A Review on the Etiologies of the Development of Atrial Fibrillation After Cardiac Surgery
Abstract
:1. Introduction
2. Methods
- •
- Eligibility criteria were established, prioritizing the following:
- ○
- Studies exploring the relationship between CPB or ACC durations and POAF.
- ○
- Articles presenting data on inflammatory markers, myocardial injury, or arrhythmogenesis linked to ACC durations.
- ○
- Randomized controlled trials and cohort studies published in English.
- •
- Exclusion criteria included the following:
- ○
- Case reports, conference abstracts, and articles without measurable outcomes related to POAF or ACC times.
- ○
- Studies focusing exclusively on off-pump cardiac procedures without cross-clamping.
3. Pathogenesis of POAF
3.1. Systemic Inflammation and Oxidative Stress
3.2. Atrial Remodeling and Structural Changes
3.3. Electrolyte Imbalances and Sympathetic Activation
3.4. Integration and Future Directions
3.5. Influence of CPB and ACC to Pathophysiological Changes
4. Influence of ACC Time on POAF
4.1. Emerging Biomarkers and Predictors of POAF
4.2. Inflammatory Markers and POAF Risk
4.3. Myocardial Injury and Atrial Remodeling
4.4. MicroRNAs and Molecular Insights
4.5. Proteomic and Metabolomic Predictors
5. Critical Analysis and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
POAF | Postoperative atrial fibrillation |
CABG | Coronary artery bypass grafting |
CPB | Cardiopulmonary bypass |
ACC | Aortic cross-clamping |
CC | Cross-clamping |
IL-6 | Interleukin 6 |
TNF-α | Tumor necrosis factor alpha |
NLR | Neutrophil-to-lymphocyte ratio |
PIV | Pan-immune inflammatory value |
ICU | Intensive care unit |
DNC | Del Nido cardioplegia |
CK-MB | Creatine kinase MB |
ROS | Reactive oxygen species |
AVR | Aortic valve replacement |
AF | Atrial fibrillation |
IABP | Intra-aortic balloon pump |
EcMO | Extracorporeal membrane oxygenation |
AKI | Acute kidney injury |
RRT | Renal replacement therapy |
PCI | Percutaneous coronary intervention |
MACE | Major adverse cardiac events |
NWR | Neutrophil-to-white cell ratio |
Hs-TnT | High-sensitivity troponin T |
CRP | C-reactive protein |
miRNA | MicroRNA |
CADM1/STAT3 | Cell adhesion molecule 1/transducer and activator of transcription 3 |
SERPINH1 | Serpin Family H Member 1 |
BNP | B-type natriuretic peptide |
PPARα | Peroxisome proliferator-activated receptor alpha |
References
- Lubitz, S.A.; Yin, X.; Rienstra, M.; Schnabel, R.B.; Walkey, A.J.; Magnani, J.W.; Rahman, F.; McManus, D.D.; Tadros, T.M.; Levy, D.; et al. Long-term outcomes of secondary atrial fibrillation in the community: The Framingham Heart Study. Circulation 2015, 131, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.A. Atrial fibrillation post cardiac surgery trends toward management. Heart Views 2010, 11, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Frendl, G.; Sodickson, A.C.; Chung, M.K.; Waldo, A.L.; Gersh, B.J.; Tisdale, J.E.; Calkins, H.; Aranki, S.; Kaneko, T.; Cassivi, S.; et al. 2014 AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, e153–e193. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.W.; Lancaster, T.S.; Schuessler, R.B.; Melby, S.J. Postoperative atrial fibrillation following cardiac surgery: A persistent complication. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2017, 52, 665–672. [Google Scholar] [CrossRef]
- El-Chami, M.F.; Kilgo, P.; Thourani, V.; Lattouf, O.M.; Delurgio, D.B.; Guyton, R.A.; Leon, A.R.; Puskas, J.D. New-onset atrial fibrillation predicts long-term mortality after coronary artery bypass graft. J. Am. Coll. Cardiol. 2010, 55, 1370–1376. [Google Scholar] [CrossRef]
- Yadava, M.; Hughey, A.B.; Crawford, T.C. Postoperative Atrial Fibrillation: Incidence, Mechanisms, and Clinical Correlates. Heart Fail. Clin. 2016, 12, 299–308. [Google Scholar] [CrossRef]
- Al-Sarraf, N.; Thalib, L.; Hughes, A.; Houlihan, M.; Tolan, M.; Young, V.; McGovern, E. Cross-clamp time is an independent predictor of mortality and morbidity in low- and high-risk cardiac patients. Int. J. Surg. 2011, 9, 104–109. [Google Scholar] [CrossRef]
- Yuksel, A.; Velioglu, Y.; Tecimer, M.E.; Kan, I.I.; Bicer, M.; Gurbuz, O.; Tok, M.; Ozdemir, B.; Binicier, N.A.; Signak, I.S. Is there any relationship of postoperative atrial fibrillation with the use of blood products and postoperative hemoglobin levels in patients undergoing coronary artery bypass grafting. Med. Sci. 2019, 8, 16–20. [Google Scholar] [CrossRef]
- Filardo, G.; Damiano, R.J., Jr.; Ailawadi, G.; Thourani, V.H.; Pollock, B.D.; Sass, D.M.; Phan, T.K.; Nguyen, H.; da Graca, B. Epidemiology of new-onset atrial fibrillation following coronary artery bypass graft surgery. Heart 2018, 104, 985–992. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Li, C.; Ma, Q.M.; Gu, Y.H.; Sheng, S.Y.; Ma, S.L.; Zhu, F. Alterations in novel inflammatory biomarkers during perioperative cardiovascular surgeries involving cardiopulmonary bypass: A retrospective propensity score matching study. Front. Cardiovasc. Med. 2024, 11, 1433011. [Google Scholar] [CrossRef]
- Arslan, G.; Erol, G.; Kartal, H.; Demirdas, E.; Bolcal, C. The Incidence of Atrial Fibrillation after On-Pump Versus Off-Pump Coronary Artery Bypass Grafting. Heart Surg. Forum 2021, 24, E645–E650. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Alberty, L.; Ye, S.; Elsenousi, A.; Hills, E.; King, M.; D’Silva, E.; Leon, A.P.; Salan-Gomez, M.; Li, M.; Hochman-Mendez, C.; et al. Effect of intraoperative support mode on circulating inflammatory biomarkers after lung transplantation surgery. Artif. Organs 2023, 47, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, Ö.; Başak, K.; Mustafa, A.; Elif, Ş.; Aycan, Ö.; Yaren, Ü.; Erkan, İ.; Hakan, Z.; Levent, O. Retrospective Research of Clinical and Hematological Changes Occurred by del Nido Cardioplegia in the Perioperative Period of Patients who Underwent Open-Heart Surgery. Gazi Med. J. 2024, 35, 276–280. [Google Scholar]
- Willekes, H.; Parker, J.; Neill, J., Jr.; Augustin, G.; Fanning, J.; Spurlock, D.; Murphy, E.; Leung, S.; Boeve, T.; Leacche, M.; et al. Efficacy of del Nido cardioplegia in adult cardiac procedures with prolonged aortic crossclamp time. J. Thorac. Cardiovasc. Surg. 2024, 167, 996–1007.e4. [Google Scholar] [CrossRef]
- Borulu, F.; Arslan, Ü.; Çalik, E.S.; Tayfur, K.; Erkut, B. Comparison of Del Nido (a different application) and crystalloid blood cardioplegia on arrhythmia and early results. J. Cardiothorac. Surg. 2024, 19, 230. [Google Scholar] [CrossRef]
- Thungathurthi, K.; Belbin, R.; Varghese, S.; McKay, G.; Bissaker, P. Risk of Atrial Fibrillation With Del Nido Cardioplegia in Isolated Coronary Bypass Surgery. Heart Lung Circ. 2024, 3, S25. [Google Scholar] [CrossRef]
- Zakkar, M.; Ascione, R.; James, A.F.; Angelini, G.D.; Suleiman, M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol. Ther. 2015, 154, 13–20. [Google Scholar] [CrossRef]
- Qu, C.; Wang, X.W.; Huang, C.; Qiu, F.; Xiang, X.Y.; Lu, Z.Q. High mobility group box 1 gene polymorphism is associated with the risk of postoperative atrial fibrillation after coronary artery bypass surgery. J. Cardiothorac. Surg. 2015, 10, 88. [Google Scholar] [CrossRef]
- Kota, R.; Gemelli, M.; Dimagli, A.; Suleiman, S.; Moscarelli, M.; Dong, T.; Angelini, G.D.; Fudulu, D.P. Patterns of cytokine release and association with new onset of post-cardiac surgery atrial fibrillation. Front. Surg. 2023, 10, 1205396. [Google Scholar] [CrossRef]
- Kottkamp, H. Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy. Eur. Heart J. 2013, 34, 2731–2738. [Google Scholar] [CrossRef]
- Rizvi, F.; Mirza, M.; Olet, S.; Albrecht, M.; Edwards, S.; Emelyanova, L.; Kress, D.; Ross, G.R.; Holmuhamedov, E.; Tajik, A.J.; et al. Noninvasive biomarker-based risk stratification for development of new onset atrial fibrillation after coronary artery bypass surgery. Int. J. Cardiol. 2020, 307, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, X.J.; Qian, C.; Dong, Q.; Ding, D.; Wu, Q.F.; Li, J.; Wang, H.F.; Li, W.H.; Xie, Q.; et al. Signal Transducer and Activator of Transcription 3/MicroRNA-21 Feedback Loop Contributes to Atrial Fibrillation by Promoting Atrial Fibrosis in a Rat Sterile Pericarditis Model. Circ. Arrhythmia Electrophysiol. 2016, 9, e003396. [Google Scholar] [CrossRef]
- Lancaster, T.S.; Schill, M.R.; Greenberg, J.W.; Moon, M.R.; Schuessler, R.B.; Damiano, R.J., Jr.; Melby, S.J. Potassium and Magnesium Supplementation Do Not Protect Against Atrial Fibrillation After Cardiac Operation: A Time-Matched Analysis. Ann. Thorac. Surg. 2016, 102, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C., Jr.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014, 64, e1–e76. [Google Scholar] [CrossRef]
- Samuels, L.; Navarro, C.; Poslock, L.; Raws, S.; Tuluca, A. Heart Rate Profiles of Patients Developing Atrial Fibrillation Following Coronary Artery Bypass Grafting: Consideration for a Threshold of Eighty Beats Per Minute or Less Postoperatively. Cardiovasc. Surg. Int. 2023, 3, CSI-03-1020. [Google Scholar]
- Atreya, A.R.; Priya, A.; Pack, Q.R.; Pekow, P.S.; Stefan, M.; Lagu, T.; Lotfi, A.S.; Lindenauer, P.K. Use and Outcomes Associated With Perioperative Amiodarone in Cardiac Surgery. J. Am. Heart Assoc. 2019, 8, e009892. [Google Scholar] [CrossRef]
- Akintoye, E.; Sellke, F.; Marchioli, R.; Tavazzi, L.; Mozaffarian, D. Factors associated with postoperative atrial fibrillation and other adverse events after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 155, 242–251.e10. [Google Scholar] [CrossRef]
- Dieberg, G.; Smart, N.A.; King, N. On- vs. off-pump coronary artery bypass grafting: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 223, 201–211. [Google Scholar] [CrossRef]
- Jeong, E.M.; Liu, M.; Sturdy, M.; Gao, G.; Varghese, S.T.; Sovari, A.A.; Dudley, S.C., Jr. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell Cardiol. 2012, 52, 454–463. [Google Scholar] [CrossRef]
- van Schie, M.S.; de Groot, N.M. Clinical Relevance of Sinus Rhythm Mapping to Quantify Electropathology Related to Atrial Fibrillation. Arrhythmia Electrophysiol. Rev. 2022, 11, e11. [Google Scholar] [CrossRef]
- van der Does, L.J.M.E.; Kharbanda, R.K.; Teuwen, C.P.; Knops, P.; Kik, C.; Bogers, A.J.J.C.; de Groot, N.M.S. Atrial Ectopy Increases Asynchronous Activation of the Endo- and Epicardium at the Right Atrium. J. Clin. Med. 2020, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Iino, K.; Miyata, H.; Motomura, N.; Watanabe, G.; Tomita, S.; Takemura, H.; Takamoto, S. Prolonged Cross-Clamping During Aortic Valve Replacement Is an Independent Predictor of Postoperative Morbidity and Mortality: Analysis of the Japan Cardiovascular Surgery Database. Ann. Thorac. Surg. 2017, 103, 602–609. [Google Scholar] [CrossRef]
- Kazemi, B.; Akbarzadeh, F.; Safaei, N.; Yaghoubi, A.; Shadvar, K.; Ghasemi, K. Prophylactic high-dose oral-N-acetylcysteine does not prevent atrial fibrillation after heart surgery: A prospective double blind placebo-controlled randomized clinical trial. Pacing Clin. Electrophysiol. 2013, 36, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, C.M.; Chung, M.K.; Van Wagoner, D.R.; Barringer, T.A.; Allen, K.; Ismail, H.M.; Zimmerman, B.; Olshansky, B. A Randomized, Placebo-Controlled Trial of Omega-3 Fatty Acids for Inhibition of Supraventricular Arrhythmias After Cardiac Surgery: The FISH Trial. J. Am. Heart Assoc. 2012, 1, e000547. [Google Scholar] [CrossRef]
- Imazio, M.; Brucato, A.; Ferrazzi, P.; Rovere, M.E.; Gandino, A.; Cemin, R.; Ferrua, S.; Belli, R.; Maestroni, S.; Simon, C.; et al. Colchicine reduces postoperative atrial fibrillation: Results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation 2011, 124, 2290–2295. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, V.G.; Bounader, K.; Verhoye, J.P.; Onorati, F.; Rubino, A.S.; Gatti, G.; Tauriainen, T.; De Feo, M.; Reichart, D.; Dalén, M.; et al. Prognostic Impact of Prolonged Cross-Clamp Time in Coronary Artery Bypass Grafting. Heart Lung Circ. 2018, 27, 1476–1482. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Azzam, M.E.; Lamlom, A.H.; Senna WG, A.; Sewielam, M.I.; Kandeel, T.M. The effect of the cross clamp time on the post-operative ventilation in post CABG patients. J. Adv. Pharm. Educ. Res. 2017, 7, 414–419. [Google Scholar]
- Erkut, B.; Ates, A. Investigation of the Effect of Cross-Clamp Time and Cross-Clamp Time on Troponin I Levels in Patients Undergoing Elective Coronary Artery Bypass Surgery. World J. Surg. Surg. Res. 2019, 2, 1110. [Google Scholar]
- Swinkels, B.M.; Ten Berg, J.M.; Kelder, J.C.; Vermeulen, F.E.; Van Boven, W.J.; de Mol, B.A. Effect of aortic cross-clamp time on late survival after isolated aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 2021, 32, 222–228. [Google Scholar] [CrossRef]
- Dayi, H.I.; Çalik, E.S.; Birdal, O.; Aydin, M.E.; Borulu, F.; Yildiz, Z.; Erkut, B.; Unlu, Y. Effect of Aortic Cross-Clamping Time on Development of Postoperative Atrial Fibrillation in Isolated CABG: A Single-Center Prospective Clinical Study. Braz. J. Cardiovasc. Surg. 2023, 38, e20220458. [Google Scholar] [CrossRef]
- Khassawneh, M.H.; Maayah, S.M.; Taleb MA, A.; Alrihani, M.A.; Alhourani, W.K. Correlation between Prolonged Aortic Cross Clamp and New Onset Cardiac Arrhythmia after Cardiac Surgery. SAS J. Surg. 2023, 6, 586–596. [Google Scholar] [CrossRef]
- Suehiro, S.; Shimizu, K.; Ito, M.; Nakata, H.; Akeho, K.; Oda, T. Recovery from very long aortic cross-clamping in redo complex aortic surgery. Gen. Thorac. Cardiovasc. Surg. 2018, 66, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Gosav, E.M.; Tanase, D.M.; Buliga-Finis, O.N.; Rezuș, I.I.; Morariu, P.C.; Floria, M.; Rezus, C. The prognostic role of the neutrophil-to-lymphocytes ratio in the most frequent cardiovascular diseases: An update. Life 2024, 14, 985. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Nguyen Khuong, J.; Borg Caruana, C.; Jackson, S.M.; Campbell, R.; Ramson, D.M.; Penny-Dimri, J.C.; Kluger, M.; Segal, R.; Perry, L.A. The Prognostic Value of Elevated Perioperative Neutrophil-Lymphocyte Ratio in Predicting Postoperative Atrial Fibrillation After Cardiac Surgery: A Systematic Review and Meta-Analysis. Heart Lung Circ. 2020, 29, 1015–1024. [Google Scholar] [CrossRef]
- Jacob, K.A.; Buijsrogge, M.P.; Frencken, J.F.; Ten Berg, M.J.; Suyker, W.J.; van Dijk, D.; Dieleman, J.M. White blood cell count and new-onset atrial fibrillation after cardiac surgery. Int. J. Cardiol. 2017, 228, 971–976. [Google Scholar] [CrossRef]
- Baba, D.F.; Suciu, H.; Avram, C.; Gyorgy, M.; Danilesco, A.; Huma, L.; Sin, I.A. Elevated levels of neutrophil-to monocyte ratio are associated with the initiation of paroxysmal documented atrial fibrillation in the first two months after heart transplantation: A uni-institutional retrospective study. J. Cardiovasc. Dev. Dis. 2023, 10, 81. [Google Scholar] [CrossRef]
- Narducci, M.L.; Pelargonio, G.; Rio, T.; Leo, M.; Di Monaco, A.; Musaico, F.; Pazzano, V.; Trotta, F.; Liuzzo, G.; Severino, A.; et al. Predictors of postoperative atrial fibrillation in patients with coronary artery disease undergoing cardiopulmonary bypass: A possible role for myocardial ischemia and atrial inflammation. J. Cardiothorac. Vasc. Anesth. 2014, 28, 512–519. [Google Scholar] [CrossRef]
- Cao, W.; Shi, P.; Ge, J.J. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc. Disord. 2017, 17, 88. [Google Scholar] [CrossRef]
- Rusu-Nastase, E.G.; Lupan, A.M.; Marinescu, C.I.; Neculachi, C.A.; Preda, M.B.; Burlacu, A. MiR-29a increase in aging may function as a compensatory mechanism against cardiac fibrosis through SERPINH1 downregulation. Front. Cardiovasc. Med. 2022, 8, 810241. [Google Scholar] [CrossRef]
- Harling, L.; Lambert, J.; Ashrafian, H.; Darzi, A.; Gooderham, N.J.; Athanasiou, T. Elevated serum microRNA 483-5p levels may predict patients at risk of post-operative atrial fibrillation. Eur. J. Cardio-Thorac. Surg. 2017, 51, 73–78. [Google Scholar] [CrossRef]
- Feldman, A.; Moreira DA, R.; Gun, C.; Wang, H.L.; Hirata, M.H.; de Freitas Germano, J.; Leite GG, S.; Farsky, P. Analysis of Circulating miR-1, miR-23a, and miR-26a in Atrial Fibrillation Patients Undergoing Coronary Bypass Artery Grafting Surgery. Ann. Hum. Genet. 2017, 81, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Hou, H.T.; Chen, H.X.; Liu, X.C.; Wang, J.; Yang, Q.; He, G.W. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2021, 162, 851–863. [Google Scholar] [CrossRef] [PubMed]
Study | Focus | Key Findings |
---|---|---|
Jeong et al., 2012 [29] | Analyzed the disruption of gap junction integrity and ion mishandling in CPB | Gap junction disruptions and ion mishandling lead to conduction abnormalities |
Qu et al., 2015 [18] | Focused on the endothelial dysfunction linked to oxidative stress in CPB | Endothelial dysfunction promotes inflammatory cascades, increasing arrhythmia risk |
Zakkar et al., 2015 [17] | Investigated ROS production and its impact on myocardial tissue during CPB | ROS production leads to oxidative damage and exacerbates myocardial stress |
Yadava et al., 2016 [6] | Examined systemic inflammatory markers like IL-6 and TNF-α during CPB | IL-6 and TNF-α elevations contribute significantly to atrial remodeling and arrhythmogenesis |
Arslan et al., 2021 [11] | Studied inflammatory markers (NLR, PIV, etc.) correlating with adverse outcomes | Higher NLR and PIV levels are associated with prolonged ventilation and ICU stay |
Chacon-Alberty et al., 2023 [12] | Investigated IL-6, TNF-α, and vascular injuries during CPB in lung transplantation | Vascular injuries and immune activation contribute to systemic inflammation during CPB |
Study | Type of Study and Patient Population | Aim | Outcomes | Focus | Key Mechanism | Definition, Duration, and Type of POAF | Perioperative Use of Antiarrhythmic Drugs |
---|---|---|---|---|---|---|---|
Mohamed et al., 2017 [37] | A prospective, non-randomized, single-center study which included 30 patients undergoing isolated on-pump CABG surgery | Investigation of the ACC’s effect on the mechanical ventilation postoperatively | Duration of mechanical ventilation, postoperative ischemia, postoperative myocardial infarction, re-exploration, neurologic dysfunction, renal impairment, chest infection and respiratory failure, length of ICU stay, in hospital length of stay, early mortality | ACC >60 min linked to systemic complications like renal dysfunction; POAF is not mentioned as an outcome | Systemic inflammation | N/A | N/A |
Ruggieri et al., 2018 [36] | A prospective, multicenter study which included 2962 patients undergoing isolated CABG operation | Investigation of the prognostic impact of prolonged ACC time | In-hospital/30-day mortality, prolonged inotropic support, postoperative use of IABP and EcMO, sternal wound infection, AKI, RRT, delirium, stroke, resternotomy for bleeding, need for PCI, atrial fibrillation, ICU stay, and the composite outcome E-CABG complication grades 3–4 * | Prolonged ACC (>75 min) associated with increased POAF and 30-day mortality | Ischemia–reperfusion injury | N/A | N/A |
Erkut and Ates, 2019 [38] | A prospective, single-center study which included 91 patients undergoing isolated and elective CABG surgery | Evaluation of the changes for troponin I levels during surgery and determination of the correlation between those and the ACC time | Need for inotropic support, AF, pulmonary dysfunction failure without intubation, defibrillation for ventricular fibrillation, postoperative IABP application, re-intubation, diuretic need, neurologic dysfunction, death, infections associated with sternotomy and mediastinal region, gastrointestinal dysfunction, and renal dysfunction | ACC > 50 min associated with elevated troponin I and myocardial injury | Myocardial injury (troponin I as marker) | N/A | N/A |
Swinkels et al., 2021 [39] | A retrospective cohort study, which included 456 consecutive patients who had undergone isolated aortic valve replacement | Identification of possible independent predictors of decreased late survival, including ACC and CPB | In-hospital MACEs **, late MACEs **, and late survival (until 30 years after surgery) | ACC predicts reduced long-term survival due to cardiac mortality | Long-term cardiac remodeling and mortality | New-onset or new, paroxysmal or permanent | N/A |
Dayi et al., 2023 [40] | A single-center prospective study which included 103 consecutive patients who underwent isolated CABG | Identification of the effect of ACC time on the development of POAF | Incidence of POAF | No significant association between ACC and POAF | No direct ACC–POAF link | Any AF episode that lasted > 15 min at ECG monitoring or needed therapy for hemodynamic instability was defined as POAF. | All the cases used b-blockers at least 24 h before the operation. |
Khassawneh et al., 2023 [41] | A single-center, retrospective study, which included 100 low-risk patients for arrythmia *** undergoing elective cardiac surgery | Evaluation of the correlation between prolonged ACC time and new onset of cardiac arrhythmia (atrial tachyarrhythmias, bradyarrhythmias, and ventricular arrhythmias) | Incidence of new-onset of cardiac arrhythmia | ACC > 90 min minimally impacts arrhythmias | Limited myocardial stress in low-risk cases | New-onset of cardiac arrhythmia (includes AF episodes) within the first 48 h postoperatively | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballas, C.; Katsouras, C.S.; Tourmousoglou, C.; Siaravas, K.C.; Tzourtzos, I.; Alexiou, C. A Review on the Etiologies of the Development of Atrial Fibrillation After Cardiac Surgery. Biomolecules 2025, 15, 374. https://doi.org/10.3390/biom15030374
Ballas C, Katsouras CS, Tourmousoglou C, Siaravas KC, Tzourtzos I, Alexiou C. A Review on the Etiologies of the Development of Atrial Fibrillation After Cardiac Surgery. Biomolecules. 2025; 15(3):374. https://doi.org/10.3390/biom15030374
Chicago/Turabian StyleBallas, Christos, Christos S. Katsouras, Christos Tourmousoglou, Konstantinos C. Siaravas, Ioannis Tzourtzos, and Christos Alexiou. 2025. "A Review on the Etiologies of the Development of Atrial Fibrillation After Cardiac Surgery" Biomolecules 15, no. 3: 374. https://doi.org/10.3390/biom15030374
APA StyleBallas, C., Katsouras, C. S., Tourmousoglou, C., Siaravas, K. C., Tzourtzos, I., & Alexiou, C. (2025). A Review on the Etiologies of the Development of Atrial Fibrillation After Cardiac Surgery. Biomolecules, 15(3), 374. https://doi.org/10.3390/biom15030374