Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer’s Disease, Creutzfeldt–Jakob Disease and Cerebral Amyloid Angiopathy
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy-Selection Criteria
3. Results
3.1. Human Prion Diseases
3.2. Beyond Human Prion Diseases, Toward Other Neurodegenerative Diseases
3.2.1. Transmission Potential of Aβ Pathology
3.2.2. Iatrogenic Cerebral Amyloid Angiopathy (iCAA)
3.2.3. Iatrogenic Alzheimer’s Disease (iAD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 4 February 2025).
- Walker, L.; McAleese, K.E.; Erskine, D.; Attems, J. Neurodegenerative Diseases and Ageing. Subcell. Biochem. 2019, 91, 75–106. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, D.L.; Barria, M.A. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 4 February 2025).
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Mizusawa, H. Prion diseases, always a threat? J. Neurol. Sci. 2024, 463, 123119. [Google Scholar] [CrossRef]
- Cali, I.; Cohen, M.L.; Haik, S.; Parchi, P.; Giaccone, G.; Collins, S.J.; Kofskey, D.; Wang, H.; McLean, C.A.; Brandel, J.P.; et al. Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: An international study. Acta Neuropathol. Commun. 2018, 6, 5. [Google Scholar] [CrossRef]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef]
- Goedert, M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau and α-synuclein. Science 2015, 349, 601–610. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Brandner, S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol. Appl. Neurobiol. 2020, 46, 522–545. [Google Scholar] [CrossRef]
- Brown, P.; Brandel, J.P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R.G.; Ladogana, A.; Pocchiari, M.; Leschek, E.W.; Schonberger, L.B. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 2012, 18, 901–907. [Google Scholar] [CrossRef]
- Uttley, L.; Carroll, C.; Wong, R.; Hilton, D.A.; Stevenson, M. Creutzfeldt-Jakob disease: A systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect. Dis. 2020, 20, e2–e10. [Google Scholar] [CrossRef]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Nevin, S.; McMenemey, W.H.; Behrman, S.; Jones, D.P. Subacute spongiform encephalopathy—A subacute form of encephalopathy attributable to vascular dysfunction (spongiform cerebral atrophy). Brain 1960, 83, 519–563. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.; Wolf, J.; Collins, G.; DeVoe, A.B.; Streeten, B.; Cowen, D. Letter: Possible person-to-person transmission of Creutzfeldt-Jakob disease. N. Engl. J. Med. 1974, 290, 692–693. [Google Scholar] [CrossRef]
- Heckmann, J.G.; Lang, C.J.; Petruch, F.; Druschky, A.; Erb, C.; Brown, P.; Neundörfer, B. Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J. Neurol. Neurosurg. Psychiatry 1997, 63, 388–390. [Google Scholar] [CrossRef]
- Will, R.G.; Matthews, W.B. Evidence for case-to-case transmission of Creutzfeldt-Jakob disease. J. Neurol. Neurosurg. Psychiatry 1982, 45, 235–238. [Google Scholar] [CrossRef]
- Bernoulli, C.; Siegfried, J.; Baumgartner, G.; Regli, F.; Rabinowicz, T.; Gajdusek, D.C.; Gibbs, C.J., Jr. Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet 1977, 1, 478–479. [Google Scholar] [CrossRef]
- Gibbs, C.J., Jr.; Joy, A.; Heffner, R.; Franko, M.; Miyazaki, M.; Asher, D.M.; Parisi, J.E.; Brown, P.W.; Gajdusek, D.C. Clinical and pathological features and laboratory confirmation of Creutzfeldt-Jakob disease in a recipient of pituitary-derived human growth hormone. N. Engl. J. Med. 1985, 313, 734–738. [Google Scholar] [CrossRef]
- Koch, T.K.; Berg, B.O.; De Armond, S.J.; Gravina, R.F. Creutzfeldt-Jakob disease in a young adult with idiopathic hypopituitarism. Possible relation to the administration of cadaveric human growth hormone. N. Engl. J. Med. 1985, 313, 731–733. [Google Scholar] [CrossRef]
- Powell-Jackson, J.; Weller, R.O.; Kennedy, P.; Preece, M.A.; Whitcombe, E.M.; Newsom-Davis, J. Creutzfeldt-Jakob disease after administration of human growth hormone. Lancet 1985, 2, 244–246. [Google Scholar] [CrossRef]
- Centers for Disease Control (CDC). Rapidly progressive dementia in a patient who received a cadaveric dura mater graft. MMWR Morb. Mortal. Wkly. Rep. 1987, 36, 49–50, 55. [Google Scholar]
- Gao, L.P.; Tian, T.T.; Xiao, K.; Chen, C.; Zhou, W.; Liang, D.L.; Cao, R.D.; Shi, Q.; Dong, X.P. Updated global epidemiology atlas of human prion diseases. Front. Public Health 2024, 12, 1411489. [Google Scholar] [CrossRef]
- Urwin, P.J.; Mackenzie, J.M.; Llewelyn, C.A.; Will, R.G.; Hewitt, P.E. Creutzfeldt-Jakob disease and blood transfusion: Updated results of the UK Transfusion Medicine Epidemiology Review Study. Vox Sang. 2016, 110, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Kitamoto, T.; Mizusawa, H. Iatrogenic Creutzfeldt–Jakob disease. In Handbook of Clinical Neurology, 3rd ed.; Pocchiari, M., Manson, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 153, pp. 207–218. [Google Scholar] [CrossRef]
- Rudge, P.; Jaunmuktane, Z.; Adlard, P.; Bjurstrom, N.; Caine, D.; Lowe, J.; Norsworthy, P.; Hummerich, H.; Druyeh, R.; Wadsworth, J.D.; et al. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 2015, 138 Pt 11, 3386–3399. [Google Scholar] [CrossRef] [PubMed]
- Cordery, R.J.; Hall, M.; Cipolotti, L.; Al-Sarraj, S.; O’Donovan, D.G.; Davidson, L.; Adlard, P.; Rossor, M.N. Early cognitive decline in Creutzfeldt–Jakob disease associated with human growth hormone treatment. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1412–1416. [Google Scholar] [CrossRef]
- Yamada, M.; Noguchi-Shinohara, M.; Hamaguchi, T.; Nozaki, I.; Kitamoto, T.; Sato, T.; Nakamura, Y.; Mizusawa, H. Dura mater graft-associated Creutzfeldt–Jakob disease in Japan: Clinicopathological and molecular characterization of the two distinct subtypes. Neuropathology 2009, 29, 609. [Google Scholar] [CrossRef]
- Knight, R. Infectious and Sporadic Prion Diseases. Prog. Mol. Biol. Transl. Sci. 2017, 150, 293–318. [Google Scholar] [CrossRef]
- Lauwers, E.; Lalli, G.; Brandner, S.; Collinge, J.; Compernolle, V.; Duyckaerts, C.; Edgren, G.; Haïk, S.; Hardy, J.; Helmy, A.; et al. Potential human transmission of amyloid β pathology: Surveillance and risks. Lancet Neurol. 2020, 19, 872–878. [Google Scholar] [CrossRef]
- Eisele, Y.S.; Obermuller, U.; Heilbronner, G.; Baumann, F.; Kaeser, S.A.; Wolburg, H.; Walker, L.C.; Staufenbiel, M.; Heikenwalder, M.; Jucker, M. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 2010, 330, 980–982. [Google Scholar] [CrossRef]
- Jucker, M.; Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 2011, 70, 532–540. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Mead, S.; Ellis, M.; Wadsworth, J.D.; Nicoll, A.J.; Kenny, J.; Launchbury, F.; Linehan, J.; Richard-Loendt, A.; Walker, A.S.; et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature 2015, 525, 247–250. [Google Scholar] [CrossRef]
- Purro, S.A.; Farrow, M.A.; Linehan, J.; Nazari, T.; Thomas, D.X.; Chen, Z.; Mengel, D.; Saito, T.; Saido, T.; Rudge, P.; et al. Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature 2018, 564, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Frontzek, K.; Lutz, M.I.; Aguzzi, A.; Kovacs, G.G.; Budka, H. Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med. Wkly. 2016, 146, w14287. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Lutz, M.I.; Ricken, G.; Ströbel, T.; Höftberger, R.; Preusser, M.; Regelsberger, G.; Hönigschnabl, S.; Reiner, A.; Fischer, P.; et al. Dura mater is a potential source of Aβ seeds. Acta Neuropathol. 2016, 131, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, T.; Taniguchi, Y.; Sakai, K.; Kitamoto, T.; Takao, M.; Murayama, S.; Iwasaki, Y.; Yoshida, M.; Shimizu, H.; Kakita, A.; et al. Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol. 2016, 132, 313–315. [Google Scholar] [CrossRef]
- Ritchie, D.L.; Adlard, P.; Peden, A.H.; Lowrie, S.; Le Grice, M.; Burns, K.; Jackson, R.J.; Yull, H.; Keogh, M.J.; Wei, W.; et al. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol. 2017, 134, 221–240. [Google Scholar] [CrossRef]
- Cozza, M.; Amadori, L.; Boccardi, V. Exploring cerebral amyloid angiopathy: Insights into pathogenesis, diagnosis, and treatment. J. Neurol. Sci. 2023, 454, 120866. [Google Scholar] [CrossRef]
- Singh, B.; Lavezo, J.; Gavito-Higueroa, J.; Ahmed, F.; Narasimhan, S.; Brar, S.; Cruz-Flores, S.; Kraus, J. Updated outlook of cerebral amyloid Angiopathy and inflammatory subtypes: Pathophysiology, clinical manifestations, diagnosis and management. J. Alzheimers Dis. Rep. 2022, 6, 627–639. [Google Scholar] [CrossRef]
- Malhotra, K.; Theodorou, A.; Katsanos, A.H.; Zompola, C.; Shoamanesh, A.; Boviatsis, E.; Paraskevas, G.P.; Spilioti, M.; Cordonnier, C.; Werring, D.J.; et al. Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis. Stroke 2022, 53, 1944–1953. [Google Scholar] [CrossRef]
- Jakel, L.; De Kort, A.M.; Klijn, C.J.M.; Schreuder, F.H.B.M.; Verbeek, M.M. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement. 2022, 18, 10–28. [Google Scholar] [CrossRef]
- Boyle, P.A.; Yu, L.; Nag, V.; Leurgans, S.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015, 85, 1930–1936. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Gurol, M.E.; Rosand, J.; Smith, E.E. Amyloid angiopathy-related vascular cognitive impairment. Stroke 2004, 35 (Suppl. S1), 2616–2619. [Google Scholar] [CrossRef] [PubMed]
- Jaunmuktane, Z.; Quaegebeur, A.; Taipa, R.; Viana-Baptista, M.; Barbosa, R.; Koriath, C.; Sciot, R.; Mead, S.; Brandner, S. Evidence of amyloid β cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol. 2018, 135, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Adams, M.E.; Jaunmuktane, Z.; Alistair Lammie, G.; Turner, B.; Wani, M.; Sawhney, I.M.S.; Houlden, H.; Mead, S.; Brandner, S.; et al. Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann. Neurol. 2019, 85, 284–290. [Google Scholar] [CrossRef]
- Hervé, D.; Porché, M.; Cabrejo, L.; Guidoux, C.; Tournier-Lasserve, E.; Nicolas, G.; Adle-Biassette, H.; Plu, I.; Chabriat, H.; Duyckaerts, C. Fatal A β cerebral amyloid angiopathy 4 decades after a dural graft at the age of 2 years. Acta Neuropathol. 2018, 135, 801–803. [Google Scholar] [CrossRef]
- Zhao, J.; Rostgaard, K.; Lauwers, E.; Dahlén, T.; Ostrowski, S.R.; Erikstrup, C.; Pedersen, O.B.; de Strooper, B.; Lemmens, R.; Hjalgrim, H.; et al. Intracerebral hemorrhage among blood donors and their transfusion recipients. JAMA 2023, 330, 941–950. [Google Scholar] [CrossRef]
- Kaushik, K.; Wermer, M.J.H.; van Etten, E.S. Cerebral amyloid angiopathy decades after red blood cell transfusions: A report of two cases from a prospective cohort. Eur. J. Neurol. 2024, 31, e16277. [Google Scholar] [CrossRef]
- DiFrancesco, J.C.; Tabaee Damavandi, P.; Pretnar-Oblak, J.; Frol, S.; de la Riva Juez, P.; Albajar Gomez, I.; Jensen-Kondering, U. Iatrogenic cerebral amyloid angiopathy after red blood cell transfusion? Eur. J. Neurol. 2024, 31, e16366. [Google Scholar] [CrossRef]
- Vera-Cáceres, C.; Nersesyan, N.; Obon, M.; Terceño, M.; Serena, J.; Álvarez-Cienfuegos, J.; Xuclà, T.; Bashir, S.; Silva, Y. Iatrogenic cerebral amyloid angiopathy: Two case reports to explore clinical heterogeneity and pathological patterns. J. Stroke Cerebrovasc. Dis. 2025, 34, 107969. [Google Scholar] [CrossRef]
- Muller, C. Case report of iatrogenic cerebral amyloid angiopathy after exposure to Lyodura: An Australian perspective. Front. Neurosci. 2023, 17, 1185267. [Google Scholar] [CrossRef]
- Jensen-Kondering, U.; Heß, K.; Flüh, C.; Kuhlenbäumer, G.; Margraf, N.G. A rare case of iatrogenic prion-like pathogenesis of cerebral amyloid angiopathy. Dtsch. Arztebl. Int. 2024, 121, 68–69. [Google Scholar] [CrossRef]
- Pikija, S.; Pretnar-Oblak, J.; Frol, S.; Malojcic, B.; Gattringer, T.; Rak-Frattner, K.; Staykov, D.; Salmaggi, A.; Milani, R.; Magdic, J.; et al. Iatrogenic cerebral amyloid angiopathy: A multinational case series and individual patient data analysis of the literature. Int. J. Stroke 2024, 19, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Samra, K.; Adams, M.E.; Jaunmuktane, Z.; Parry-Jones, A.R.; Grieve, J.; Toma, A.K.; Farmer, S.F.; Sylvester, R.; Houlden, H.; et al. Iatrogenic cerebral amyloid angiopathy: An emerging clinical phenomenon. J. Neurol. Neurosurg. Psychiatry 2022, 93, 693–700. [Google Scholar]
- Storti, B.; Gabriel, M.M.; Sennfält, S.; Canavero, I.; Rifino, N.; Gatti, L.; Bersano, A. Rare forms of cerebral amyloid angiopathy: Pathogenesis, biological and clinical features of CAA-ri and iCAA. Front. Neurosci. 2023, 17, 1219025. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, K.; van Etten, E.S.; Siegerink, B.; Kappelle, L.J.; Lemstra, A.W.; Schreuder, F.H.B.M.; Klijn, C.J.M.; Peul, W.C.; Terwindt, G.M.; van Walderveen, M.A.A.; et al. Iatrogenic Cerebral Amyloid Angiopathy Post Neurosurgery: Frequency, Clinical Profile, Radiological Features, and Outcome. Stroke 2023, 54, 1214–1223. [Google Scholar] [CrossRef]
- Panteleienko, L.; Mallon, D.; Oliver, R.; Toosy, A.; Hoshino, Y.; Murakami, A.; Kaushik, K.; Wermer, M.J.H.; Hara, H.; Yakushiji, Y.; et al. Iatrogenic cerebral amyloid angiopathy in older adults. Eur. J. Neurol. 2024, 31, e16278. [Google Scholar] [CrossRef]
- Kumar, A.; Sidhu, J.; Goyal, A.; Tsao, J.W.; Doerr, C. StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Duyckaerts, C.; Delatour, B.; Potier, M.C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009, 118, 5–36. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Catumbela, C.S.G.; Morales, R. Transmission of amyloid-β pathology in humans: A perspective on clinical evidence. Neural Regen. Res. 2024, 19, 390–392. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Banerjee, G.; Paine, S.; Parry-Jones, A.; Rudge, P.; Grieve, J.; Toma, A.K.; Farmer, S.F.; Mead, S.; Houlden, H.; et al. Alzheimer’s disease neuropathological change three decades after iatrogenic amyloid-β transmission. Acta Neuropathol. 2021, 142, 211–215. [Google Scholar] [CrossRef]
- Jucker, M.; Walker, L.C. Evidence for iatrogenic transmission of Alzheimer’s disease. Nat. Med. 2024, 30, 344–345. [Google Scholar] [CrossRef]
- Milani, R.; Mazzeo, L.A.; Vismara, D.; Salemi, I.; Dainese, E.; Maderna, E.; Pellencin, E.; Catania, M.; Campanella, N.; Di Fede, G.; et al. Spontaneous intracerebral haemorrhage associated with early-onset cerebral amyloid angiopathy and Alzheimer’s disease neuropathological changes five decades after cadaveric dura mater graft. Acta Neuropathol. Commun. 2023, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Farmer, S.F.; Hyare, H.; Jaunmuktane, Z.; Mead, S.; Ryan, N.S.; Schott, J.M.; Werring, D.J.; Rudge, P.; Collinge, J. Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone. Nat. Med. 2024, 30, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, F.; Martínez-Fernández, I.; Barbella-printe, R.; Vilar, I.F.; Ayo-Martín, O.; García-García, J.; Collado, R.; Andrés, A.; Hernández-Guillamón, M.; Pena Pardo, F.J.; et al. Iatrogenic cerebral amyloid angiopathy and Alzheimer’s disease co-pathology. Ann. Clin. Transl. Neurol. 2025, 12, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Holtzman, D.M.; Miller, B.L.; Grinberg, L.T.; Leschek, E.W. Insufficient evidence for an association between iatrogenic Alzheimer’s disease and cadaveric pituitary-derived growth hormone. Alzheimer’s Dement. 2024, 20, 7399–7402. [Google Scholar] [CrossRef]
- Singh, C.S.B.; Johns, K.M.; Kari, S.; Munro, L.; Mathews, A.; Fenninger, F.; Pfeifer, C.G.; Jefferies, W.A. Conclusive demonstration of iatrogenic Alzheimer’s disease transmission in a model of stem cell transplantation. Stem Cell Rep. 2024, 19, 456–468. [Google Scholar] [CrossRef]
- Lam, S.; Petit, F.; Hérard, A.S.; Boluda, S.; Eddarkaoui, S.; Guillermier, M.; Buée, L.; Duyckaerts, C.; Haïk, S.; et al.; The Brain Bank Neuro-C.E.B. Neuropathology Network Transmission of amyloid-beta and tau pathologies is associated with cognitive impairments in a primate. Acta Neuropathol. Commun. 2021, 9, 165. [Google Scholar] [CrossRef]
- Bonilauri, B. Exploring the Molecular Pathology of Iatrogenic Amyloidosis. J. Mol. Pathol. 2024, 5, 238–257. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Charidimou, A. Seed to Bleed: Iatrogenic Cerebral Amyloid Angiopathy. Stroke 2023, 54, 1224–1226. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatzetzou, S.; Ioannidis, S.; Konstantinopoulou, E.; Parisis, D.; Afrantou, T.; Ioannidis, P. Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer’s Disease, Creutzfeldt–Jakob Disease and Cerebral Amyloid Angiopathy. Biomolecules 2025, 15, 522. https://doi.org/10.3390/biom15040522
Karatzetzou S, Ioannidis S, Konstantinopoulou E, Parisis D, Afrantou T, Ioannidis P. Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer’s Disease, Creutzfeldt–Jakob Disease and Cerebral Amyloid Angiopathy. Biomolecules. 2025; 15(4):522. https://doi.org/10.3390/biom15040522
Chicago/Turabian StyleKaratzetzou, Stella, Serafeim Ioannidis, Eleni Konstantinopoulou, Dimitrios Parisis, Theodora Afrantou, and Panagiotis Ioannidis. 2025. "Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer’s Disease, Creutzfeldt–Jakob Disease and Cerebral Amyloid Angiopathy" Biomolecules 15, no. 4: 522. https://doi.org/10.3390/biom15040522
APA StyleKaratzetzou, S., Ioannidis, S., Konstantinopoulou, E., Parisis, D., Afrantou, T., & Ioannidis, P. (2025). Iatrogenic Dementia: Providing Insight into Transmissible Subtype of Alzheimer’s Disease, Creutzfeldt–Jakob Disease and Cerebral Amyloid Angiopathy. Biomolecules, 15(4), 522. https://doi.org/10.3390/biom15040522