Probiotics as Anti-Tumor Agents: Insights from Female Tumor Cell Culture Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lysate Preparation
2.2. Cell Culture
2.3. BrdU Assay
2.4. Western Blotting
2.5. Scratch Test
2.6. Cell Viability Assay
2.7. Data Analysis
3. Results
3.1. Anti-Proliferation Activity
3.2. Evaluation of the Effect of Probiotic Lysate Treatment on Cell Migration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lumish, M.A.; Kohn, E.C.; Tew, W.P. Top Advances of the Year: Ovarian Cancer. Cancer 2023, 130, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Friedl, P.; Wolf, K. Tumour-Cell Invasion and Migration: Diversity and Escape Mechanisms. Nat. Rev. Cancer 2003, 3, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Novikov, N.M.; Zolotaryova, S.Y.; Gautreau, A.M.; Denisov, E.V. Mutational Drivers of Cancer Cell Migration and Invasion. Br. J. Cancer 2021, 124, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.L.; Torino, F.; Marletta, F.; Santagati, M.; Salemi, R.; Cannarozzo, E.; Falzone, L.; Ferraù, F.; Libra, M. Lactobacillus Rhamnosus GG: An Overview to Explore the Rationale of Its Use in Cancer. Front. Pharmacol. 2017, 8, 603. [Google Scholar] [CrossRef]
- Mendoza, L. Potential Effect of Probiotics in the Treatment of Breast Cancer. Oncol. Rev. 2019, 13, 422. [Google Scholar] [CrossRef]
- Mokbel, K.; Mokbel, K. Harnessing Micronutrient Power: Vitamins, Antioxidants and Probiotics in Breast Cancer Prevention. Anticancer. Res. 2024, 44, 2287–2295. [Google Scholar] [CrossRef]
- Yang, X.; Da, M.; Zhang, W.; Qi, Q.; Zhang, C.; Han, S. Role of Lactobacillus in Cervical Cancer. Cancer Manag. Res. 2018, 10, 1219–1229. [Google Scholar] [CrossRef]
- Sungur, T.; Aslim, B.; Karaaslan, C.; Aktas, B. Impact of Exopolysaccharides (EPSs) of Lactobacillus Gasseri Strains Isolated from Human Vagina on Cervical Tumor Cells (HeLa). Anaerobe 2017, 47, 137–144. [Google Scholar] [CrossRef]
- Therapeutic and Immunomodulatory Role of Probiotics in Breast Cancer: A Mechanistic Review. Available online: https://www.researchgate.net/publication/372559860_Therapeutic_and_immunomodulatory_role_of_probiotics_in_breast_cancer_A_mechanistic_review (accessed on 12 February 2025).
- Mahooti, M.; Abdolalipour, E.; Sanami, S.; Zare, D. Inflammatory Modulation Effects of Probiotics: A Safe and Promising Modulator for Cancer Prevention. Curr. Microbiol. 2024, 81, 372. [Google Scholar] [CrossRef]
- Martinović, A.; Cocuzzi, R.; Arioli, S.; Mora, D. Streptococcus Thermophilus: To Survive, or Not to Survive the Gastrointestinal Tract, That Is the Question! Nutrients 2020, 12, 2175. [Google Scholar] [CrossRef]
- Aprea, G.; Del Matto, I.; Tucci, P.; Marino, L.; Scattolini, S.; Rossi, F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023, 11, 1787. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Laitila, A.; Ouwehand, A.C. Bifidobacterium Animalis Subsp. Lactis HN019 Effects on Gut Health: A Review. Front. Nutr. 2021, 8, 790561. [Google Scholar] [CrossRef]
- Wollowski, I.; Rechkemmer, G.; Pool-Zobel, B.L. Protective Role of Probiotics and Prebiotics in Colon Cancer. Am. J. Clin. Nutr. 2001, 73, 451s–455s. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Shah, N.P. Selective and Differential Enumerations of Lactobacillus Delbrueckii Subsp. Bulgaricus, Streptococcus Thermophilus, Lactobacillus Acidophilus, Lactobacillus Casei and Bifidobacterium Spp. in Yoghurt—A Review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef]
- Brandolini, L.; Castelli, V.; Aramini, A.; Giorgio, C.; Bianchini, G.; Russo, R.; De Caro, C.; d’Angelo, M.; Catanesi, M.; Benedetti, E.; et al. DF2726A, a New IL-8 Signalling Inhibitor, Is Able to Counteract Chemotherapy-Induced Neuropathic Pain. Sci. Rep. 2019, 9, 11729. [Google Scholar] [CrossRef] [PubMed]
- Thu, M.S.; Ondee, T.; Nopsopon, T.; Farzana, I.A.K.; Fothergill, J.L.; Hirankarn, N.; Campbell, B.J.; Pongpirul, K. Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. Biology 2023, 12, 280. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Tang, D.-D.; Ye, Z.-J.; Liu, W.-W.; Wu, J.; Tan, J.-Y.; Zhang, Y.; Xu, Q.; Xiang, Y.-B. Survival Feature and Trend of Female Breast Cancer: A Comprehensive Review of Survival Analysis from Cancer Registration Data. Breast 2024, 79, 103862. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- Elias, K.M.; Guo, J.; Bast, R.C. Early Detection of Ovarian Cancer. Hematol. Oncol. Clin. North. Am. 2018, 32, 903–914. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Skates, S.J.; Singer, D.E. Quantifying the Potential Benefit of CA 125 Screening for Ovarian Cancer. J. Clin. Epidemiol. 1991, 44, 365–380. [Google Scholar] [CrossRef]
- Moss, H.A.; Berchuck, A.; Neely, M.L.; Myers, E.R.; Havrilesky, L.J. Estimating Cost-Effectiveness of a Multimodal Ovarian Cancer Screening Program in the United States: Secondary Analysis of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). JAMA Oncol. 2018, 4, 190–195. [Google Scholar] [CrossRef]
- Maftei, N.-M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Nyanzi, R.; Jooste, P.J.; Buys, E.M. Invited Review: Probiotic Yogurt Quality Criteria, Regulatory Framework, Clinical Evidence, and Analytical Aspects. J. Dairy Sci. 2021, 104, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Jang, W.J.; Lee, J.M.; Hasan, M.T.; Lee, B.-J.; Lim, S.G.; Kong, I.-S. Effects of Probiotic Supplementation of a Plant-Based Protein Diet on Intestinal Microbial Diversity, Digestive Enzyme Activity, Intestinal Structure, and Immunity in Olive Flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2019, 92, 719–727. [Google Scholar] [CrossRef]
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of Action, Health Benefits and Their Application in Food Industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef]
- Amara, A.A.; Shibl, A. Role of Probiotics in Health Improvement, Infection Control and Disease Treatment and Management. Saudi Pharm. J. 2015, 23, 107–114. [Google Scholar] [CrossRef]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Siritientong, T.; Thet, D.; Leelakanok, N.; Areepium, N. Oral Probiotic Supplementation to Alleviate Diarrhea Induced by Fluoropyrimidines or Irinotecan-Based Chemotherapy: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2025, 89, 103151. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Yavaş, A.; Akan, E.; Aksel, M.; Erbay, Z. Lactobacillus Acidophilus LA-5 Postbiotic Induces Apoptosis by Activating the Mitochondrial Apoptotic Pathway in Prostate Cancer. J. Food Biochem. 2024, 2024, 7855679. [Google Scholar] [CrossRef]
- Naeem, H.; Hassan, H.U.; Shahbaz, M.; Imran, M.; Memon, A.G.; Hasnain, A.; Murtaza, S.; Alsagaby, S.A.; Al Abdulmonem, W.; Hussain, M.; et al. Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. J. Food Biochem. 2024, 2024, 6632209. [Google Scholar] [CrossRef]
- Ha, S.; Zhang, X.; Yu, J. Probiotics Intervention in Colorectal Cancer: From Traditional Approaches to Novel Strategies. Chin. Med. J. 2024, 137, 8–20. [Google Scholar] [CrossRef]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell Cycle Control in Cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Senturk, E.; Manfredi, J.J. P53 and Cell Cycle Effects After DNA Damage. Methods Mol. Biol. 2013, 962, 49–61. [Google Scholar] [CrossRef]
- Fu, M.; Wang, C.; Li, Z.; Sakamaki, T.; Pestell, R.G. Minireview: Cyclin D1: Normal and Abnormal Functions. Endocrinology 2004, 145, 5439–5447. [Google Scholar] [CrossRef]
- Alao, J.P. The Regulation of Cyclin D1 Degradation: Roles in Cancer Development and the Potential for Therapeutic Invention. Mol. Cancer 2007, 6, 24. [Google Scholar] [CrossRef]
- Qie, S.; Diehl, J.A. Cyclin D Degradation by E3 Ligases in Cancer Progression and Treatment. Semin. Cancer Biol. 2020, 67, 159–170. [Google Scholar] [CrossRef]
- O’Connor, K.; Chen, M. Dynamic Functions of RhoA in Tumor Cell Migration and Invasion. Small GTPases 2013, 4, 141–147. [Google Scholar] [CrossRef] [PubMed]
ID | Species | Characteristics |
---|---|---|
A | Streptococcus thermophilus | It is safely used in food; it has the Qualified Presumption of Safety status in the EU. Among the health benefits it has, we can find antioxidant compound production, anti-inflammatory effects, risk alleviation for some cancers, and antimutagenic effects [11]. |
B | Lactobacillus delbrueckii subsp. bulgaricus | It has been demonstrated to be able to inhibit the development of colitis-associated cancer in mice, attenuating intestinal inflammation [12]. |
C | Bifidobacterium lactis | It is in commercialized yogurt, and it has been demonstrated that it has a beneficial role in maintaining intestinal barrier function and that it supports normal physiological function in immunosenescent elderly [13]. |
D | Lactobacillus acidophilus | Often used in yogurts, it has antimutagenic properties, anticarcinogenic properties [14], anti-diarrheal properties, and immune system stimulation properties, and many other beneficial effects, such as maintenance of balanced flora and improvement in lactose metabolism [15]. |
E | Lactobacillus rhamnosus | Used as a treatment in animal models, it may reduce the risk of colon cancer by modulating the gut microbiota and downregulating pro-inflammatory molecules [4]. |
F | Lactobacillus casei | Often used in yogurts, it has antimutagenic properties, anticarcinogenic properties [14], anti-diarrheal properties, and immune system stimulation properties, and many other beneficial effects, such as maintenance of balanced flora and improvement in lactose metabolism [15]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgi, C.; Lombardi, F.; Augello, F.R.; Alicka, Y.; Quintiliani, M.; Topi, S.; Cimini, A.; Castelli, V.; d’Angelo, M. Probiotics as Anti-Tumor Agents: Insights from Female Tumor Cell Culture Studies. Biomolecules 2025, 15, 657. https://doi.org/10.3390/biom15050657
Giorgi C, Lombardi F, Augello FR, Alicka Y, Quintiliani M, Topi S, Cimini A, Castelli V, d’Angelo M. Probiotics as Anti-Tumor Agents: Insights from Female Tumor Cell Culture Studies. Biomolecules. 2025; 15(5):657. https://doi.org/10.3390/biom15050657
Chicago/Turabian StyleGiorgi, Chiara, Francesca Lombardi, Francesca Rosaria Augello, Ylli Alicka, Massimiliano Quintiliani, Skender Topi, Annamaria Cimini, Vanessa Castelli, and Michele d’Angelo. 2025. "Probiotics as Anti-Tumor Agents: Insights from Female Tumor Cell Culture Studies" Biomolecules 15, no. 5: 657. https://doi.org/10.3390/biom15050657
APA StyleGiorgi, C., Lombardi, F., Augello, F. R., Alicka, Y., Quintiliani, M., Topi, S., Cimini, A., Castelli, V., & d’Angelo, M. (2025). Probiotics as Anti-Tumor Agents: Insights from Female Tumor Cell Culture Studies. Biomolecules, 15(5), 657. https://doi.org/10.3390/biom15050657