Measuring Human Memory B Cells in Autoimmunity Using Enzyme-Linked ImmunoSpot
Abstract
:1. Introduction
2. B Cell ELISPOT in ADs
3. Examples of Diseases in Which Autoantibodies Are Effectors of Disease Pathogenesis
3.1. Rheumatoid Arthritis (RA)
3.2. Systemic Lupus Erythematosus (SLE)
3.3. Graves’ Disease (GD)
3.4. Hashimoto’s Thyroiditis (HT)
3.5. Pemphigus Vulgaris (PV)
3.6. Anti-Phospholipid Antibody Syndrome (APS)
3.7. Autoimmune Pulmonary Alveolar Proteinosis (APAP)
3.8. Myasthenia Gravis
4. Examples of Diseases in Which Autoantibodies Are Markers of Disease Pathogenesis
4.1. Multiple Sclerosis (MS)
4.2. Type 1 Diabetes (T1D)
4.3. Primary Biliary Cholangitis (PBC)
4.4. Acquired Hemophilia
5. Limitations of the Assay
6. Advantages of the Assay over Existing Tools
7. Additional Applications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bmem | B memory cells |
ELISPOT | Enzyme-linked ImmunoSpot assay |
AD | autoimmune disease |
ASC | antibody-secreting cell |
Bmem | B memory |
BCR | B cell receptor |
RA | Rheumatoid Arthritis |
SS | Sjögren’s Syndrome |
MG | Myasthenia Gravis |
UC | Ulcerative Colitis |
SLE | Systemic Lupus Erythematosis |
PVDF | polyvinylidene fluoride |
ELISA | enzyme-linked immunoassay |
EBV | Epstein–Barr Virus |
CMV | Cytomegalovirus |
T1D | Type 1 Diabetes |
BAFF | B cell-activating factor |
ANAs | anti-nuclear antibodies |
ENA | anti-extractable nuclear antigen |
dsDNA | double-stranded DNA |
GAD | glutamic acid decarboxylase |
ICA | islet cell |
IA | insulinoma-associated |
APF | anti-perinuclear factor |
AKA | anti-keratin |
ESR | erythrocyte sedimentation rate |
CRP | C-reactive protein |
ATD | antithyroid drug |
TSHR | thyroid-stimulating hormone receptor |
TRAbs | anti-thyrotropin receptor antibodies |
TSAbs | thyroid-stimulating antibodies |
TBAbs | thyroid-blocking antibodies |
TPOAbs | thyroid peroxidase antibodies |
TgAbs | thyroglobulin antibodies |
LAC | anticoagulant |
CL | cardiolipin |
β2GPI | β2-glycoprotein I |
AchR | acetylcholine receptor |
MuSK | muscle-specific kinase |
LRP4 | low-density lipoprotein receptor-related protein 4 |
GAD | glutamic acid decarboxylase |
IA-2 | islet antigen-2 |
ZnT8 | the zinc transporter |
CNS | Central Nervous System |
TLR | Toll-Like Receptor |
PBC | Primary Biliary Cholangitis |
PDC-E2 | pyruvate dehydrogenase complex |
References
- Miyazaki, Y.; Niino, M. B-cell depletion therapy for multiple sclerosis. Immunol. Med. 2022, 45, 54–62. [Google Scholar] [CrossRef]
- Rubbert-Roth, A.; Tak, P.P.; Zerbini, C.; Tremblay, J.-L.; Carreño, L.; Armstrong, G.; Collinson, N.; Shaw, T.M. Efficacy and safety of various repeat treatment dosing regimens of rituximab in patients with active rheumatoid arthritis: Results of a Phase III randomized study (MIRROR). Rheumatology 2010, 49, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, J.J., Jr.; Zamvil, S.S.; Hauser, S.L. B-Cell Therapies in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a032037. [Google Scholar] [CrossRef] [PubMed]
- Than, N.N.; Hodson, J.; Schmidt-Martin, D.; Taubert, R.; Wawman, R.E.; Botter, M.; Gautam, N.; Bock, K.; Jones, R.; Appanna, G.D.; et al. Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the International Autoimmune Hepatitis Group. JHEP Rep. 2019, 1, 437–445. [Google Scholar] [CrossRef]
- Verstappen, G.M.; Kroese, F.G.M.; Meiners, P.M.; Corneth, O.B.; Huitema, M.G.; Haacke, E.A.; van der Vegt, B.; Arends, S.; Vissink, A.; Bootsma, H.; et al. B Cell Depletion Therapy Normalizes Circulating Follicular Th Cells in Primary Sjögren Syndrome. J. Rheumatol. 2017, 44, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.S.; Jenks, S.A.; Woodruff, M.C.; Tomar, D.; Tipton, C.M.; Scharer, C.D.; Lee, F.E.; Boss, J.M.; Sanz, I. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol. Rev. 2019, 292, 76–89. [Google Scholar] [CrossRef]
- Syeda, M.Z.; Hong, T.; Huang, C.; Huang, W.; Mu, Q. B cell memory: From generation to reactivation: A multipronged defense wall against pathogens. Cell Death Discov. 2024, 10, 117. [Google Scholar] [CrossRef]
- Bag-Ozbek, A.; Hui-Yuen, J.S. Emerging B-Cell Therapies in Systemic Lupus Erythematosus. Ther. Clin. Risk Manag. 2021, 17, 39–54. [Google Scholar] [CrossRef]
- Hamad, A.R.; Ahmed, R.; Donner, T.; Fousteri, G. B cell-targeted immunotherapy for type 1 diabetes: What can make it work? Discov. Med. 2016, 21, 213–219. [Google Scholar]
- Sun, W.; Zhu, C.; Li, Y.; Wu, X.; Shi, X.; Liu, W. B cell activation and autoantibody production in autoimmune diseases. Best Pract. Res. Clin. Rheumatol. 2024, 38, 101936. [Google Scholar] [CrossRef]
- Luning Prak, E.T.; Monestier, M.; Eisenberg, R.A. B cell receptor editing in tolerance and autoimmunity. Ann. N. Y. Acad. Sci. 2011, 1217, 96–121. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.S.; Deenick, E.K.; Batten, M.; Tangye, S.G. The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 2012, 209, 1241–1253. [Google Scholar] [CrossRef]
- Wrammert, J.; Smith, K.; Miller, J.; Langley, W.A.; Kokko, K.; Larsen, C.; Zheng, N.-Y.; Mays, I.; Garman, L.; Helms, C.; et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 2008, 453, 667–671. [Google Scholar] [CrossRef]
- Wolf, C.; Köppert, S.; Becza, N.; Kuerten, S.; Kirchenbaum, G.A.; Lehmann, P.V. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022, 11, 3662. [Google Scholar] [CrossRef]
- Zhou, G.; Dael, N.; Verweij, S.; Balafas, S.; Mubarik, S.; Oude Rengerink, K.; Pasmooij, A.M.G.; van Baarle, D.; Mol, P.G.; de Bock, G.H.; et al. Effectiveness of COVID-19 vaccines against SARS-CoV-2 infection and severe outcomes in adults: A systematic review and meta-analysis of European studies published up to 22 January 2024. Eur. Respir. Rev. 2025, 34, 240222. [Google Scholar] [CrossRef]
- Lehmann, P.V.; Karulin, A.Y.; Becza, N.; Yao, L.; Liu, Z.; Chepke, J.; Maul-Pavicic, A.; Wolf, C.; Köppert, S.; Valente, A.V.; et al. Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays. J. Immunol. Methods 2025, 537, 113817. [Google Scholar] [CrossRef] [PubMed]
- Wrammert, J.; Onlamoon, N.; Akondy, R.S.; Perng, G.C.; Polsrila, K.; Chandele, A.; Kwissa, M.; Pulendran, B.; Wilson, P.C.; Wittawatmongkol, O.; et al. Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 2012, 86, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, J.D.; Holt, P.G. A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J. Immunol. Methods 1983, 57, 301–309. [Google Scholar] [CrossRef]
- Kuerten, S.; Pommerschein, G.; Barth, S.K.; Hohmann, C.; Milles, B.; Sammer, F.W.; Duffy, C.E.; Wunsch, M.; Rovituso, D.M.; Schroeter, M.; et al. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood. Clin. Immunol. 2014, 152, 20–24. [Google Scholar] [CrossRef]
- Köppert, S.; Wolf, C.; Becza, N.; Sautto, G.A.; Franke, F.; Kuerten, S.; Ross, T.M.; Lehmann, P.V.; Kirchenbaum, G.A. Affinity Tag Coating Enables Reliable Detection of Antigen-Specific B Cells in Immunospot Assays. Cells 2021, 10, 1843. [Google Scholar] [CrossRef]
- Painter, S.D.; Haralambieva, I.H.; Ovsyannikova, I.G.; Grill, D.E.; Poland, G.A. Detection of influenza A/H1N1-specific human IgG-secreting B cells in older adults by ELISPOT assay. Viral Immunol. 2014, 27, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Kwak, K.; Pierce, S.K. B cell memory: Building two walls of protection against pathogens. Nat. Rev. Immunol. 2020, 20, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Franke, F.; Kirchenbaum, G.A.; Kuerten, S.; Lehmann, P.V. IL-21 in Conjunction with Anti-CD40 and IL-4 Constitutes a Potent Polyclonal B Cell Stimulator for Monitoring Antigen-Specific Memory B Cells. Cells 2020, 9, 433. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, J.; Wu, H.; Sawalha, A.H.; Lu, Q. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clin. Rev. Allergy Immunol. 2022, 62, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.K.; Martyanov, V.; Franks, J.M.; Bernstein, E.J.; Szymonifka, J.; Magro, C.; Wildman, H.F.; Wood, T.A.; Whitfield, M.L.; Spiera, R.F. Belimumab for the Treatment of Early Diffuse Systemic Sclerosis. Arthritis Rheumatol. 2018, 70, 308–316. [Google Scholar] [CrossRef]
- Greenfield, A.L.; Hauser, S.L. B-cell Therapy for Multiple Sclerosis: Entering an era. Ann. Neurol. 2018, 83, 13–26. [Google Scholar] [CrossRef]
- Wu, F.; Gao, J.; Kang, J.; Wang, X.; Niu, Q.; Liu, J.; Zhang, L. B Cells in Rheumatoid Arthritis: Pathogenic Mechanisms and Treatment Prospects. Front. Immunol. 2021, 12, 750753. [Google Scholar]
- Lin, Y.; Chang, T.; Lin, J.; Sun, C.; Wei, C.; Zhao, J.; Liu, R.; Yang, K.; Li, Z. Regulatory B Cells Are Decreased and Functionally Impaired in Myasthenia Gravis Patients. Front. Neurol. 2022, 13, 808322. [Google Scholar] [CrossRef]
- Howard, J.F., Jr.; Utsugisawa, K.; Benatar, M.; Murai, H.; Barohn, R.J.; Illa, I.; Jacob, S.; Vissing, J.; Burns, T.M.; Kissel, J.T.; et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): A phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017, 16, 976–986. [Google Scholar] [CrossRef]
- Topakian, R.; Zimprich, F.; Iglseder, S.; Embacher, N.; Guger, M.; Stieglbauer, K.; Langenscheidt, D.; Rath, J.; Quasthoff, S.; Simschitz, P.; et al. High efficacy of rituximab for myasthenia gravis: A comprehensive nationwide study in Austria. J. Neurol. 2019, 266, 699–706. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, L.N.; Hou, H.M.; Wang, S.; Zhang, S.; Wang, G.G.; Guo, Z.Y. FcRn inhibitors: A novel option for the treatment of myasthenia gravis. Neural Regen. Res. 2023, 18, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Fukami, Y.; Wong, A.H.Y.; Funakoshi, K.; Safri, A.Y.; Shahrizaila, N.; Yuki, N. Anti-GQ1b antibody syndrome: Anti-ganglioside complex reactivity determines clinical spectrum. Eur. J. Neurol. 2016, 23, 320–326. [Google Scholar] [CrossRef]
- Misawa, S.; Kuwabara, S.; Sato, Y.; Yamaguchi, N.; Nagashima, K.; Katayama, K.; Sekiguchi, Y.; Iwai, Y.; Amino, H.; Suichi, T.; et al. Safety and efficacy of eculizumab in Guillain-Barré syndrome: A multicentre, double-blind, randomised phase 2 trial. Lancet Neurol. 2018, 17, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Tahara, M.; Oeda, T.; Okada, K.; Kiriyama, T.; Ochi, K.; Maruyama, H.; Fukaura, H.; Nomura, K.; Shimizu, Y.; Mori, M.; et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020, 19, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Rakocevic, G.; Dambrosia, J.M.; Alexopoulos, H.; McElroy, B. A double-blind, placebo-controlled study of rituximab in patients with stiff person syndrome. Ann. Neurol. 2017, 82, 271–277. [Google Scholar] [CrossRef]
- Krieger, C.C.; Place, R.F.; Bevilacqua, C.; Marcus-Samuels, B.; Abel, B.S.; Skarulis, M.C.; Kahaly, G.J.; Neumann, S.; Gershengorn, M.C. TSH/IGF-1 Receptor Cross Talk in Graves’ Ophthalmopathy Pathogenesis. J. Clin. Endocrinol. Metab. 2016, 101, 2340–2347. [Google Scholar] [CrossRef]
- McLachlan, S.M.; Rapoport, B. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity. Endocr. Rev. 2014, 35, 59–105. [Google Scholar] [CrossRef]
- Eid, L.; Coste-Verdier, V.; Longueville, E.; Ribeiro, E.; Nicolescu-Catargi, B.; Korobelnik, J.-F. The effects of Rituximab on Graves’orbitopathy: A retrospective study of 14 patients. Eur. J. Ophthalmol. 2020, 30, 1008–1013. [Google Scholar] [CrossRef]
- Dahl, A.R.; M, S.J.; Pittock, S.J.; Pittock, S.T. Clinical Utility and Outcome Prediction of Early ZnT8-IgG Testing and Titer in Type 1 Diabetes. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 35–41. [Google Scholar] [CrossRef]
- Pearce, S.H.; Mitchell, A.L.; Bennett, S.; King, P.; Chandran, S.; Nag, S.; Chen, S.; Smith, B.R.; Isaacs, J.D.; Vaidya, B. Adrenal steroidogenesis after B lymphocyte depletion therapy in new-onset Addison’s disease. J. Clin. Endocrinol. Metab. 2012, 97, E1927–E1932. [Google Scholar] [CrossRef]
- Kamisawa, T.; Okazaki, K.; Kawa, S.; Ito, T.; Inui, K.; Irie, H.; Nishino, T.; Notohara, K.; Nishimori, I.; Tanaka, S.; et al. Amendment of the Japanese Consensus Guidelines for Autoimmune Pancreatitis, 2013 III. Treatment and prognosis of autoimmune pancreatitis. J. Gastroenterol. 2014, 49, 961–970. [Google Scholar] [CrossRef]
- Gunnarsson, I.; Sundelin, B.; Jónsdóttir, T.; Jacobson, S.H.; Henriksson, E.W.; van Vollenhoven, R.F. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum. 2007, 56, 1263–1272. [Google Scholar] [CrossRef]
- Maley, A.; Warren, M.; Haberman, I.; Swerlick, R.; Kharod-Dholakia, B.; Feldman, R. Rituximab combined with conventional therapy versus conventional therapy alone for the treatment of mucous membrane pemphigoid (MMP). J. Am. Acad. Dermatol. 2016, 74, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Boch, K.; Langan, E.A.; Schmidt, E.; Zillikens, D.; Ludwig, R.J.; Bieber, K.; Hammers, C.M. Sustained CD19+CD27+ Memory B Cell Depletion after Rituximab Treatment in Patients with Pemphigus Vulgaris. Acta Derm. Venereol. 2022, 102, adv00679. [Google Scholar] [CrossRef] [PubMed]
- Joly, P.; Horvath, B.; Patsatsi, A.; Uzun, S.; Bech, R.; Beissert, S.; Bergman, R.; Bernard, P.; Borradori, L.; Caproni, M.; et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Jopson, L.; Howel, D.; Bryant, A.; Blamire, A.; Newton, J.L.; Jones, D.E. Rituximab Is Ineffective for Treatment of Fatigue in Primary Biliary Cholangitis: A Phase 2 Randomized Controlled Trial. Hepatology 2019, 70, 1646–1657. [Google Scholar] [CrossRef]
- Khanna, A.; Jopson, L.; Howel, D.; Bryant, A.; Blamire, A.; Newton, J.L.; Wilkinson, J.; Steel, A.J.; Bainbridge, J.; Stefanetti, R.; et al. Rituximab for the Treatment of Fatigue in Primary Biliary Cholangitis (formerly Primary Biliary Cirrhosis) A Randomised Controlled Trial. Effic. Mech. Eval. 2018, 5, 1–78. [Google Scholar] [CrossRef]
- Ahn, S.S.; Jung, S.M.; Yoo, J.; Lee, S.-W.; Song, J.J.; Park, Y.-B. Anti-Smith antibody is associated with disease activity in patients with new-onset systemic lupus erythematosus. Rheumatol. Int. 2019, 39, 1937–1944. [Google Scholar] [CrossRef]
- Henderson, S.R.; Copley, S.J.; Pusey, C.D.; Ind, P.W.; Salama, A.D. Prolonged B cell depletion with rituximab is effective in treating refractory pulmonary granulomatous inflammation in granulomatosis with polyangiitis (GPA). Medicine 2014, 93, e229. [Google Scholar] [CrossRef]
- Dieudonné, Y.; Lorenzetti, R.; Rottura, J.; Janowska, I.; Frenger, Q.; Jacquel, L.; Vollmer, O.; Carbone, F.; Chengsong, Z.; Luka, M.; et al. Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in Primary Antiphospholipid Syndrome. Nat. Commun. 2024, 15, 9921. [Google Scholar] [CrossRef]
- Ghanima, W.; Khelif, A.; Waage, A.; Michel, M.; Tjønnfjord, G.E.; Romdhan, N.B.; Kahrs, J.; Darne, B.; Holme, P.A. Rituximab as second-line treatment for adult immune thrombocytopenia (the RITP trial): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 1653–1661. [Google Scholar] [CrossRef]
- Bauhammer, J.; Blank, N.; Max, R.; Lorenz, H.-M.; Wagner, U.; Krause, D.; Fiehn, C. Rituximab in the Treatment of Jo1 Antibody–associated Antisynthetase Syndrome: Anti-Ro52 Positivity as a Marker for Severity and Treatment Response. J. Rheumatol. 2016, 43, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- du Pré, M.F.; Blazevski, J.; Dewan, A.E.; Stamnaes, J.; Kanduri, C.; Sandve, G.K.; Johannesen, M.K.; Lindstad, C.B.; Hnida, K.; Fugger, L.; et al. B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. J. Exp. Med. 2019, 217, e20190860. [Google Scholar] [CrossRef]
- Nussinovitch, U.; Shoenfeld, Y. The Clinical and Diagnostic Significance of Anti-myosin Autoantibodies in Cardiac Disease. Clin. Rev. Allergy Immunol. 2013, 44, 98–108. [Google Scholar] [CrossRef]
- Wang, C.-R.; Tsai, Y.-S.; Li, W.-T. Lupus myocarditis receiving the rituximab therapy—A monocentric retrospective study. Clin. Rheumatol. 2018, 37, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, J.-M.; Le Goff, B.; Neel, A.; Maugars, Y.; Hamidou, M. NETosis: At the crossroads of rheumatoid arthritis, lupus, and vasculitis. Jt. Bone Spine 2017, 84, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Reparon-Schuijt, C.C.; van Esch, W.J.; van Kooten, C.; Schellekens, G.A.; de Jong, B.A.; van Venrooij, W.J.; Breedveld, F.C.; Verweij, C.L. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheumatol. 2001, 44, 41–47. [Google Scholar] [CrossRef]
- Tarkowski, A.; Czerkinsky, C.; Nilsson, L.A. Simultaneous induction of rheumatoid factor- and antigen-specific antibody-secreting cells during the secondary immune response in man. Clin. Exp. Immunol. 1985, 61, 379–387. [Google Scholar]
- Pozsgay, J.; Babos, F.; Uray, K.; Magyar, A.; Gyulai, G.; Kiss, É.; Nagy, G.; Rojkovich, B.; Hudecz, F.; Sármay, G. In Vitro eradication of citrullinated protein specific B-lymphocytes of rheumatoid arthritis patients by targeted bifunctional nanoparticles. Arthritis Res. Ther. 2016, 18, 15. [Google Scholar] [CrossRef]
- Taylor, P.C. Update on the diagnosis and management of early rheumatoid arthritis. Clin. Med. 2020, 20, 561–564. [Google Scholar] [CrossRef]
- Reijm, S.; Kwekkeboom, J.C.; Blomberg, N.J.; Suurmond, J.; van der Woude, D.; Toes, R.E.M.; Scherer, H.U. Autoreactive B cells in rheumatoid arthritis include mainly activated CXCR3+ memory B cells and plasmablasts. JCI Insight 2023, 8, e172006. [Google Scholar] [CrossRef]
- Kerkman, P.F.; Kempers, A.C.; van der Voort, E.I.; van Oosterhout, M.; Huizinga, T.W.; Toes, R.E.; Scherer, H.U. Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann. Rheum. Dis. 2016, 75, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Y.-F.; Hu, F.-L.; Lu, F.-A.; Wu, T.; Feng, Y.-L.; Li, K. Dysfunction of CD27+IgD+ B cells correlates with aggravated systemic lupus erythematosus. Clin. Rheumatol. 2022, 41, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Xu, L.; Zhu, H.; Xue, J.; Liu, T.; Sun, F.; Yao, H.; Zhao, Z.; Wang, Z.; Yao, R.; et al. Impaired granzyme B-producing regulatory B cells in systemic lupus erythematosus. Mol. Immunol. 2021, 140, 217–224. [Google Scholar] [CrossRef]
- Pérez-Isidro, A.; Xipell, M.; Llobell, A.; De Moner, N.; Lledó, G.M.; Cervera, R.; Prieto-González, S.; Quintana, L.F.; Espinosa, G.; García-Ormaechea, M.; et al. Anti-dsDNA B-Cell ELISpot as a Monitoring and Flare Prediction Tool in SLE Patients. J. Clin. Med. 2023, 12, 1295. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, Y.; Davidson, A. Plasma cells in systemic lupus erythematosus: The long and short of it all. Eur. J. Immunol. 2011, 41, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Powell, W.E.; Hanna, S.J.; Hocter, C.N.; Robinson, E.; Lewis, M.; Dunseath, G.; Luzio, S.; Howell, A.; Dayan, C.; Wong, F. Detecting autoreactive B cells in the peripheral blood of people with type 1 diabetes using ELISpot. J. Immunol. Methods 2019, 471, 61–65. [Google Scholar] [CrossRef]
- Suzuki, N.; Sakane, T.; Engleman, E.G. Anti-DNA antibody production by CD5+ and CD5- B cells of patients with systemic lupus erythematosus. J. Clin. Investig. 1990, 85, 238–247. [Google Scholar] [CrossRef]
- Bogusławska, J.; Godlewska, M.; Gajda, E.; Piekiełko-Witkowska, A. Cellular and molecular basis of thyroid autoimmunity. Eur. Thyroid. J. 2022, 11, e210024. [Google Scholar] [CrossRef]
- Azizi, F.; Abdi, H.; Amouzegar, A.; Habibi Moeini, A.S. Long-term thionamide antithyroid treatment of Graves’ disease. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101631. [Google Scholar] [CrossRef]
- Kahaly George, J.; Bartalena, L.; Hegedüs, L.; Leenhardt, L.; Poppe, K.; Pearce Simon, H. 2018 European Thyroid Association Guideline for the Management of Graves’ Hyperthyroidism. Eur. Thyroid. J. 2018, 7, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Menconi, F.; Marcocci, C.; Marinò, M. Diagnosis and classification of Graves’ disease. Autoimmun. Rev. 2014, 13, 398–402. [Google Scholar] [CrossRef]
- Bloise, F.F.; Oliveira, F.L.; Nobrega, A.F.; Vasconcellos, R.; Cordeiro, A.; Paiva, L.S.; Taub, D.D.; Borojevic, R.; Pazos-Moura, C.C.; Mello-Coelho, V.d. High levels of circulating triiodothyronine induce plasma cell differentiation. J. Endocrinol. 2014, 220, 305–317. [Google Scholar] [CrossRef]
- Nakamoto, Y.; Niki, M.; Watanabe, M.; Iwatani, Y. Increase in Immunoglobulin G3-Secreting Cells in Intractable Graves’ Disease. Thyroid 2003, 13, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ralchev, N.R.; Markovski, A.M.; Yankova, I.A.; Manoylov, I.K.; Doytchinova, I.A.; Mihaylova, N.M.; Shinkov, A.D.; Tchorbanov, A.I. Selective Silencing of Disease-Associated B Lymphocytes from Hashimoto’s Thyroiditis Patients by Chimeric Protein Molecules. Int. J. Mol. Sci. 2022, 23, 15083. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, B.; Huang, Y.; Dong, A. Consistency Between Thyrotropin Receptor Antibody (TRAb) and Thyroid-Stimulating Antibody (TSAb) Levels in Patients with Graves Disease. Lab. Med. 2022, 53, 412–416. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, X.; You, R.; Zhang, Y.; Qu, C.; Huang, Y.; Yu, Y.; Gong, Y.; Cong, T.; Zhao, E.; et al. CD11c+ B Cells Participate in the Pathogenesis of Graves’ Disease by Secreting Thyroid Autoantibodies and Cytokines. Front. Immunol. 2022, 13, 836347. [Google Scholar] [CrossRef]
- García-López, M.A.; Sancho, D.; Sánchez-Madrid, F.; Marazuela, M. Thyrocytes from Autoimmune Thyroid Disorders Produce the Chemokines IP-10 And Mig and Attract CXCR3+ Lymphocytes. J. Clin. Endocrinol. Metab. 2001, 86, 5008–5016. [Google Scholar] [CrossRef] [PubMed]
- Salvi, M.; Vannucchi, G.; Currò, N.; Campi, I.; Covelli, D.; Dazzi, D.; Simonetta, S.; Guastella, C.; Pignataro, L.; Avignone, S.; et al. Efficacy of B-Cell Targeted Therapy with Rituximab in Patients With Active Moderate to Severe Graves’ Orbitopathy: A Randomized Controlled Study. J. Clin. Endocrinol. Metab. 2015, 100, 422–431. [Google Scholar] [CrossRef]
- Song, J.-L.; Hu, J.-W.; Li, L.-R.; Xu, Z.-L.; Li, J.-J.; Sun, S.-R.; Chen, C. Association of thyroid autoimmunity with extra-thyroid diseases and the risk of mortality among adults: Evidence from the NHANES. Front. Endocrinol. 2024, 15, 1323994. [Google Scholar] [CrossRef]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, G.; Bagnato, G.; Campennì, A.; Giovinazzo, S.; Keller, K.; Alibrandi, A.; Roberts, W.N.; Trimarchi, F.; Ruggeri, R.M. Non-specific rheumatic manifestations in patients with Hashimoto’s thyroiditis: A pilot cross-sectional study. J. Endocrinol. Investig. 2020, 43, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, E.; Amino, N.; Kudo, T.; Ito, M.; Fukata, S.; Nishikawa, M.; Nakamura, H.; Miyauchi, A. Comparison of thyroglobulin and thyroid peroxidase antibodies measured by five different kits in autoimmune thyroid diseases. Endocr. J. 2017, 64, 955–961. [Google Scholar] [CrossRef]
- Lintusaari, J.; Vesaniemi, E.; Kalfert, D.; Ilvesaro, J.; Ludvíková, M.; Kholová, I. IgG4-positive plasma cells in Hashimoto thyroiditis: IgG4-related disease or inflammation-related IgG4-positivity? APMIS 2020, 128, 531–538. [Google Scholar] [CrossRef]
- Liu, L.; Yu, Y.; Chen, L.; Zhang, Y.; Lu, G.; Gao, Y.; Zhang, J. Clinical differences between IgG4 Hashimoto’s thyroiditis and primary thyroid lymphoma. Eur. Thyroid. J. 2022, 11, e210144. [Google Scholar] [CrossRef]
- Pusztaszeri, M.; Triponez, F.; Pache, J.C.; Bongiovanni, M. Riedel’s Thyroiditis with Increased IgG4 Plasma Cells: Evidence for an Underlying IgG4-Related Sclerosing Disease? Thyroid 2012, 22, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.; Koulu, L.; Thivolet, C. Distinction between epidermal antigens binding pemphigus vulgaris and pemphigus foliaceus autoantibodies. J. Clin. Investig. 1984, 74, 313–320. [Google Scholar] [CrossRef]
- Sielski, L.; Baker, J.; DePasquale, M.C.; Attwood, K.; Seiffert-Sinha, K.; Sinha, A.A. Desmoglein compensation hypothesis fidelity assessment in Pemphigus. Front. Immunol. 2022, 13, 969278. [Google Scholar] [CrossRef]
- Fang, J.M.; Choi, W.-T.; Wang, H.; Graham, R.; Hissong, E.; Chan, M.P.; Westerhoff, M. Utility of C4d Immunohistochemistry in the Diagnosis of Esophageal Pemphigus Vulgaris. Int. J. Surg. Pathol. 2024, 33, 337–343. [Google Scholar] [CrossRef]
- Aryanian, Z.; Balighi, K.; Daneshpazhooh, M.; Karamshahi, E.; Hatami, P.; Goodarzi, A.; Tajalli, M.; Vance, T.M. Rituximab exhibits a better safety profile when used as a first line of treatment for pemphigus vulgaris: A retrospective study. Int. Immunopharmacol. 2021, 96, 107755. [Google Scholar] [CrossRef]
- Nishifuji, K.; Amagai, M.; Kuwana, M.; Iwasaki, T.; Nishikawa, T. Detection of antigen-specific B cells in patients with pemphigus vulgaris by enzyme-linked immunospot assay: Requirement of T cell collaboration for autoantibody production. J. Investig. Dermatol. 2000, 114, 88–94. [Google Scholar] [CrossRef]
- Hou, Y.; Hou, L.; Song, Z.; Luo, L.; Jin, J.; Zhang, X.; Li, C. Risk Factors for Adverse Pregnancy Outcomes in Patients with Antiphospholipid Syndrome. Clin. Exp. Obstet. Gynecol. 2024, 51, 93. [Google Scholar] [CrossRef]
- Ibrahim, A.A.G.; Shadi, H.W.E.; Elamin, A.A.Y.; Draz, H.E. Retrospective cohort study of thromboembolic events in systemic lupus erythematosus with or without secondary antiphospholipid syndrome and their correlation to lupus activity and dyslipidemia. Egypt. Rheumatol. Rehabil. 2023, 50, 10. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Zuily, S.; Naden, R.; Hendry, A.; Manneville, F.; Amigo, M.C.; Amoura, Z.; Andrade, D.; Andreoli, L.; Artim-Esen, B.; et al. The 2023 ACR/EULAR Antiphospholipid Syndrome Classification Criteria. Arthritis Rheumatol. 2023, 75, 1687–1702. [Google Scholar] [CrossRef] [PubMed]
- Lieby, P.; Soley, A.; Knapp, A.-M.; Cerutti, M.; Freyssinet, J.-M.; Pasquali, J.-L.; Martin, T. Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood 2003, 102, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-Y.; Nam, E.J.; Han M-h Kim, Y.-J.; Lim, J.-H.; Jung, H.-Y.; Cho, J.H.; Kim, C.D.; Kim, Y.L.; Park, S.H. Successful treatment with rituximab in anti-phospholipid syndrome nephropathy associated with systemic lupus erythematosus: A case report and literature review. Nephrology 2024, 29, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Nei, T.; Urano, S.; Motoi, N.; Hashimoto, A.; Kitamura, N.; Tanaka, T.; Nakagaki, K.; Takizawa, J.; Kaneko, C.; Tazawa, R.; et al. Memory B cell pool of autoimmune pulmonary alveolar proteinosis patients contains higher frequency of GM-CSF autoreactive B cells than healthy subjects. Immunol. Lett. 2019, 212, 22–29. [Google Scholar] [CrossRef]
- Fichtner, M.L.; Hoehn, K.B.; Ford, E.E.; Mane-Damas, M.; Oh, S.; Waters, P.; Payne, A.S.; Smith, M.L.; Watson, C.T.; Losen, M.; et al. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol. Commun. 2022, 10, 154. [Google Scholar] [CrossRef]
- Kufukihara, K.; Watanabe, Y.; Inagaki, T.; Takamatsu, K.; Nakane, S.; Nakahara, J.; Ando, Y.; Suzuki, S. Cytometric cell-based assays for anti-striational antibodies in myasthenia gravis with myositis and/or myocarditis. Sci. Rep. 2019, 9, 5284. [Google Scholar] [CrossRef]
- Katyal, N.; Narula, N.; Govindarajan, R. Clinical Experience with Eculizumab in Treatment-Refractory Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis. J. Neuromuscul. Dis. 2021, 8, 287–294. [Google Scholar] [CrossRef]
- Xiao, B.-G.; Duan, R.-S.; Link, H.; Huang, Y.-M. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell. Immunol. 2003, 223, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Rahmanzadeh, R.; Lu, P.-J.; Barakovic, M.; Weigel, M.; Maggi, P.; Nguyen, T.D.; Schiavi, S.; Daducci, A.; La Rosa, F.; Schaedelin, S.; et al. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021, 144, 1684–1696. [Google Scholar] [CrossRef]
- Quach, Q.L.; Metz, L.M.; Thomas, J.C.; Rothbard, J.B.; Steinman, L.; Ousman, S.S. CRYAB modulates the activation of CD4+ T cells from relapsing-remitting multiple sclerosis patients. Mult. Scler. 2013, 19, 1867–1877. [Google Scholar] [CrossRef]
- Levraut, M.; Laurent-Chabalier, S.; Ayrignac, X.; Bigaut, K.; Rival, M.; Squalli, S.; Zéphir, H.; Alberto, T.; Pekar, J.D.; Ciron, J.; et al. Kappa Free Light Chain Biomarkers Are Efficient for the Diagnosis of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200049. [Google Scholar] [CrossRef]
- Hohmann, C.; Milles, B.; Schinke, M.; Schroeter, M.; Ulzheimer, J.; Kraft, P.; Kleinschnitz, C.; Lehmann, P.V.; Kuerten, S. Categorization of multiple sclerosis relapse subtypes by B cell profiling in the blood. Acta Neuropathol. Commun. 2014, 2, 138. [Google Scholar] [CrossRef] [PubMed]
- Rovituso, D.M.; Duffy, C.E.; Schroeter, M.; Kaiser, C.C.; Kleinschnitz, C.; Bayas, A.; Elsner, R.; Kuerten, S. The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients. Sci. Rep. 2015, 5, 14265. [Google Scholar] [CrossRef]
- Kuerten, S.; Lanz, T.V.; Lingampalli, N.; Lahey, L.J.; Kleinschnitz, C.; Mäurer, M.; Schroeter, M.; Braune, S.; Ziemssen, T.; Ho, P.P.; et al. Autoantibodies against central nervous system antigens in a subset of B cell-dominant multiple sclerosis patients. Proc. Natl. Acad. Sci. USA 2020, 117, 21512–21518. [Google Scholar] [CrossRef]
- Tacke, S.; Braune, S.; Rovituso, D.M.; Ziemssen, T.; Lehmann, P.V.; Dikow, H.; Bergmann, A.; Kuerten, S. B-Cell Activity Predicts Response to Glatiramer Acetate and Interferon in Relapsing-Remitting Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e980. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Leung, P.S.; Bowlus, C.L.; Dhaliwal, S.; Coppel, R.L.; Ansari, A.A.; Yang, G.-X.; Wang, J.; Kenny, T.P.; et al. Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology 2014, 60, 1708–1716. [Google Scholar] [CrossRef]
- Diaz, I.; Bolloré, K.; Tuaillon, E.; Lapalud, P.; Giansily-Blaizot, M.; Vendrell, J.P.; Schved, J.F.; Lavigne-Lissalde, G. Circulating FVIII-specific IgG, IgA and IgM memory B cells from haemophilia A patients. Haemophilia 2016, 22, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Zhou, J.Q.; Horvath, S.C.; Schmitz, A.J.; Sturtz, A.J.; Lei, T.; Liu, Z.; Kalaidina, E.; Thapa, M.; Alsoussi, W.B.; et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 2022, 604, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Wang Y-n Li, R.; Huang, Y.; Chen, H.; Nie, H.; Liu, L.; Zou, X.; Zhong, J.; Zheng, B.; Gong, Q. The role of B cells in the pathogenesis of type 1 diabetes. Front. Immunol. 2024, 15, 1450366. [Google Scholar]
- Karulin, A.Y.; Katona, M.; Megyesi, Z.; Kirchenbaum, G.A.; Lehmann, P.V. Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays. Methods Mol. Biol. 2024, 2768, 59–85. [Google Scholar] [PubMed]
- Yao, L.; Becza, N.; Maul-Pavicic, A.; Chepke, J.; Kirchenbaum, G.A.; Lehmann, P.V. Four-Color ImmunoSpot® Assays Requiring Only 1–3 mL of Blood Permit Precise Frequency Measurements of Antigen-Specific B Cells-Secreting Immunoglobulins of All Four Classes and Subclasses. In Handbook of ELISPOT: Methods and Protocols; Kalyuzhny, A.E., Ed.; Springer: New York, NY, USA, 2024; pp. 251–272. [Google Scholar]
- Ross, T.M.; Gokanapudi, N.; Ge, P.; Shi, H.; Richardson, R.A.; Pierce, S.R.; Sanchez, P.; Ullah, S.; De Luca, E.; Sautto, G.A. Kinetic of the Antibody Response Following AddaVax-Adjuvanted Immunization with Recombinant Influenza Antigens. Vaccines 2022, 10, 1315. [Google Scholar] [CrossRef]
Target Tissue/ Organ | Autoimmune Disease | Examples of Main Target Antigens/Antibodies (Not Exhaustive) | Effector or Marker Antibodies? | B Cell-Targeted Therapy Given? |
---|---|---|---|---|
Bones and Joints | Rheumatoid Arthritis | Rheumatoid factor (anti-IgGFc), Anti-MCV, ACPAs, Vimentin | Effector and marker [27] | Rituximab phase III [2] |
Nervous System | Multiple Sclerosis | Potassium channel, MOG, Anoctamin-2, Myelin Basic Protein, Anti-Kir4.1, Anti-ANO2 | Marker | Rituximab Ocrelizumab Ofatumumab [1] |
Nervous System | Myasthenia Gravis | Nicotinic acetylcholine receptor, Muscle-specific kinase (MuSK), LRP4 (low-density lipoprotein receptor-related protein 4), Agrin [28] | Effector and marker | Eculizumab [29] Rituximab [30] Rozanolixizumab [31] |
Nervous System | Other neuropathies: Guillain–Barré Syndrome, Miller-Fisher Syndrome | Ganglioside antibodies: anti-GM1, GD1a, GQ1b; Alpha-enolase, GQ1b; Yo (cdr-2 in Purkinje fibers) Hu, Tr, glutamate receptor | Effector and marker [32] | Eculizumab phase II trial [33] |
Nervous System | Ocular Neuromyelitis Optica Spectrum Disorder (NMOSD) | Aquaporin 4 | Marker | Rituximab [34] |
Nervous System | Stiff person syndrome | GAD-65 | Effector | Rituximab was ineffective [35] |
Endocrine | Graves’ Disease | Thyroid autoantibodies (TSHR-Ab) that activate the TSH receptor (TSHR) IGF-1 receptor [36,37] | Effector and marker | Rituximab [38] |
Endocrine | Hashimoto’s Thyroiditis | Thyroid peroxidase and/or thyroglobulin | Marker | |
Endocrine | Type 1 Diabetes | Glutamic acid decarboxylase (GAD), islet cell antigen (ICA), insulinoma-associated (IA-2), insulin, ZnT8 [39] | Marker | Rituximab was unsuccessful [9] |
Endocrine | Addison’s Disease (Adrenal) | 21 hydroxylase | Marker | Rituximab [40] |
Endocrine | Autoimmune pancreatitis | ANA, lactoferrin S, anti-carbonic anhydrase, rheumatoid factor | Marker | Rituximab [41] |
Kidney | Nephritis | Basement Membrane Collagen Type IV protein | Marker and effector | Combination therapy with Rituximab [42] |
Kidney | IgA nephropathy, Henoch–Schönlein purpura | IgA1-Glycan | no | no |
Skin | Pemphigoid | Type XVII collagen component of hemidesmosomes; BP-1, BP-2 | Marker and effector | Rituximab [43] |
Skin | Pemphigus Vulgaris | Desmoglein 3 Desmoglein 1 | Effector [44] | Rituximab [45] |
Skin | Scleroderma | Anti-nuclear antibodies, centromere and scl70/anti-topoisomerase | Marker | Belimumab Rituximab [24,25] |
Liver | Primary Sclerosing Cholangitis | ANA, smooth muscle, ANCA | Marker | Rituximab phase II [46] |
Liver | Primary Biliary Cholangitis | p62, sp100, Mitochondrial (M2), Ro AKA SSA PDC-E2 | Marker | Rituximab is investigated for fatigue: unsuccessful [47] |
Liver | Autoimmune hepatitis | ANA and SMA, LKM-1, LKM-2, or LKM-3; soluble liver antigen | Marker | Rituximab third line treatment |
Multi-Systemic | Sjögren’s Syndrome | Ro/SS-A and La/SS-B | Effector and marker | Rituximab [5] |
Multi-Systemic | Systemic Lupus Erythematosus | Anti-nuclear antibodies (ANAs), anti-extractable nuclear antigen (ENA), double-stranded DNA (dsDNA) antibodies, anti-SM, anti-Ro [48] | Effector and marker | Rituximab Belimumab Epratuzumab [8] |
Multi-Systemic | Granulomatosis, Polyangiitis, Vasculitis | cANCA, pANCA, C1q, IgA, and complement component 3 | Effector and marker | Rituximab [49] |
Multi-Systemic | Anti-Phospholipid Antibody Syndrome (APS) | Cardiolipin, β2-glycoprotein I, and Lupus anticoagulant [50]; HPA-1a, HPA-5b | Effector and marker [50] | no |
Multi-Systemic | Thrombocytopenia | GpIIb-IIIa or 1b-IX; glycoproteins IIb-IIIa or Ib-IX in ITP ADAMTS13 in TTP; and HUS | Effector and marker | Rituximab second line treatment [51] |
Lung | Anti-synthetase syndrome | Aminoacyl tRNA Synthetase: Jo1, PL7, PL12 | Marker | Rituximab [52] |
Lung | Autoimmune Pulmonary Alveolar Proteinosis | GM-CSF | Effector and marker | no |
Gut | Celiac Disease | Tissue transglutaminase antibodies, endomysial IgA, gliadin IgA | Effector and marker [53] | no |
Heart | Myocarditis, Eosinophilic granulomatosis with polyangiitis (EGPA) | Myocardial antigens, cardiac myosin s, and β1-adrenergic receptor | Marker [54] | Rituximab [55] |
Autoimmune Disease | Ex Vivo or Pre-Cultured ELISPOT |
---|---|
Multiple Sclerosis | |
Rheumatoid Arthritis |
|
Hashimoto’s Thyroiditis | Plates pre-coated with 5 μg/mL Tg1/2 peptide antigen directly coated onto plate to measure plasmacytes, not Bmem [75] |
Acquired Hemophilia | An inverted ELISA assay capturing all Igs and then probing with recombinant Factor VIII labeled with AF555 |
Graves’ Disease | Coated with goat anti-mouse IgM antibody to measure plasmablasts/no incubation [73] |
Type 1 Diabetes | Pre-coated with islet antigens such as insulin, glutamic acid decarboxylase GAD- and IA-2, stimulating Bmem [67] |
Pemphigus Vulgaris | Pre-coated with rDsg3-his Bmem stimulation [91] |
Systemic Lupus Erythromatosus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stylianou, G.; Kirchenbaum, G.A.; Lehmann, P.V.; Pearce, S.; Todryk, S. Measuring Human Memory B Cells in Autoimmunity Using Enzyme-Linked ImmunoSpot. Biomolecules 2025, 15, 643. https://doi.org/10.3390/biom15050643
Stylianou G, Kirchenbaum GA, Lehmann PV, Pearce S, Todryk S. Measuring Human Memory B Cells in Autoimmunity Using Enzyme-Linked ImmunoSpot. Biomolecules. 2025; 15(5):643. https://doi.org/10.3390/biom15050643
Chicago/Turabian StyleStylianou, Georgia, Greg A. Kirchenbaum, Paul V. Lehmann, Simon Pearce, and Stephen Todryk. 2025. "Measuring Human Memory B Cells in Autoimmunity Using Enzyme-Linked ImmunoSpot" Biomolecules 15, no. 5: 643. https://doi.org/10.3390/biom15050643
APA StyleStylianou, G., Kirchenbaum, G. A., Lehmann, P. V., Pearce, S., & Todryk, S. (2025). Measuring Human Memory B Cells in Autoimmunity Using Enzyme-Linked ImmunoSpot. Biomolecules, 15(5), 643. https://doi.org/10.3390/biom15050643