Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medium, Growth Conditions, and Preparation of Enzymes
2.2. Chemical Modifications of Laccases
2.2.1. EGNHS (Ethylene Glycol Bis-(Succinimidyl Succinate))
2.2.2. CA (Citraconic Anhydride)
2.2.3. GA (Glutaraldehyde) and CDI (Carbodiimide)
2.2.4. N-HSP (Palmitic Acid N-Hydroxysuccinimide Ester)
2.2.5. Mono and Disaccharides (Glc—Glucose, Gal—Galactose, Cel—Cellobiose, Lac—Lactose)
2.2.6. PS (Polymeric Sucrose)
2.3. Characterization of Modified Laccases
2.3.1. Optimum pH Ranges and pH-Stability of Modified Laccases
2.3.2. Optimum Temperature and Thermal Stability of Modified Laccases
2.3.3. Laccase Inhibitors
2.4. Prediction of Ensifer Meliloti L3.8 and Cerrena Unicolor C-139 Laccase Structure
3. Results
3.1. Influence of Modification on the Activity and Stability of E. Meliloti L3.8 and C. Unicolor C-139 Laccases
3.2. Comparative Analysis of the Structural Properties of E. Meliloti L3.8 and C. Unicolor C-139 Laccase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Institutional Review Board Statement:
Informed Consent Statement:
Appendix A
Sample Shortcut (Name) | Description of Modifications |
---|---|
Ensifer meliloti laccase | |
EM_control | Control experiment for untreated E. meliloti laccase |
EGNHS-EM | EGNHS-modified E. meliloti laccase |
CA-EM | CA-modified E. meliloti laccase |
GA-EM | GA-modified E. meliloti laccase |
CDI-EM | CDI-modified E. meliloti |
GA-CDI-EM | GA-CDI-modified E. meliloti laccase |
GA-ver-EM | GA-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
CDI-ver-EM | CDI-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
GA-CDI-ver-EM | GA/CDI-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
NHSP-EM | NHSP-modified E. meliloti laccase |
NHSP-ver-EM | NHSP-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
Glc-EM | Glucose-modified E. meliloti laccase |
Gal-EM | Galactose-modified E. meliloti laccase |
Cel-EM | Cellobiose-modified E. meliloti laccase |
Lac-EM | Lactose-modified E. meliloti laccase |
Glc-ver-EM | Glucose-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
Gal-ver-EM | Galactose-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
Cel-ver-EM | Cellobiose-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
Lac-ver-EM | Lactose-modified E. meliloti laccase having inactivated enzyme catalytic site with veratric acid |
PS-EM | Polymeric sucrose-modified E. meliloti laccase |
Cerrena unicolor laccase | |
CU_control | Control experiment for untreated C. unicolor laccase |
EGNHS-CU | EGNHS-modified C. unicolor laccase |
CA-SM | CA-modified C. unicolor laccase |
PS-CU | Polymeric sucrose-modified C. unicolor laccase |
References
- Roy, J.J.; Abraham, T.E. Strategies in making cross-linked enzyme crystals. Chem. Rev. 2004, 104, 3705–3721. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, A.; Davis, B.G. Chemical modification in the creation of novel biocatalysts. Curr. Opin. Chem. Biol. 2011, 15, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.; Pagar, A.D.; Patil, M.D.; Yun, H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol. Adv. 2021, 53, 107868. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef]
- Kunamneni, A.; Plou, F.J.; Ballesteros, A.; Alcalde, M. Laccases and their applications: A patent review. Recent Pat. Biotechnol. 2008, 2, 10–24. [Google Scholar] [CrossRef]
- Piontek, K.; Antorini, M.; Choinowski, T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J. Biol. Chem. 2002, 277, 37663–37669. [Google Scholar] [CrossRef]
- Xu, F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry 1996, 35, 7608–7614. [Google Scholar] [PubMed]
- Xu, F.; Shin, W.; Brown, S.H.; Wahleithner, J.A.; Sundaram, U.M.; Solomon, E.I. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophys. Acta 1996, 1292, 303–311. [Google Scholar]
- Sakurai, T. Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II). Biochem. J. 1992, 284 Pt 3, 681–685. [Google Scholar]
- Loncar, N.; Bozic, N.; Lopez-Santin, J.; Vujcic, Z. Bacillus amyloliquefaciens laccase--from soil bacteria to recombinant enzyme for wastewater decolorization. Bioresour. Technol. 2013, 147, 177–183. [Google Scholar]
- Virk, A.P.; Sharma, P.; Capalash, N. Use of laccase in pulp and paper industry. Biotechnol. Prog. 2012, 28, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, R.; Belbahri, L.; Woodward, S.; Ellouz, M.; Dhouib, A.; Sayadi, S.; Mechichi, T. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J. Hazard. Mater. 2010, 175, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Benzina, O.; Daassi, D.; Zouari-Mechichi, H.; Frikha, F.; Woodward, S.; Belbahri, L.; Rodriguez-Couto, S.; Mechichi, T. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system. Environ. Sci. Pollut. Res. Int. 2013, 20, 5177–5187. [Google Scholar] [CrossRef] [PubMed]
- Backes, E.; Kato, C.G.; Corrêa, R.C.G.; Peralta Muniz Moreira, R.D.F.; Peralta, R.A.; Barros, L.; Ferreira, I.C.F.R.; Zanin, G.M.; Bracht, A.; Peralta, R.M. Laccases in food processing: Current status, bottlenecks and perspectives. Trends Food Sci. Technol. 2021, 115, 445–460. [Google Scholar] [CrossRef]
- Saito, K.; Ikeda, R.; Endo, K.; Tsujino, Y.; Takagi, M.; Tamiya, E. Isolation of a novel alkaline-induced laccase from Flammulina velutipes and its application for hair coloring. J. Biosci. Bioeng. 2012, 113, 575–579. [Google Scholar] [CrossRef]
- Bolli, A.; Galluzzo, P.; Ascenzi, P.; Del Pozzo, G.; Manco, I.; Vietri, M.T.; Mita, L.; Altucci, L.; Mita, D.G.; Marino, M. Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor alpha-dependent rapid signals. IUBMB Life 2008, 60, 843–852. [Google Scholar] [CrossRef]
- Wu, X.; Huang, C.; Chen, Q.; Wang, H.; Zhang, J. A novel laccase with inhibitory activity towards HIV-I reverse transcriptase and antiproliferative effects on tumor cells from the fermentation broth of mushroom Pleurotus cornucopiae. Biomed. Chromatogr. 2013, 28, 548–553. [Google Scholar] [CrossRef]
- Ren, X.J.; Fan, C.Z.; Lu, L.H.; Wang, C.; Zeng, G.M. Isolation, identification and enzymological characterization of a new fungal with high laccase production from agricultural waste composting. Huan Jing Ke Xue 2012, 33, 3220–3227. [Google Scholar]
- Chen, X.; Zhu, Y.; Chen, F.; Li, Z.; Zhang, X.; Wang, G.; Ji, J.; Guan, C. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil. Sci. Total Environ. 2023, 905, 167305. [Google Scholar] [CrossRef]
- Margot, J.; Bennati-Granier, C.; Maillard, J.; Blanquez, P.; Barry, D.A.; Holliger, C. Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express 2013, 3, 63. [Google Scholar] [CrossRef]
- Uthandi, S.; Prunetti, L.; De Vera, I.M.; Fanucci, G.E.; Angerhofer, A.; Maupin-Furlow, J.A. Enhanced archaeal laccase production in recombinant Escherichia coli by modification of N-terminal propeptide and twin arginine translocation motifs. J. Ind. Microbiol. Biotechnol. 2012, 39, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.F.; Yang, D.J.; Bai, M.X.; Qiu, X.Q. The influence of laccase modification on the adsorption of lignosulfonate. Adv. Mater. Res. 2012, 550–553, 1266–1269. [Google Scholar] [CrossRef]
- Theerachat, M.; Emond, S.; Cambon, E.; Bordes, F.; Marty, A.; Nicaud, J.M.; Chulalaksananukul, W.; Guieysse, D.; Remaud-Simeon, M.; Morel, S. Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresour. Technol. 2012, 125, 267–274. [Google Scholar] [CrossRef]
- Camarero, S.; Pardo, I.; Canas, A.I.; Molina, P.; Record, E.; Martinez, A.T.; Martinez, M.J.; Alcalde, M. Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2012, 78, 1370–1384. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, H.; Dhoke, G.V.; Zou, Z.; Sauer, D.F.; Davari, M.D.; Schwaneberg, U. Engineering of laccase CueO for improved electron transfer in bioelectrocatalysis by semi-rational design. Chem-Eur. J. 2020, 26, 4974–4979. [Google Scholar] [CrossRef]
- Mateljak, I.; Alcalde, M. Engineering a highly thermostable high-redox potential laccase. ACS Sustain. Chem. Eng. 2021, 9, 9632–9637. [Google Scholar] [CrossRef]
- Danait-Nabar, S.; Singhal, R.S. Chemical modification of laccase using phthalic and 2-octenyl succinic anhydrides: Enzyme characterization, stability, and its potential for clarification of cashew apple juice. Process Biochem. 2022, 122, 181–195. [Google Scholar] [CrossRef]
- DeSantis, G.; Jones, J.B. Chemical modification of enzymes for enhanced functionality. Curr. Opin. Biotechnol. 1999, 10, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Bhardwaj, P.; Ishqi, H.M.; Shahid, M.; Islam, A. Laccase engineering: Redox potential is not the only activity-determining feature in the metalloproteins. Molecules 2023, 28, 6209. [Google Scholar] [CrossRef]
- Mate, D.M.; Alcalde, M. Laccase engineering: From rational design to directed evolution. Biotechnol. Adv. 2015, 33, 25–40. [Google Scholar] [CrossRef]
- Schroeder, M.; Heumann, S.; Silva, C.J.; Cavaco-Paulo, A.; Guebitz, G.M. Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates. Biotechnol. Lett. 2006, 28, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Hassani, T.; Ba, S.; Cabana, H. Formation of enzyme polymer engineered structure for laccase and cross-linked laccase aggregates stabilization. Bioresour. Technol. 2013, 128, 640–645. [Google Scholar] [CrossRef]
- Steffensen, C.L.; Andersen, M.L.; Degn, P.E.; Nielsen, J.H. Cross-linking proteins by laccase-catalyzed oxidation: Importance relative to other modifications. J. Agric. Food Chem. 2008, 56, 12002–12010. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Janusz, G.; Karczmarczyk, I.; Rogalski, J. Chemical modifications of laccase from white-rot basidiomycete Cerrena unicolor. Appl. Biochem. Biotechnol. 2012, 168, 1989–2003. [Google Scholar] [CrossRef] [PubMed]
- Lindeberg, G.; Holm, G. Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiol. Plant. 1952, 5, 100–114. [Google Scholar] [CrossRef]
- Janusz, G.; Rogalski, J.; Szczodrak, J. Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J. Microbiol. Biotechnol. 2007, 23, 1459–1464. [Google Scholar] [CrossRef]
- Vincent, J.M. A Manual for the Practical Study of Root-Nodule Bacteria; IBP Handbk 15 Oxford and Edinburgh; Blackwell Scientific: Oxford, UK, 1970; p. 164. [Google Scholar]
- Castro-Sowinski, S.; Martinez-Drets, G.; Okon, Y. Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol. Lett. 2002, 209, 119–125. [Google Scholar] [PubMed]
- Rosconi, F.; Fraguas, L.F.; Martinez-Drets, G.; Castro-Sowinski, S. Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzym. Microb. Technol. 2005, 36, 800–807. [Google Scholar] [CrossRef]
- Pawlik, A.; Wojcik, M.; Rulka, K.; Motyl-Gorzel, K.; Osinska-Jaroszuk, M.; Wielbo, J.; Marek-Kozaczuk, M.; Skorupska, A.; Rogalski, J.; Janusz, G. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. Int. J. Biol. Macromol. 2016, 92, 138–147. [Google Scholar] [CrossRef]
- Habeeb, A.F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 1966, 14, 328–336. [Google Scholar]
- Leonowicz, A.; Grzywnowicz, K. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzym. Microb. Technol. 1981, 3, 55–58. [Google Scholar] [CrossRef]
- Forde, J.; Tully, E.; Vakurov, A.; Gibson, T.D.; Millner, P.; O’Fagain, C. Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzym. Microb. Technol. 2010, 46, 430–437. [Google Scholar] [CrossRef]
- Sundaram, P.V.; Venkatesh, R. Retardation of thermal and urea induced inactivation of alpha-chymotrypsin by modification with carbohydrate polymers. Protein Eng. 1998, 11, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Cavallo, L.; Kleinjung, J.; Fraternali, F. POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucl. Acids Res. 2003, 31, 3364–3366. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Bertoline, L.M.F.; Lima, A.N.; Krieger, J.E.; Teixeira, S.K. Before and after AlphaFold2: An overview of protein structure prediction. Front. Bioinform. 2023, 3, 1120370. [Google Scholar] [CrossRef]
- Cretin, G.; Galochkina, T.; Vander Meersche, Y.; de Brevern, A.G.; Postic, G.; Gelly, J.-C. SWORD2: Hierarchical analysis of protein 3D structures. Nucl. Acids Res. 2022, 50, W732–W738. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Tantipanjaporn, A.; Wong, M.-K. Development and recent advances in lysine and N-terminal bioconjugation for peptides and proteins. Molecules 2023, 28, 1083. [Google Scholar] [CrossRef]
- Salem, M.; Mauguen, Y.; Prange, T. Revisiting glutaraldehyde cross-linking: The case of the Arg-Lys intermolecular doublet. Acta Crystallogr. F 2010, 66, 225–228. [Google Scholar] [CrossRef]
- Pessatti, T.B.; Terenzi, H.; Bertoldo, J.B. Protein modifications: From chemoselective probes to novel biocatalysts. Catalysts 2021, 11, 1466. [Google Scholar] [CrossRef]
- Matos, M.J.; Oliveira, B.L.; Martínez-Sáez, N.; Guerreiro, A.; Cal, P.M.S.D.; Bertoldo, J.; Maneiro, M.; Perkins, E.; Howard, J.; Deery, M.J.; et al. Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018, 140, 4004–4017. [Google Scholar] [CrossRef]
- Liu, R.; Yue, Z.; Tsai, C.-C.; Shen, J. Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors. J. Am. Chem. Soc. 2019, 141, 6553–6560. [Google Scholar] [CrossRef]
- Shin-ya, Y.; Aye, H.N.; Hong, K.-J.; Kajiuchi, T. Efficacy of amphiphile-modified laccase in enzymatic oxidation and removal of phenolics in aqueous solution. Enzym. Microb. Technol. 2005, 36, 147–152. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact. 2019, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Gräff, M.; Buchholz, P.C.F.; Le Roes-Hill, M.; Pleiss, J. Multicopper oxidases: Modular structure, sequence space, and evolutionary relationships. Proteins Struct. Funct. Bioinform. 2020, 88, 1329–1339. [Google Scholar] [CrossRef]
- Komori, H.; Higuchi, Y. Structure and molecular evolution of multicopper blue proteins. Biomol. Concepts 2010, 1, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Larrondo, L.F.; Salas, L.; Melo, F.; Vicuña, R.; Cullen, D. A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl. Environ. Microbiol. 2003, 69, 6257–6263. [Google Scholar] [CrossRef]
- Polyansky, A.A.; Zagrovic, B. Protein electrostatic properties predefining the level of surface hydrophobicity change upon phosphorylation. J. Phys. Chem. Lett. 2012, 3, 973–976. [Google Scholar] [CrossRef]
- Naowarojna, N.; Cheng, R.; Lopez, J.; Wong, C.; Qiao, L.; Liu, P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth. Syst. Biotechnol. 2021, 6, 32–49. [Google Scholar] [CrossRef]
- Piersimoni, L.; Kastritis, P.L.; Arlt, C.; Sinz, A. Cross-linking mass spectrometry for investigating protein conformations and protein–protein interactions—A method for all seasons. Chem. Rev. 2022, 122, 7500–7531. [Google Scholar] [CrossRef]
- Haque, M.; Forte, N.; Baker, J.R. Site-selective lysine conjugation methods and applications towards antibody–drug conjugates. Chem. Commun. 2021, 57, 10689–10702. [Google Scholar] [CrossRef]
- Kamyshny, A.; Feldman, A.; Baszkin, A.; Boissonnade, M.M.; Rosilio, V.; Magdassi, S. Chemically modified glucose oxidase with enhanced hydrophobicity: Adsorption at polystyrene, silica, and silica coated by lipid monolayers. J. Colloid Interface Sci. 1999, 218, 300–308. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.M.; Ó’Fágáin, C.; Nielsen, P.F.; Welinder, K.G. Location of crosslinks in chemically stabilized horseradish peroxidase: Implications for design of crosslinks. Biotechnol. Bioeng. 2001, 76, 277–284. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Yin, D.; Xu, X.; Tan, T.; Lv, Y. Boosted activity by engineering the enzyme microenvironment in cascade reaction: A molecular understanding. Synth. Syst. Biotechnol. 2021, 6, 163–172. [Google Scholar] [CrossRef]
- Xue, Y.; Wu, C.-Y.; Branford-White, C.J.; Ning, X.; Nie, H.-L.; Zhu, L.-M. Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J. Mol. Catal. B Enzym. 2010, 63, 188–193. [Google Scholar] [CrossRef]
- Jaiswal, N.; Jaiswal, P. Thermostable α-amylases and laccases: Paving the way for sustainable industrial applications. Processes 2024, 12, 1341. [Google Scholar] [CrossRef]
- Strong, P.J.; Claus, H. Laccase: A review of its past and its future in bioremediation. Crit. Rev. Environ. Sci. Technol. 2011, 41, 373–434. [Google Scholar] [CrossRef]
- Majeau, J.-A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 2010, 101, 2331–2350. [Google Scholar] [CrossRef]
- Buzzo, B.B.; Lima, N.S.M.; Pereira, P.A.M.; Gomes-Pepe, E.S.; Sartini, C.C.F.; Lemos, E.G.d.M. Lignin degradation by a novel thermophilic and alkaline yellow laccase from Chitinophaga sp. Microbiol. Spectr. 2024, 12, e04013-23. [Google Scholar] [CrossRef]
- Liu, N.; Shen, S.; Jia, H.; Yang, B.; Guo, X.; Si, H.; Cao, Z.; Dong, J. Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green. Int. J. Biol. Macromol. 2019, 138, 21–28. [Google Scholar] [CrossRef]
- Ayodeji, F.D.; Shava, B.; Iqbal, H.M.N.; Ashraf, S.S.; Cui, J.; Franco, M.; Bilal, M. Biocatalytic versatilities and biotechnological prospects of laccase for a sustainable industry. Catal. Lett. 2023, 153, 1932–1956. [Google Scholar] [CrossRef]
- Nwagu, T.N.; Okolo, B.; Aoyagi, H.; Yoshida, S. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius. Int. J. Biol. Macromol. 2017, 99, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tsai, C.-J.; Ma, B.; Nussinov, R. Contribution of salt bridges toward protein thermostability. J. Biomol. Struct. Dyn. 2000, 17, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Díaz, R.; Díaz-Godínez, G.; Anducho-Reyes, M.A.; Mercado-Flores, Y.; Herrera-Zúñiga, L.D. In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Front. Microbiol. 2018, 9, 2743. [Google Scholar] [CrossRef]
- Abdoul, R.; Peters, G.H.; Karl, J.J.; Westh, P. Effects of mannose, fructose, and fucose on the structure, stability, and hydration of lysozyme in aqueous solution. Curr. Phys. Chem. 2013, 3, 113–125. [Google Scholar] [CrossRef]
- Nwagu, T.N.; Aoyagi, H.; Okolo, B.; Moneke, A.; Yoshida, S. Citraconylation and maleylation on the catalytic and thermodynamic properties of raw starch saccharifying amylase from Aspergillus carbonarius. Heliyon 2020, 6, e04351. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nakagawa, T.; Uchida, Y.; Seki, K.; Ohba, M.; Kondo, K. Effect of modification of citraconic anhydrides on catalytic activity and thermostability of enzymes. J. Chem. Technol. Biotechnol. 2016, 91, 59–64. [Google Scholar] [CrossRef]
- Xu, W.; He, K.; Lin, Z.; McClements, D.J.; Jin, Z.; Chen, L. Progress in using cross-linking technologies to increase the thermal stability of colloidal delivery systems. Crit. Rev. Food Sci. Nutr. 2024, 1–15. [Google Scholar] [CrossRef]
- Dickinson, E. Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 2008, 4, 932–942. [Google Scholar] [CrossRef]
- Benichou, A.; Aserin, A.; Garti, N. Protein-polysaccharide interactions for stabilization of food emulsions. J. Dispers. Sci. Technol. 2002, 23, 93–123. [Google Scholar] [CrossRef]
- González-González, P.; Gómez-Manzo, S.; Tomasini, A.; Martínez y Pérez, J.L.; García Nieto, E.; Anaya-Hernández, A.; Ortiz Ortiz, E.; Castillo Rodríguez, R.A.; Marcial-Quino, J.; Montiel-González, A.M. Laccase production from Agrocybe pediades: Purification and functional characterization of a consistent laccase isoenzyme in liquid culture. Microorganisms 2023, 11, 568. [Google Scholar] [CrossRef]
- Janusz, G.; Skwarek, E.; Pawlik, A. Potential of laccase as a tool for biodegradation of wastewater micropollutants. Water 2023, 15, 3770. [Google Scholar] [CrossRef]
Modification | Recovery of Initial Activity [%] | DM * [%] | pH Optimum | Temperature Optimum [°C] |
---|---|---|---|---|
EM_control | 100 | - | 6.0 | 80 |
EGNHS-EM | 82.0 ± 1.24 | 30.78 ± 0.8 | 6.5 | 80 |
CA-EM | 90.1 ± 4.16 | 28.64 ± 1.13 | 6.5 | 80 |
GA-EM | 97.5 ± 1.25 | 22.07 ± 0.86 | 6.5 | 80 |
CDI-EM | 98.3 ± 5 | 13.76 ± 0.48 | 6.5 | 80 |
GA-CDI-EM | 105.0 ± 0 | 5.53 ± 0.3 | 6.5 | 60 |
GA-ver-EM | 84.2 ± 2.92 | 43.47 ± 1.34 | 6.5 | 80 |
CDI-ver-EM | 104.2 ± 1.25 | 18.72 ± 0.63 | 6.5 | 80 |
GA-CDI-ver-EM | 95.8 ± 1.25 | 33.08 ± 0.49 | 6.0 | 60 |
NHSP-EM | 42.2 ± 2.32 | 59.18 ± 0.57 | 6.5 | 60 |
NHSP-ver-EM | 40.7 ± 1.58 | 62.94 ± 0.77 | 6.0 | 80 |
Glc-EM | 87.8 ± 0.46 | 0.00 | 7.0 | 80 |
Gal-EM | 77.2 ± 5.36 | 3.48 ± 0.1 | 6.5 | 80 |
Cel-EM | 88.3 ± 0.2 | 11.97 ± 0.3 | 6.0 | 80 |
Lac-EM | 92.1 ± 4.44 | 3.81 ± 0.12 | 6.0 | 80 |
Glc-ver-EM | 80.4 ± 2.85 | 0.00 | 6.5 | 80 |
Gal-ver-EM | 85.6 ± 1.19 | 0.00 | 6.0 | 80 |
Cel-ver-EM | 103.7 ± 0.46 | 0.97 ± 0.7 | 6.5 | 70 |
Lac-ver-EM | 106.2 ± 3.05 | 8.33 ± 0.29 | 6.5 | 80 |
PS-EM | 119.7 ± 2.3 | 0.69 ± 0.13 | 7.0 | 80 |
CU_control | 100 | - | 5.5 | 80 |
EGNHS-CU | 115.6 ± 0.91 | 57.01 ± 1.45 | 5.5 | 80 |
CA-CU | 105.0 ± 1.63 | 0.00 | 6.0 | 80 |
PS-CU | 100.7 ± 0.53 | 35.02 ± 0.69 | 5.5 | 80 |
Modification | kd (min−1) * | t1/2 (Min) † | R # |
---|---|---|---|
EM_control | 31.55 × 10−4 | 219.7 | - |
Glc-ver-EM | 44.81 × 10−4 | 154.7 | 0.7 |
Glc-EM | 53.36 × 10−4 | 129.9 | 0.6 |
Gal-ver-EM | 27.45 × 10−4 | 252.5 | 1.1 |
Gal-EM | 59.55 × 10−4 | 116.4 | 0.5 |
Cel-ver-EM | 39.54 × 10−4 | 175.3 | 0.8 |
Cel-EM | 48.10 × 10−4 | 144.1 | 0.7 |
Lac-ver-EM | 38.90 × 10−4 | 178.2 | 0.8 |
Lac-EM | 70.87 × 10−4 | 97.8 | 0.4 |
GA-ver-EM | 45.27 × 10−4 | 153.1 | 0.7 |
GA-EM | 62.17 × 10−4 | 111.5 | 0.5 |
CDI-ver-EM | 50.30 × 10−4 | 137.8 | 0.6 |
CDI-EM | 26.18 × 10−4 | 264.8 | 1.2 |
GA-CDI-ver-EM | 7.38 × 10−4 | 938.7 | 4.3 |
GA-CDI-EM | 20.70 × 10−4 | 334.9 | 1.5 |
NHSP-ver-EM | 110.02 × 10−4 | 63.0 | 0.3 |
NHSP-EM | 108.99 × 10−4 | 63.6 | 0.3 |
CA-EM | 116.11 × 10−4 | 59.7 | 0.3 |
EGNHS-EM | 25.46 × 10−4 | 272.2 | 1.2 |
PS-EM | 15.85 × 10−4 | 437.3 | 2.0 |
CU_control | 145.31 × 10−4 | 47.7 | - |
CA-CU | 3.88 × 10−4 | 1787.4 | 37.5 |
EGNHS-CU | 62.39 × 10−4 | 111.1 | 2.3 |
PS-CU | 11.54 × 10−4 | 600.8 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, A.; Drozd, R.; Janusz, G. Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules 2025, 15, 531. https://doi.org/10.3390/biom15040531
Pawlik A, Drozd R, Janusz G. Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules. 2025; 15(4):531. https://doi.org/10.3390/biom15040531
Chicago/Turabian StylePawlik, Anna, Radosław Drozd, and Grzegorz Janusz. 2025. "Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins" Biomolecules 15, no. 4: 531. https://doi.org/10.3390/biom15040531
APA StylePawlik, A., Drozd, R., & Janusz, G. (2025). Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules, 15(4), 531. https://doi.org/10.3390/biom15040531