | 1.59 (1.00–2.50) | ||||||
TT | 39 (11.0) | 12 (12.5) | 1.34 (0.63–2.81) | 16 (13.5) | 1.64 (0.83–3.25) | ||||||
Log-additive | 0,1,2 | 355 (74.9) | 96 (21.3) | 1.20 (0.85–1.67) | 0.302 | 0.439 | 119 (25.1) | 1.35 (0.99–1.85) | 0.057 | 0.315 | |
Allele | C | 468 (65.9) | 119 (62.0) | 1.00 | 0.310 | 0.446 | 141 (59.2) | 1.00 | 0.064 | 0.332 | |
T | 242 (34.1) | 73 (38.0) | 1.19 (0.85,1.65) | 97 (40.8) | 1.33 (0.98–1.80) | ||||||
rs412777 | Codominant | AA | 148 (41.7) | 43 (44.8) | 1.00 | 0.563 | 0.610 | 50 (42.0) | 1.00 | 0.637 | 0.509 |
AC | 160 (45.1) | 44 (45.8) | 0.95 (0.59–1.52) | 57 (47.9) | 1.05 (0.68–1.64) | ||||||
CC | 47 (13.2) | 9 (9.4) | 0.66 (0.30–1.45) | 12 (10.1) | 0.76 (0.37–1.54) | ||||||
Log-additive | 0,1,2 | 355 (74.9) | 96 (21.3) | 0.86 (0.61–1.20) | 0.369 | 0.322 | 119 (25.1) | 0.93 (0.68–1.26) | 0.626 | 0.825 | |
Allele | A | 456 (64.2) | 130 (67.7) | 1.00 | 0.370 | 0.324 | 157 (66.0) | 1.00 | 0.627 | 0.826 | |
C | 254 (35.8) | 62 (32.3) | 0.86 (0.61,1.2) | 81 (34.0) | 0.93 (0.68,1.26) |
rs17166249 | CC (N = 225) | CT (N = 278) | TT (N = 67) | p |
---|---|---|---|---|
BMD L2–L4 (g/cm2) | 1.12 [0.97;1.25] | 1.11 [0.92;1.22] | 1.09 [0.90;1.20] | 0.075 |
L2–L4 YA (%) | 94.00 [81.00;104.00] | 93.00 [77.00;101.00] | 91.00 [75.00;100.00] | 0.074 |
L2–L4AM (%) | 102.00 [91.00;113.50] | 100.00 [84.00;108.00] | 100.00 [84.00;108.00] | 0.090 |
T-score | −0.62 [−1.71;0.38] | −0.78 [−2.30;0.14] | −0.89 [−2.09;−0.17] | 0.032 |
Z-score | −0.15 [−1.12;0.95] | −0.47 [−1.50;0.76] | −0.71 [−1.55;0.74] | 0.246 |
rs412777 | AA (N = 241) | AC (N = 261) | CC (N = 68) | |
BMD L2–L4 (g/cm2) | 1.12 [0.92;1.22] | 1.11 [0.91;1.22] | 1.15 [1.03;1.25] | 0.258 |
L2–L4 YA (%) | 93.00 [77.00;101.00] | 93.00 [76.00;101.00] | 96.00 [85.50;104.00] | 0.219 |
L2–L4AM (%) | 100.00 [85.00;109.00] | 101.00 [86.00;109.00] | 102.00 [92.00;114.00] | 0.318 |
T-score | −0.71 [−2.17;0.11] | −0.79 [−2.13;0.14] | −0.58 [−1.43;0.39] | 0.282 |
Z-score | −0.61 [−1.49;0.56] | −0.15 [−1.46;0.95] | −0.09 [−1.03;1.33] | 0.153 |
COL1A2 | Frequency | Controls/Osteopenia | Controls/Osteoporosis | |||||
---|---|---|---|---|---|---|---|---|
rs17166249 | rs412777 | Controls | Osteopenia | Osteoporosis | χ2 | p | χ2 | p |
C | A | 0.408 | 0.398 | 0.364 | 0.07 | 0.797 | 1.37 | 0.241 |
C | C | 0.251 | 0.222 | 0.228 | 0.69 | 0.406 | 0.54 | 0.461 |
T | A | 0.234 | 0.280 | 0.296 | 1.67 | 0.197 | 3.46 | 0.063 |
T | C | 0.106 | 0.101 | 0.107 | 0.05 | 0.817 | 0.08 | 0.783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, A.; Gutowski, M.; Bogacz, A.; Podralska, M.; Uzar, I.; Soczawa, M.; Brązert, M.; Czerny, B. The Association of COL1A2 rs17166249 and rs412777 Polymorphisms on the Bone Mineral Density in Polish Postmenopausal Women. Biomolecules 2025, 15, 775. https://doi.org/10.3390/biom15060775
Kamiński A, Gutowski M, Bogacz A, Podralska M, Uzar I, Soczawa M, Brązert M, Czerny B. The Association of COL1A2 rs17166249 and rs412777 Polymorphisms on the Bone Mineral Density in Polish Postmenopausal Women. Biomolecules. 2025; 15(6):775. https://doi.org/10.3390/biom15060775
Chicago/Turabian StyleKamiński, Adam, Mateusz Gutowski, Anna Bogacz, Marta Podralska, Izabela Uzar, Michał Soczawa, Maciej Brązert, and Bogusław Czerny. 2025. "The Association of COL1A2 rs17166249 and rs412777 Polymorphisms on the Bone Mineral Density in Polish Postmenopausal Women" Biomolecules 15, no. 6: 775. https://doi.org/10.3390/biom15060775
APA StyleKamiński, A., Gutowski, M., Bogacz, A., Podralska, M., Uzar, I., Soczawa, M., Brązert, M., & Czerny, B. (2025). The Association of COL1A2 rs17166249 and rs412777 Polymorphisms on the Bone Mineral Density in Polish Postmenopausal Women. Biomolecules, 15(6), 775. https://doi.org/10.3390/biom15060775