Ossification in Normal and Pathological Contexts: The Key Role of Static Osteogenesis vs. Dynamic Osteogenesis in the Etiopathology of Some Skeletal Alterations
Abstract
:1. Introduction
2. Structural and Functional Differences Between SO and DO
3. Abnormal Processes of Ossification/Calcification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SO | Static Osteogenesis |
DO | Dynamic Osteogenesis |
HO | Heterotopic Ossification |
FJOA | Facet Joint Osteoarthritis |
OI | Osteogenesis Imperfecta |
MOBLs | Mesenchymal Osteoblasts |
SOBLs | Surface Osteoblasts |
References
- Ferretti, M.; Palumbo, C.; Marotti, G. Static and dynamic bone osteogenesis: Two different types of bone formation. Anat. Embryol. 2002, 206, 21–29. [Google Scholar] [CrossRef]
- Palumbo, C.; Ferretti, M.; Bonucci, P.; Sena, P.; Bertoni, L.; Cavani, F.; Celli, A.; Rovesta, C. Two peculiar conditions following a coma: A clinical case of heterotopic ossification concomitant with keloid formation. Clin. Anat. 2008, 21, 348–354. [Google Scholar] [CrossRef]
- Ranganathan, K.; Loder, S.; Agarwal, S.; Wong, V.C.; Forsberg, J.; Davis, T.A.; Wang, S.; James, A.W.; Levi, B. Heterotopic Ossification: Basic-Science Principles and Clinical Correlates. J. Bone Joint Surg. Am. 2015, 97, 1101–1111. [Google Scholar] [CrossRef]
- Marotti, F.; Bertolani, M.F.; Palumbo, C. Bone growth, modeling and remodeling in a supernumerary metatarsal bone associated with segmental gigantism in cutis marmorata telangiectatica congenital. Histol. Histopathol. 2004, 19, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, A.; Reutershahn, E.; Seiffert, P.; Das, M. First description of frequent occurrence of supernumerary lumbar ribs and transitional vertebrae in children with Willia Beuren syndrome. Pediatr. Radiol. 2023, 53, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, N.; Rogers, J.M. Supernumerary ribs in developmental toxicity bioassays and in human populations: Incidence and biological significance. J. Toxicol. Environ. Health B Crit. Rev. 2004, 7, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Serey-Gaut, M.; Scala, M.; Reversade, B.; Ruaud, L.; Cabro, C.; Musacchia, F.; Torella, A.; Accogli, A.; Escande-Beillard, N.; Langlais, J.; et al. Congenital posterior cervical spine malformation due to biallelic c.240-4T>G RIPPLY2 variant: A discrete entity. Am. J. Med. Genet. A 2020, 182, 1466–1472. [Google Scholar] [CrossRef]
- Netzer, C.; Distel, P.; Wolfram, U.; Deyhle, H.; Jost, G.F.; Schären, S.; Geurts, J. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis. Int. J. Mol. Sci. 2018, 19, 845. [Google Scholar] [CrossRef]
- Shapiro, F.; Maguire, K.; Swami, S.; Zhu, H.; Flynn, E.; Wang, J.; Wu, J.Y. Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Bone Rep. 2020, 14, 100734. [Google Scholar] [CrossRef]
- Shapiro, F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cells Mater. 2008, 15, 53–76. [Google Scholar] [CrossRef]
- Ferretti, M.; Palumbo, C. Static osteogenesis versus dynamic osteogenesis: A comparison between two different types of bone formation. Appl. Sci. 2021, 11, 2025. [Google Scholar] [CrossRef]
- Ferretti, M.; Palumbo, C.; Bertoni, L.; Cavani, F.; Marotti, G. Does static precede dynamic osteogenesis in endochondral ossification as occurs in intramembranous ossification? Anat. Rec. 2006, 288, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Cubo, J.; Hui, M.; Clarac, F.; Quilha, A. Static osteogenesis does not precede dynamic osteogenesis in periosteal ossification of Pleurodeles (Caudata, Amphibia) and Pogona (Squamata, Lepidosauria). J. Morphol. 2017, 278, 621–628. [Google Scholar] [CrossRef]
- Wang, L.; Aghvami, M.; Brunski, J.; Helms, J. Biophysical regulation of osteotomy healing: An animal study. Clin. Implant Dent. Relat. Res. 2017, 19, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Bei, M.; Cao, Q.; Zhao, C.; Xiao, Y.; Chen, Y.; Xiao, H.; Sun, X.; Tian, F.; Yang, M.; Wu, X. Heterotopic ossification: Current developments and emerging potential therapies. Chin. Med. J. 2025, 138, 389–404. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Y.; Chen, Z.; Breland, A.; Lineaweaver, W.C.; Zhang, F. Heterotopic Ossification in Burn Patients. Ann. Plast. Surg. 2022, 88, S134–S137. [Google Scholar] [CrossRef]
- Chandel, A.; Vidhate, T.; Chauhan, V. Cutis marmorata telangiectatica congenita in a newborn: A differential diagnosis. Pediatr. Neonatol. 2023, 64, 607–608. [Google Scholar] [CrossRef]
- Tamburro, J.; Traboulsi, E.; Patel, M.S. Isolated and Classic Cutis Marmorata Telangiectatica Congenita—Synonym: Van Lohuizen Syndrome. In GeneReviews®; [Internet]; University of Washington: Seattle, WA, USA, 2022. [Google Scholar]
- Pasteels, J.L.; Liu, F.D.; Hinsenkamp, M.; Rooze, M.; Mathieu, F.; Perlmutter, N. Histology of Kashin-Beck lesions. Int. Orthop. 2001, 25, 151–153. [Google Scholar] [CrossRef]
- Dias, M.S. Normal and abnormal development of the spine. Neurosurg. Clin. N. Am. 2007, 18, 415–429. [Google Scholar] [CrossRef]
- Tanaka, T.; Uhthoff, H.K. Significance of resegmentation in the pathogenesis of vertebral body malformation. Acta Orthop. Scand. 1981, 52, 331–338. [Google Scholar] [CrossRef]
- Tsou, P.M.; Yau, A.; Hodgson, A.R. Embryogenesis and prenatal development of congenital vertebral anomalies and their classification. Clin. Orthop. Relat. Res. 1980, 152, 211–231. [Google Scholar] [CrossRef]
- Tanaka, T.; Uhthoff, H.K. The Pathogenesis of Congenital Vertebral Malformations: A study based on observations made in 11 human embryos and fetuses. Acta Orthop. Scand. 1981, 52, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Aratti, A.; Zampini, L. Caregiver Burden, Parenting Stress and Coping Strategies: The Experience of Parents of Children and Adolescents with Osteogenesis Imperfecta. Healthcare 2024, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- D’Ottavio, G.; Fischer Tamaro, L.; Mandruzzato, G. Early prenatal ultrasonographic diagnosis of osteogenesis imperfecta: A case report. Am. J. Obstet. Gynecol. 1993, 169, 384–385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, C.; Paganelli, F.; Ferretti, M. Ossification in Normal and Pathological Contexts: The Key Role of Static Osteogenesis vs. Dynamic Osteogenesis in the Etiopathology of Some Skeletal Alterations. Biomolecules 2025, 15, 733. https://doi.org/10.3390/biom15050733
Palumbo C, Paganelli F, Ferretti M. Ossification in Normal and Pathological Contexts: The Key Role of Static Osteogenesis vs. Dynamic Osteogenesis in the Etiopathology of Some Skeletal Alterations. Biomolecules. 2025; 15(5):733. https://doi.org/10.3390/biom15050733
Chicago/Turabian StylePalumbo, Carla, Francesca Paganelli, and Marzia Ferretti. 2025. "Ossification in Normal and Pathological Contexts: The Key Role of Static Osteogenesis vs. Dynamic Osteogenesis in the Etiopathology of Some Skeletal Alterations" Biomolecules 15, no. 5: 733. https://doi.org/10.3390/biom15050733
APA StylePalumbo, C., Paganelli, F., & Ferretti, M. (2025). Ossification in Normal and Pathological Contexts: The Key Role of Static Osteogenesis vs. Dynamic Osteogenesis in the Etiopathology of Some Skeletal Alterations. Biomolecules, 15(5), 733. https://doi.org/10.3390/biom15050733