It Takes Two to Tango: Current Understanding of the Role of M16 Family of Proteases and Their Structural Properties
Abstract
1. Introduction
2. General Structural and Functional Features of the M16 Proteases
- (a)
- The most typical feature of these peptidases is their bi-modularity, where the native molecule is formed by two parts, often referred to as “halves”. Both halves may be included in a single polypeptide chain (e.g., IDE) or they may constitute separate proteins (e.g., MPP). The presence of both halves is necessary to achieve full enzyme functionality.
- (b)
- (c)
- Within each half, two structurally homologous domains can be distinguished. Thus, the whole M16 molecule is composed of four domains with similar topology (Figure 1). The secondary structures of these domains in all characterized M16 proteases show a characteristic pattern: βββααββαααααβα (six β sheets and eight α helices) and ββααββαααααβ (five β sheets and seven α helices) for their N- (D1 and D3) and C-terminal domains (D2 and D4), respectively (Figure 2). Additional secondary structures can be identified within the structures of individual M16 protease members at different locations [13,22,23].
- (d)
- The components of the active center and the regulatory sites that bind substrates are accessible from the interior of the central chamber.
- (e)
- There are two main functional conformations: closed (associated with catalytic activity, with limited access to the central cavity) and open (allows substrate uptake or removal of degradation products).
3. Activity-Related Structural Motifs
3.1. Metal-Binding Motif
3.2. The R/Y Pair Motif
3.3. Glycine-Rich Loop
4. Substrate Specificity
4.1. Substrate Recognition by IDE and Other Examples of Peptidasomes
4.2. Substrate Recognition by the Mitochondrial Processing Peptidase (MPP)
4.3. Substrate Recognition by Presequence Peptidases (PreP)
5. Mechanism of Catalysis and Regulation of the Exemplary M16 Proteases
5.1. IDE’s Swinging Door Mechanism
5.2. Allosteric Regulation of IDE
5.3. Oligomerization
5.4. Modulation of IDE Activity and Substrate Specificity by Small Molecules
6. Structure and Function of the M16B Exemplary Proteins: The Mitochondrial Processing Peptidases and the Core Proteins of the bc1 Complex
7. Structure and Function of the Exemplary M16C Subfamily Members, Presequence Proteases
8. Structure and Function of the Protist M16 Metallopeptidases
9. Prokaryotic M16 Proteins
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| cryo-EM | cryo-electron microscopy |
| FLN | falcylisin |
| GRL | glycine-rich loop |
| HXXEH | amino acid sequence: His-X-X-Glu-His, X–any amino acid |
| IDE | insulin-degrading enzyme |
| MPP | mitochondrial processing peptidases |
| PreP | presequence peptidases |
| R/Y pair motif | Arg/Tyr pair motif |
| SAXS | small-angle X-ray scattering |
References
- Rawlings, N.D.; Barrett, A.J. 67—Introduction: Metallopeptidases and their clans. In Handbook of Proteolytic Enzymes, 2nd ed.; Barrett, A.J., Rawlings, N.D., Woessner, J.F., Eds.; Academic Press: London, UK, 2004; pp. 231–267. [Google Scholar]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, D.; Fasciglione, G.F.; Gioia, M.; Ciaccio, C.; Tundo, G.R.; Marini, S.; Coletta, M. Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol. Asp. Med. 2012, 33, 119–208. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J. Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem. J. 1991, 275 Pt 2, 389–391. [Google Scholar] [CrossRef]
- Becker, A.B.; Roth, R.A. An unusual active site identified in a family of zinc metalloendopeptidases. Proc. Natl. Acad. Sci. USA 1992, 89, 3835–3839. [Google Scholar] [CrossRef]
- Duckworth, W.C.; Bennett, R.G.; Hamel, F.G. Insulin degradation: Progress and potential. Endocr. Rev. 1998, 19, 608–624. [Google Scholar] [CrossRef]
- Kunová, N.; Havalová, H.; Ondrovičová, G.; Stojkovičová, B.; Bauer, J.A.; Bauerová-Hlinková, V.; Pevala, V.; Kutejová, E. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Int. J. Mol. Sci. 2022, 23, 1297. [Google Scholar] [CrossRef]
- Vögtle, F.N.; Brändl, B.; Larson, A.; Pendziwiat, M.; Friederich, M.W.; White, S.M.; Basinger, A.; Kücükköse, C.; Muhle, H.; Jähn, J.A.; et al. Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. Am. J. Hum. Genet. 2018, 102, 557–573. [Google Scholar] [CrossRef]
- Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 1976, 62, 327–367. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Esser, L.; Tang, W.K.; Zhou, F.; Zhou, Y.; Yu, L.; Yu, C.A. Structural analysis of cytochrome bc1 complexes: Implications to the mechanism of function. Biochim. Biophys. Acta 2013, 1827, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Yu, C.A.; Kim, H.; Xia, J.Z.; Kachurin, A.M.; Zhang, L.; Yu, L.; Deisenhofer, J. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 1997, 277, 60–66. [Google Scholar] [CrossRef]
- Wirjanata, G.; Lin, J.; Dziekan, J.M.; El Sahili, A.; Chung, Z.; Tjia, S.; Binte Zulkifli, N.E.; Boentoro, J.; Tham, R.; Jia, L.S.; et al. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem. Biol. 2024, 31, 743–759.e748. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yan, X.; Chung, Z.; Liew, C.W.; El Sahili, A.; Pechnikova, E.V.; Preiser, P.R.; Bozdech, Z.; Gao, Y.G.; Lescar, J. Inhibition of falcilysin from Plasmodium falciparum by interference with its closed-to-open dynamic transition. Commun. Biol. 2024, 7, 1070. [Google Scholar] [CrossRef]
- Xu, R.; Guo, Y.; Li, N.; Zhang, Q.; Wu, H.; Ryan, U.; Feng, Y.; Xiao, L. Characterization of INS-15, A Metalloprotease Potentially Involved in the Invasion of Cryptosporidium parvum. Microorganisms 2019, 7, 452. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Feng, Y.; Xiao, L.; Sibley, L.D. Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Xu, R.; Lai, C.; Yang, F.; Zhang, Q.; Li, N.; Guo, Y.; Xiao, L.; Feng, Y. Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Front. Microbiol. 2021, 12, 651512. [Google Scholar] [CrossRef]
- Huynh, M.H.; Roiko, M.S.; Gomes, A.O.; Schinke, E.N.; Schultz, A.J.; Agrawal, S.; Oellig, C.A.; Sexton, T.R.; Beauchamp, J.M.; Laliberté, J.; et al. Toxoplasma gondii Toxolysin 4 Contributes to Efficient Parasite Egress from Host Cells. mSphere 2021, 6, e0044421. [Google Scholar] [CrossRef]
- Tundo, G.R.; Grasso, G.; Persico, M.; Tkachuk, O.; Bellia, F.; Bocedi, A.; Marini, S.; Parravano, M.; Graziani, G.; Fattorusso, C.; et al. The Insulin-Degrading Enzyme from Structure to Allosteric Modulation: New Perspectives for Drug Design. Biomolecules 2023, 13, 1492. [Google Scholar] [CrossRef]
- Cerasuolo, M.; Auriemma, M.C.; Di Meo, I.; Lenti, C.; Papa, M.; Paolisso, G.; Rizzo, M.R. Understanding the Insulin-Degrading Enzyme: A New Look at Alzheimer’s Disease and Aβ Plaque Management. Int. J. Mol. Sci. 2025, 26, 6693. [Google Scholar] [CrossRef]
- Taylor, A.B.; Smith, B.S.; Kitada, S.; Kojima, K.; Miyaura, H.; Otwinowski, Z.; Ito, A.; Deisenhofer, J. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 2001, 9, 615–625. [Google Scholar] [CrossRef]
- Johnson, K.A.; Bhushan, S.; Ståhl, A.; Hallberg, B.M.; Frohn, A.; Glaser, E.; Eneqvist, T. The closed structure of presequence protease PreP forms a unique 10,000 Angstroms3 chamber for proteolysis. EMBO J. 2006, 25, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Joachimiak, A.; Rosner, M.R.; Tang, W.J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006, 443, 870–874. [Google Scholar] [CrossRef]
- King, J.V.; Liang, W.G.; Scherpelz, K.P.; Schilling, A.B.; Meredith, S.C.; Tang, W.J. Molecular basis of substrate recognition and degradation by human presequence protease. Structure 2014, 22, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.J.; Rawlings, N.D.; O’Brien, E.A. The MEROPS database as a protease information system. J. Struct. Biol. 2001, 134, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Aleshin, A.E.; Gramatikova, S.; Hura, G.L.; Bobkov, A.; Strongin, A.Y.; Stec, B.; Tainer, J.A.; Liddington, R.C.; Smith, J.W. Crystal and solution structures of a prokaryotic M16B peptidase: An open and shut case. Structure 2009, 17, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Chuma, A.; Mikami, B.; Hashimoto, W.; Murata, K. Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. J. Mol. Biol. 2011, 407, 180–192. [Google Scholar] [CrossRef]
- Ishida, K.; Nakamura, A.; Kojima, S. Crystal structure of the AlbEF complex involved in subtilosin A biosynthesis. Structure 2022, 30, 1637–1646.e1633. [Google Scholar] [CrossRef]
- Xu, M.; Xu, Q.; Wang, M.; Qiu, S.; Xu, D.; Zhang, W.; Wang, W.; He, J.; Wang, Q.; Ran, T.; et al. Crystal structures of TTHA1265 and TTHA1264/TTHA1265 complex reveal an intrinsic heterodimeric assembly. Int. J. Biol. Macromol. 2022, 207, 424–433. [Google Scholar] [CrossRef]
- Grinter, R.; Hay, I.D.; Song, J.; Wang, J.; Teng, D.; Dhanesakaran, V.; Wilksch, J.J.; Davies, M.R.; Littler, D.; Beckham, S.A.; et al. FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. PLoS Biol. 2018, 16, e2006026. [Google Scholar] [CrossRef]
- Grinter, R.; Leung, P.M.; Wijeyewickrema, L.C.; Littler, D.; Beckham, S.; Pike, R.N.; Walker, D.; Greening, C.; Lithgow, T. Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genet. 2019, 15, e1008435. [Google Scholar] [CrossRef]
- Wei, Q.; Ran, T.; Ma, C.; He, J.; Xu, D.; Wang, W. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway. J. Biol. Chem. 2016, 291, 15575–15587. [Google Scholar] [CrossRef]
- Im, H.; Manolopoulou, M.; Malito, E.; Shen, Y.; Zhao, J.; Neant-Fery, M.; Sun, C.Y.; Meredith, S.C.; Sisodia, S.S.; Leissring, M.A.; et al. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J. Biol. Chem. 2007, 282, 25453–25463. [Google Scholar] [CrossRef] [PubMed]
- Noinaj, N.; Bhasin, S.K.; Song, E.S.; Scoggin, K.E.; Juliano, M.A.; Juliano, L.; Hersh, L.B.; Rodgers, D.W. Identification of the allosteric regulatory site of insulysin. PLoS ONE 2011, 6, e20864. [Google Scholar] [CrossRef] [PubMed]
- Noinaj, N.; Song, E.S.; Bhasin, S.; Alper, B.J.; Schmidt, W.K.; Hersh, L.B.; Rodgers, D.W. Anion activation site of insulin-degrading enzyme. J. Biol. Chem. 2012, 287, 48–57. [Google Scholar] [CrossRef]
- Malito, E.; Ralat, L.A.; Manolopoulou, M.; Tsay, J.L.; Wadlington, N.L.; Tang, W.J. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 2008, 47, 12822–12834. [Google Scholar] [CrossRef] [PubMed]
- Ralat, L.A.; Kalas, V.; Zheng, Z.; Goldman, R.D.; Sosnick, T.R.; Tang, W.J. Ubiquitin is a novel substrate for human insulin-degrading enzyme. J. Mol. Biol. 2011, 406, 454–466. [Google Scholar] [CrossRef]
- Guo, Q.; Manolopoulou, M.; Bian, Y.; Schilling, A.B.; Tang, W.J. Molecular basis for the recognition and cleavages of IGF-II, TGF-alpha, and amylin by human insulin-degrading enzyme. J. Mol. Biol. 2010, 395, 430–443. [Google Scholar] [CrossRef]
- Ren, M.; Guo, Q.; Guo, L.; Lenz, M.; Qian, F.; Koenen, R.R.; Xu, H.; Schilling, A.B.; Weber, C.; Ye, R.D.; et al. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J. 2010, 29, 3952–3966. [Google Scholar] [CrossRef]
- Liang, W.G.; Ren, M.; Zhao, F.; Tang, W.J. Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J. Mol. Biol. 2015, 427, 1345–1358. [Google Scholar] [CrossRef]
- Leissring, M.A.; Malito, E.; Hedouin, S.; Reinstatler, L.; Sahara, T.; Abdul-Hay, S.O.; Choudhry, S.; Maharvi, G.M.; Fauq, A.H.; Huzarska, M.; et al. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. PLoS ONE 2010, 5, e10504. [Google Scholar] [CrossRef]
- Charton, J.; Gauriot, M.; Guo, Q.; Hennuyer, N.; Marechal, X.; Dumont, J.; Hamdane, M.; Pottiez, V.; Landry, V.; Sperandio, O.; et al. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. Eur. J. Med. Chem. 2014, 79, 184–193. [Google Scholar] [CrossRef]
- Charton, J.; Gauriot, M.; Totobenazara, J.; Hennuyer, N.; Dumont, J.; Bosc, D.; Marechal, X.; Elbakali, J.; Herledan, A.; Wen, X.; et al. Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. Eur. J. Med. Chem. 2015, 90, 547–567. [Google Scholar] [CrossRef]
- Deprez-Poulain, R.; Hennuyer, N.; Bosc, D.; Liang, W.G.; Enée, E.; Marechal, X.; Charton, J.; Totobenazara, J.; Berte, G.; Jahklal, J.; et al. Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Nat. Commun. 2015, 6, 8250. [Google Scholar] [CrossRef]
- Maianti, J.P.; Tan, G.A.; Vetere, A.; Welsh, A.J.; Wagner, B.K.; Seeliger, M.A.; Liu, D.R. Substrate-selective inhibitors that reprogram the activity of insulin-degrading enzyme. Nat. Chem. Biol. 2019, 15, 565–574. [Google Scholar] [CrossRef]
- McCord, L.A.; Liang, W.G.; Dowdell, E.; Kalas, V.; Hoey, R.J.; Koide, A.; Koide, S.; Tang, W.J. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proc. Natl. Acad. Sci. USA 2013, 110, 13827–13832. [Google Scholar] [CrossRef]
- Bailey, L.J.; Sheehy, K.M.; Dominik, P.K.; Liang, W.G.; Rui, H.; Clark, M.; Jaskolowski, M.; Kim, Y.; Deneka, D.; Tang, W.J.; et al. Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. J. Mol. Biol. 2018, 430, 337–347. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, W.G.; Bailey, L.J.; Tan, Y.Z.; Wei, H.; Wang, A.; Farcasanu, M.; Woods, V.A.; McCord, L.A.; Lee, D.; et al. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. Elife 2018, 7, e33572. [Google Scholar] [CrossRef]
- Iwata, S.; Lee, J.W.; Okada, K.; Lee, J.K.; Iwata, M.; Rasmussen, B.; Link, T.A.; Ramaswamy, S.; Jap, B.K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 1998, 281, 64–71. [Google Scholar] [CrossRef]
- Gao, X.; Wen, X.; Yu, C.; Esser, L.; Tsao, S.; Quinn, B.; Zhang, L.; Yu, L.; Xia, D. The crystal structure of mitochondrial cytochrome bc1 in complex with famoxadone: The role of aromatic-aromatic interaction in inhibition. Biochemistry 2002, 41, 11692–11702. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wen, X.; Esser, L.; Quinn, B.; Yu, L.; Yu, C.A.; Xia, D. Structural basis for the quinone reduction in the bc1 complex: A comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 2003, 42, 9067–9080. [Google Scholar] [CrossRef] [PubMed]
- Esser, L.; Quinn, B.; Li, Y.F.; Zhang, M.; Elberry, M.; Yu, L.; Yu, C.A.; Xia, D. Crystallographic studies of quinol oxidation site inhibitors: A modified classification of inhibitors for the cytochrome bc1 complex. J. Mol. Biol. 2004, 341, 281–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.S.; Cobessi, D.; Tung, E.Y.; Berry, E.A. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: A new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J. Mol. Biol. 2005, 351, 573–597. [Google Scholar] [CrossRef]
- Esser, L.; Gong, X.; Yang, S.; Yu, L.; Yu, C.A.; Xia, D. Surface-modulated motion switch: Capture and release of iron-sulfur protein in the cytochrome bc1 complex. Proc. Natl. Acad. Sci. USA 2006, 103, 13045–13050. [Google Scholar] [CrossRef] [PubMed]
- Althoff, T.; Mills, D.J.; Popot, J.L.; Kühlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 2011, 30, 4652–4664. [Google Scholar] [CrossRef] [PubMed]
- Capper, M.J.; O’Neill, P.M.; Fisher, N.; Strange, R.W.; Moss, D.; Ward, S.A.; Berry, N.G.; Lawrenson, A.S.; Hasnain, S.S.; Biagini, G.A.; et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl. Acad. Sci. USA 2015, 112, 755–760. [Google Scholar] [CrossRef]
- Gu, J.; Wu, M.; Guo, R.; Yan, K.; Lei, J.; Gao, N.; Yang, M. The architecture of the mammalian respirasome. Nature 2016, 537, 639–643. [Google Scholar] [CrossRef]
- Sousa, J.S.; Mills, D.J.; Vonck, J.; Kühlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. Elife 2016, 5, e21290. [Google Scholar] [CrossRef]
- McPhillie, M.J.; Zhou, Y.; Hickman, M.R.; Gordon, J.A.; Weber, C.R.; Li, Q.; Lee, P.J.; Amporndanai, K.; Johnson, R.M.; Darby, H.; et al. Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Front. Cell. Infect. Microbiol. 2020, 10, 203. [Google Scholar] [CrossRef]
- Amporndanai, K.; Pinthong, N.; O’Neill, P.M.; Hong, W.D.; Amewu, R.K.; Pidathala, C.; Berry, N.G.; Leung, S.C.; Ward, S.A.; Biagini, G.A.; et al. Targeting the Ubiquinol-Reduction (Q(i)) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials. Biology 2022, 11, 1109. [Google Scholar] [CrossRef]
- Esser, L.; Zhou, F.; Zeher, A.; Wu, W.; Huang, R.; Yu, C.A.; Lane, K.D.; Wellems, T.E.; Xia, D. Structure of complex III with bound antimalarial agent CK-2-68 provides insights into selective inhibition of Plasmodium cytochrome bc1 complexes. J. Biol. Chem. 2023, 299, 104860. [Google Scholar] [CrossRef] [PubMed]
- Jeon, T.J.; Lee, S.G.; Yoo, S.H.; Kim, M.; Song, D.; Ryu, J.; Park, H.; Kim, D.S.; Hyun, J.; Kim, H.M.; et al. A Dynamic Substrate Pool Revealed by cryo-EM of a Lipid-Preserved Respiratory Supercomplex. Antioxid. Redox Signal. 2022, 36, 1101–1118. [Google Scholar] [CrossRef]
- Hunte, C.; Koepke, J.; Lange, C.; Rossmanith, T.; Michel, H. Structure at 2.3 A resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 2000, 8, 669–684. [Google Scholar] [CrossRef]
- Lange, C.; Nett, J.H.; Trumpower, B.L.; Hunte, C. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J. 2001, 20, 6591–6600. [Google Scholar] [CrossRef]
- Lange, C.; Hunte, C. Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c. Proc. Natl. Acad. Sci. USA 2002, 99, 2800–2805. [Google Scholar] [CrossRef]
- Palsdottir, H.; Lojero, C.G.; Trumpower, B.L.; Hunte, C. Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. J. Biol. Chem. 2003, 278, 31303–31311. [Google Scholar] [CrossRef]
- Lancaster, C.R.; Hunte, C.; Kelley, J., 3rd; Trumpower, B.L.; Ditchfield, R. A comparison of stigmatellin conformations, free and bound to the photosynthetic reaction center and the cytochrome bc1 complex. J. Mol. Biol. 2007, 368, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, S.R.; Hunte, C. Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J. Biol. Chem. 2008, 283, 17542–17549. [Google Scholar] [CrossRef] [PubMed]
- Birth, D.; Kao, W.C.; Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun. 2014, 5, 4029. [Google Scholar] [CrossRef] [PubMed]
- Hartley, A.M.; Lukoyanova, N.; Zhang, Y.; Cabrera-Orefice, A.; Arnold, S.; Meunier, B.; Pinotsis, N.; Maréchal, A. Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1. Nat. Struct. Mol. Biol. 2019, 26, 78–83. [Google Scholar] [CrossRef]
- Rathore, S.; Berndtsson, J.; Marin-Buera, L.; Conrad, J.; Carroni, M.; Brzezinski, P.; Ott, M. Cryo-EM structure of the yeast respiratory supercomplex. Nat. Struct. Mol. Biol. 2019, 26, 50–57. [Google Scholar] [CrossRef]
- Berndtsson, J.; Kohler, A.; Rathore, S.; Marin-Buera, L.; Dawitz, H.; Diessl, J.; Kohler, V.; Barrientos, A.; Büttner, S.; Fontanesi, F.; et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Rep. 2020, 21, e51015. [Google Scholar] [CrossRef] [PubMed]
- Hartley, A.M.; Meunier, B.; Pinotsis, N.; Maréchal, A. Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes. Proc. Natl. Acad. Sci. USA 2020, 117, 9329–9337. [Google Scholar] [CrossRef]
- Hryc, C.F.; Mallampalli, V.; Bovshik, E.I.; Azinas, S.; Fan, G.; Serysheva, I.I.; Sparagna, G.C.; Baker, M.L.; Mileykovskaya, E.; Dowhan, W. Structural insights into cardiolipin replacement by phosphatidylglycerol in a cardiolipin-lacking yeast respiratory supercomplex. Nat. Commun. 2023, 14, 2783. [Google Scholar] [CrossRef]
- Maldonado, M.; Guo, F.; Letts, J.A. Atomic structures of respiratory complex III(2), complex IV, and supercomplex III(2)-IV from vascular plants. Elife 2021, 10, e62047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, L.; Shulmeister, V.M.; Chi, Y.I.; Kim, K.K.; Hung, L.W.; Crofts, A.R.; Berry, E.A.; Kim, S.H. Electron transfer by domain movement in cytochrome bc1. Nature 1998, 392, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Hao, G.F.; Wang, F.; Li, H.; Zhu, X.L.; Yang, W.C.; Huang, L.S.; Wu, J.W.; Berry, E.A.; Yang, G.F. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex. J. Am. Chem. Soc. 2012, 134, 11168–11176. [Google Scholar] [CrossRef]
- Hao, G.-F.; Yang, S.-G.; Huang, W.; Wang, L.; Shen, Y.-Q.; Tu, W.-L.; Li, H.; Huang, L.-S.; Wu, J.-W.; Berry, E.A.; et al. Rational Design of Highly Potent and Slow-Binding Cytochrome bc1 Inhibitor as Fungicide by Computational Substitution Optimization. Sci. Rep. 2015, 5, 13471. [Google Scholar] [CrossRef]
- Letts, J.A.; Fiedorczuk, K.; Sazanov, L.A. The architecture of respiratory supercomplexes. Nature 2016, 537, 644–648. [Google Scholar] [CrossRef]
- Letts, J.A.; Fiedorczuk, K.; Degliesposti, G.; Skehel, M.; Sazanov, L.A. Structures of Respiratory Supercomplex I+III(2) Reveal Functional and Conformational Crosstalk. Mol. Cell 2019, 75, 1131–1146.e1136. [Google Scholar] [CrossRef]
- Amporndanai, K.; Johnson, R.M.; O’Neill, P.M.; Fishwick, C.W.G.; Jamson, A.H.; Rawson, S.; Muench, S.P.; Hasnain, S.S.; Antonyuk, S.V. X-ray and cryo-EM structures of inhibitor-bound cytochrome bc1 complexes for structure-based drug discovery. IUCrJ 2018, 5, 200–210. [Google Scholar] [CrossRef]
- Vercellino, I.; Sazanov, L.A. Structure and assembly of the mammalian mitochondrial supercomplex CIII(2)CIV. Nature 2021, 598, 364–367. [Google Scholar] [CrossRef]
- Shin, Y.C.; Latorre-Muro, P.; Djurabekova, A.; Zdorevskyi, O.; Bennett, C.F.; Burger, N.; Song, K.; Xu, C.; Paulo, J.A.; Gygi, S.P.; et al. Structural basis of respiratory complex adaptation to cold temperatures. Cell 2024, 187, 6584–6598.e6517. [Google Scholar] [CrossRef]
- Vercellino, I.; Sazanov, L.A. SCAF1 drives the compositional diversity of mammalian respirasomes. Nat. Struct. Mol. Biol. 2024, 31, 1061–1071. [Google Scholar] [CrossRef]
- Klusch, N.; Dreimann, M.; Senkler, J.; Rugen, N.; Kühlbrandt, W.; Braun, H.P. Cryo-EM structure of the respiratory I + III(2) supercomplex from Arabidopsis thaliana at 2 Å resolution. Nat. Plants 2023, 9, 142–156. [Google Scholar] [CrossRef]
- Zhou, L.; Maldonado, M.; Padavannil, A.; Guo, F.; Letts, J.A. Structures of Tetrahymena’s respiratory chain reveal the diversity of eukaryotic core metabolism. Science 2022, 376, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Mühleip, A.; Flygaard, R.K.; Baradaran, R.; Haapanen, O.; Gruhl, T.; Tobiasson, V.; Maréchal, A.; Sharma, V.; Amunts, A. Structural basis of mitochondrial membrane bending by the I-II-III(2)-IV(2) supercomplex. Nature 2023, 615, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Hu, Y.; Wu, M.; He, Z.; Tian, H.; Zhou, L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat. Commun. 2023, 14, 2542. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, J.; Ichihara, Y.; Ebihara, A.; Nagata, K.; Tanokura, M. Crystal structure of TTHA1264, a putative M16-family zinc peptidase from Thermus thermophilus HB8 that is homologous to the beta subunit of mitochondrial processing peptidase. Proteins 2009, 75, 774–780. [Google Scholar] [CrossRef]
- Liang, W.G.; Wijaya, J.; Wei, H.; Noble, A.J.; Mancl, J.M.; Mo, S.; Lee, D.; Lin King, J.V.; Pan, M.; Liu, C.; et al. Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition. Nat. Commun. 2022, 13, 1833. [Google Scholar] [CrossRef]
- Glaser, E.; Alikhani, N. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer’s disease. Biochim. Biophys. Acta 2010, 1797, 1076–1080. [Google Scholar] [CrossRef]
- Dvoráková-Holá, K.; Matusková, A.; Kubala, M.; Otyepka, M.; Kucera, T.; Vecer, J.; Herman, P.; Parkhomenko, N.; Kutejova, E.; Janata, J. Glycine-rich loop of mitochondrial processing peptidase alpha-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. J. Mol. Biol. 2010, 396, 1197–1210. [Google Scholar] [CrossRef]
- Kučera, T.; Otyepka, M.; Matušková, A.; Samad, A.; Kutejová, E.; Janata, J. A computational study of the glycine-rich loop of mitochondrial processing peptidase. PLoS ONE 2013, 8, e74518. [Google Scholar] [CrossRef]
- Nagao, Y.; Kitada, S.; Kojima, K.; Toh, H.; Kuhara, S.; Ogishima, T.; Ito, A. Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J. Biol. Chem. 2000, 275, 34552–34556. [Google Scholar] [CrossRef]
- Huet, Y.; Strassner, J.; Schaller, A. Cloning, expression and characterization of insulin-degrading enzyme from tomato (Solanum lycopersicum). Biol. Chem. 2008, 389, 91–98. [Google Scholar] [CrossRef]
- Kukday, S.S.; Schmidt, W.K. Chapter 321—The Yeast M16A Peptidases Axl1p and Ste23p. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1430–1434. 1p. [Google Scholar]
- Taskin, A.A.; Kücükköse, C.; Burger, N.; Mossmann, D.; Meisinger, C.; Vögtle, F.N. The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Mol. Biol. Cell 2017, 28, 997–1002. [Google Scholar] [CrossRef]
- Fontés, G.; Lajoix, A.D.; Bergeron, F.; Cadel, S.; Prat, A.; Foulon, T.; Gross, R.; Dalle, S.; Le-Nguyen, D.; Tribillac, F.; et al. Miniglucagon (MG)-generating endopeptidase, which processes glucagon into MG, is composed of N-arginine dibasic convertase and aminopeptidase B. Endocrinology 2005, 146, 702–712. [Google Scholar] [CrossRef]
- Fu, J.; Ling, J.; Li, C.F.; Tsai, C.L.; Yin, W.; Hou, J.; Chen, P.; Cao, Y.; Kang, Y.; Sun, Y.; et al. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat. Commun. 2024, 15, 3149. [Google Scholar] [CrossRef]
- Kessler, J.H.; Khan, S.; Seifert, U.; Le Gall, S.; Chow, K.M.; Paschen, A.; Bres-Vloemans, S.A.; de Ru, A.; van Montfoort, N.; Franken, K.L.; et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat. Immunol. 2011, 12, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulou, M.; Guo, Q.; Malito, E.; Schilling, A.B.; Tang, W.J. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J. Biol. Chem. 2009, 284, 14177–14188. [Google Scholar] [CrossRef] [PubMed]
- Malito, E.; Hulse, R.E.; Tang, W.J. Amyloid beta-degrading cryptidases: Insulin degrading enzyme, presequence peptidase, and neprilysin. Cell. Mol. Life Sci. 2008, 65, 2574–2585. [Google Scholar] [CrossRef]
- Tang, W.J. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2016, 27, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Durham, T.B.; Toth, J.L.; Klimkowski, V.J.; Cao, J.X.; Siesky, A.M.; Alexander-Chacko, J.; Wu, G.Y.; Dixon, J.T.; McGee, J.E.; Wang, Y.; et al. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo. J. Biol. Chem. 2015, 290, 20044–20059. [Google Scholar] [CrossRef]
- Tyndall, J.D.; Nall, T.; Fairlie, D.P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 2005, 105, 973–999. [Google Scholar] [CrossRef] [PubMed]
- Kitada, S.; Ito, A. Electrostatic recognition of matrix targeting signal by mitochondrial processing peptidase. J. Biochem. 2001, 129, 155–161. [Google Scholar] [CrossRef]
- Kmiec, B.; Teixeira, P.F.; Glaser, E. Shredding the signal: Targeting peptide degradation in mitochondria and chloroplasts. Trends Plant Sci. 2014, 19, 771–778. [Google Scholar] [CrossRef]
- Calvo, S.E.; Julien, O.; Clauser, K.R.; Shen, H.; Kamer, K.J.; Wells, J.A.; Mootha, V.K. Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast. Mol. Cell. Proteom. 2017, 16, 512–523. [Google Scholar] [CrossRef]
- Glaser, E.; Kmiec, B.; Teixeira, P.F. Chapter 320—Mitochondrial and Chloroplastic Targeting Peptides Peptidase, PreP. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1426–1430. [Google Scholar]
- Mzhavia, N.; Devi, L.A. Chapter 326—Eupitrilysin. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1457–1459. [Google Scholar]
- Poveda-Huertes, D.; Mulica, P.; Vögtle, F.N. The versatility of the mitochondrial presequence processing machinery: Cleavage, quality control and turnover. Cell Tissue Res. 2017, 367, 73–81. [Google Scholar] [CrossRef]
- Falkevall, A.; Alikhani, N.; Bhushan, S.; Pavlov, P.F.; Busch, K.; Johnson, K.A.; Eneqvist, T.; Tjernberg, L.; Ankarcrona, M.; Glaser, E. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J. Biol. Chem. 2006, 281, 29096–29104. [Google Scholar] [CrossRef] [PubMed]
- Maianti, J.P.; McFedries, A.; Foda, Z.H.; Kleiner, R.E.; Du, X.Q.; Leissring, M.A.; Tang, W.J.; Charron, M.J.; Seeliger, M.A.; Saghatelian, A.; et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 2014, 511, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Ciaccio, C.; Tundo, G.R.; Grasso, G.; Spoto, G.; Marasco, D.; Ruvo, M.; Gioia, M.; Rizzarelli, E.; Coletta, M. Somatostatin: A novel substrate and a modulator of insulin-degrading enzyme activity. J. Mol. Biol. 2009, 385, 1556–1567. [Google Scholar] [CrossRef]
- Song, E.S.; Juliano, M.A.; Juliano, L.; Hersh, L.B. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J. Biol. Chem. 2003, 278, 49789–49794. [Google Scholar] [CrossRef]
- Song, E.S.; Juliano, M.A.; Juliano, L.; Fried, M.G.; Wagner, S.L.; Hersh, L.B. ATP effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety. J. Biol. Chem. 2004, 279, 54216–54220. [Google Scholar] [CrossRef]
- Song, E.S.; Daily, A.; Fried, M.G.; Juliano, M.A.; Juliano, L.; Hersh, L.B. Mutation of active site residues of insulin-degrading enzyme alters allosteric interactions. J. Biol. Chem. 2005, 280, 17701–17706. [Google Scholar] [CrossRef]
- Song, E.S.; Hersh, L.B. Insulysin: An allosteric enzyme as a target for Alzheimer’s disease. J. Mol. Neurosci. 2005, 25, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Song, E.S.; Cady, C.; Fried, M.G.; Hersh, L.B. Proteolytic fragments of insulysin (IDE) retain substrate binding but lose allosteric regulation. Biochemistry 2006, 45, 15085–15091. [Google Scholar] [CrossRef]
- Song, E.S.; Rodgers, D.W.; Hersh, L.B. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties. PLoS ONE 2010, 5, e9719. [Google Scholar] [CrossRef] [PubMed]
- Song, E.S.; Rodgers, D.W.; Hersh, L.B. Mixed dimers of insulin-degrading enzyme reveal a cis activation mechanism. J. Biol. Chem. 2011, 286, 13852–13858. [Google Scholar] [CrossRef]
- Li, P.; Kuo, W.L.; Yousef, M.; Rosner, M.R.; Tang, W.J. The C-terminal domain of human insulin degrading enzyme is required for dimerization and substrate recognition. Biochem. Biophys. Res. Commun. 2006, 343, 1032–1037. [Google Scholar] [CrossRef]
- Ding, L.; Becker, A.B.; Suzuki, A.; Roth, R.A. Comparison of the enzymatic and biochemical properties of human insulin-degrading enzyme and Escherichia coli protease III. J. Biol. Chem. 1992, 267, 2414–2420. [Google Scholar] [CrossRef] [PubMed]
- Mirsky, I.A.; Broh-Kahn, R.H. The inactivation of insulin by tissue extracts; the distribution and properties of insulin inactivating extracts. Arch. Biochem. 1949, 20, 1–9. [Google Scholar]
- Duckworth, W.C.; Kitabchi, A.E. Insulin and glucagon degradation by the same enzyme. Diabetes 1974, 23, 536–543. [Google Scholar] [CrossRef]
- Chou, Y.H.; Kuo, W.L.; Rosner, M.R.; Tang, W.J.; Goldman, R.D. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. ASEB J. 2009, 23, 3734–3742. [Google Scholar] [CrossRef]
- Cabrol, C.; Huzarska, M.A.; Dinolfo, C.; Rodriguez, M.C.; Reinstatler, L.; Ni, J.; Yeh, L.A.; Cuny, G.D.; Stein, R.L.; Selkoe, D.J.; et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS ONE 2009, 4, e5274. [Google Scholar] [CrossRef] [PubMed]
- Çakir, B.; Dağliyan, O.; Dağyildiz, E.; Bariş, İ.; Kavakli, I.H.; Kizilel, S.; Türkay, M. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme. PLoS ONE 2012, 7, e31787. [Google Scholar] [CrossRef]
- Abdul-Hay, S.O.; Lane, A.L.; Caulfield, T.R.; Claussin, C.; Bertrand, J.; Masson, A.; Choudhry, S.; Fauq, A.H.; Maharvi, G.M.; Leissring, M.A. Optimization of peptide hydroxamate inhibitors of insulin-degrading enzyme reveals marked substrate-selectivity. J. Med. Chem. 2013, 56, 2246–2255. [Google Scholar] [CrossRef] [PubMed]
- Camberos, M.C.; Pérez, A.A.; Udrisar, D.P.; Wanderley, M.I.; Cresto, J.C. ATP inhibits insulin-degrading enzyme activity. Exp. Biol. Med. 2001, 226, 334–341. [Google Scholar] [CrossRef]
- Leal, M.C.; Morelli, L. Chapter 318—Insulysin. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1415–1420. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 update. Nucleic. Acids. Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef]
- Braun, H.P.; Schmitz, U.K. Are the ‘core’ proteins of the mitochondrial bc1 complex evolutionary relics of a processing protease? Trends Biochem. Sci. 1995, 20, 171–175. [Google Scholar] [CrossRef]
- Kutejová, E.; Kučera, T.; Matušková, A.; Janata, J. Chapter 322—Mitochondrial Processing Peptidase. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1435–1442. [Google Scholar]
- Heidorn-Czarna, M.; Maziak, A.; Janska, H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. Front. Plant Sci. 2022, 13, 824080. [Google Scholar] [CrossRef]
- Lyons, P.J. Inactive metallopeptidase homologs: The secret lives of pseudopeptidases. Front. Mol. Biosci. 2024, 11, 1436917. [Google Scholar] [CrossRef] [PubMed]
- Zara, V.; De Blasi, G.; Ferramosca, A. Assembly of the Multi-Subunit Cytochrome bc1 Complex in the Yeast Saccharomyces cerevisiae. Int. J. Mol. Sci. 2022, 23, 10537. [Google Scholar] [CrossRef]
- Deng, K.; Zhang, L.; Kachurin, A.M.; Yu, L.; Xia, D.; Kim, H.; Deisenhofer, J.; Yu, C.-A. Activation of a Matrix Processing Peptidase from the Crystalline Cytochrome bc1 Complex of Bovine Heart Mitochondria*. J. Biol. Chem. 1998, 273, 20752–20757. [Google Scholar] [CrossRef] [PubMed]
- Brandt, U.; Yu, L.; Yu, C.A.; Trumpower, B.L. The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc1 complex in mammals and retained as a subunit in the complex. J. Biol. Chem. 1993, 268, 8387–8390. [Google Scholar] [CrossRef] [PubMed]
- Ponpuak, M.; Klemba, M.; Park, M.; Gluzman, I.Y.; Lamppa, G.K.; Goldberg, D.E. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol. Microbiol. 2007, 63, 314–334. [Google Scholar] [CrossRef]
- van Dooren, G.G.; Su, V.; D’Ombrain, M.C.; McFadden, G.I. Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J. Biol. Chem. 2002, 277, 23612–23619. [Google Scholar] [CrossRef]
- Roth, R.A. Chapter 317—Pitrilysin. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: London, UK, 2013; pp. 1412–1414. [Google Scholar]
- Anastasi, A.; Knight, C.G.; Barrett, A.J. Characterization of the bacterial metalloendopeptidase pitrilysin by use of a continuous fluorescence assay. Biochem. J. 1993, 290 Pt 2, 601–607. [Google Scholar] [CrossRef]
- Price, P.A.; Tanner, H.R.; Dillon, B.A.; Shabab, M.; Walker, G.C.; Griffitts, J.S. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc. Natl. Acad. Sci. USA 2015, 112, 15244–15249. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, I.J.; Wen, Y.; Park, N.Y.; Park, J.; Lee, K.W.; Koh, A.; Lee, J.H.; Koo, S.H.; Kim, K.S. Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation In Vivo. J. Biol. Chem. 2015, 290, 18708–18720. [Google Scholar] [CrossRef] [PubMed]
- Mosbahi, K.; Wojnowska, M.; Albalat, A.; Walker, D. Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein. Proc. Natl. Acad. Sci. USA 2018, 115, 6840–6845. [Google Scholar] [CrossRef]
- Dabonné, S.; Moallic, C.; Sine, J.P.; Niamké, S.; Dion, M.; Colas, B. Cloning, expression and characterization of a 46.5-kDa metallopeptidase from Bacillus halodurans H4 sharing properties with the pitrilysin family. Biochim. Biophys. Acta 2005, 1725, 136–143. [Google Scholar] [CrossRef]
- Kitada, S.; Uchiyama, T.; Funatsu, T.; Kitada, Y.; Ogishima, T.; Ito, A. A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J. Bacteriol. 2007, 189, 844–850. [Google Scholar] [CrossRef]
- Marques, M.S.; Costa, A.C.; Osório, H.; Pinto, M.L.; Relvas, S.; Dinis-Ribeiro, M.; Carneiro, F.; Leite, M.; Figueiredo, C. Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity. Gut Microbes 2021, 13, 1921928. [Google Scholar] [CrossRef] [PubMed]












| # | Name | MEROPS | Uniprot (Organism) | aa | kDa | Active Site HXXEH and Distal Glu | Available Structures |
|---|---|---|---|---|---|---|---|
| 1 | Pitrilysin | M16A | P05458 (Escherichia coli) | 962 | 107.7 | 88HYLEH92-E169 | PDB id: 1Q2L |
| 2 | PqqF | M16A | A0A1A9TAI5 (Serratia sp. (strain FS14)) | 773 | 84.5 | 51HLLEH55-E132 | substrate-free [31] |
| 3 | human Insulysin (hIDE) | M16A | P14735 (Homo sapiens) | 1019 | 117.9 | 108HFCEH112-E189 | substrate-free [32], complex with substrates (insulin B chain, amyloid-β peptide (1–40), amylin and glucagon) [22], rat IDE [33,34], IDE complexed with other protein or peptide substrates: bradykinin [35], ubiquitin [36], IGF-II and TGF-α [37], MIP-1/CCL3 [38] or CFE111Q/CCL4 [39], with activators, like ATP [33], or inhibitors [40,41,42,43,44], fab-bound [45,46,47], IDE open structure [47]. |
| 4 | rat Insulysin (rIDE) | M16A | P35559 (Rattus norvegicus) | 1019 | 117.7 | 108HFCEH112-E189 | |
| 5 | mitochondrial processing peptidase (MPP) | M16B | P10507/P11914 (Saccharomyces cerevisiae) | 462/482 | 51/53.3 | 70HFLEH74-E150 | substrate-free and in complex with substrates [20] |
| 6 | bovine Core I/Core II | M16B | P31800/P23004 (Bos taurus) | 480/453 | 52.7/48.1 | 91YFVEH95-E171 | bovine [11,48,49,50,51,52,53,54,55,56,57,58,59,60,61], yeast [62,63,64,65,66,67,68,69,70,71,72,73], mung bean [74], chicken [75,76,77], ovine [78,79], human [80], mouse [81,82,83], Arabidopsis thaliana [84] or Tetrahymena thermophila [85,86,87]. |
| 7 | yeast Core I/Core II | M16B | P07256/P07257 (Saccharomyces cerevisiae) | 457/368 | 50.2/40.4 | not detected | |
| 8 | mung bean Core I/Core II | M16B | A0A1S3TWG4/A0A1S3VF71(Vigna radiata var. radiata) | 527/506 | 58.6/54.4 | 137HFLEH141-E217 | |
| 9 | BH2405 (BHP) | M16B | Q9KA85 (Halalkalibacterium halodurans) | 413 | 46.4 | 46HFLEH50-E126 | complex with peptide ligand [25] |
| 10 | TTHA1264/TTHA1265 | M16B | Q5SIV0/Q5SIU9 (Thermus thermophilus) | 406/403 | 45.5/43.8 | 46HFLEH50-E125 | substrate-free [28,88] |
| 11 | SPH2681/SPH2682 | M16B | F2Z284/F2Z283 (Sphingomonas sp. strain A1) | 437/424 | 48.3/45.8 | 51HALEH55-E131 | substrate-free [26] |
| 12 | AlbF/AlbE | M16B | A0A9X9ZA61/A0A9X9ZA64 (Bacillus thermotolerans) | 366/381 | 42.5/44 | 54HFLEH58-E130 | substrate-free and with bound Ni2+ [27] |
| 13 | FusC | M16B | Q6D8U3 (Pectobacterium atrosepticum SCRI1043) | 924 | 103.9 | 80HMVEH84-E165 | complex with substrate (ferrodoxin) [29] |
| 14 | PqqL | M16B | P31828 (Escherichia coli) | 931 | 104.6 | 80HFVEH84-E167 | substrate-free [30] |
| 15 | falcylisin (FLN) | M16C | Q76NL8 (Plasmodium falciparum) | 1193 | 138.8 | 129HILEH133-E243 | complex with substrate (hemoglobin) [13] or inhibitors [12] |
| 16 | human presequence peptidase (hPreP) | M16C | Q5JRX3 (Homo sapiens) | 1037 | 117.4 | 104HILEH108-E205 | substrate-free and in complex with substrate or peptide ligand [23,89] |
| 17 | arabidopsis presequence peptidase (aPreP) | M16C | Q9LJL3 (Arabidopsis thaliana) | 1080 | 121 | 162HILEH166-E262 | complex with peptide ligand [21] |
| Protease Name (Organism) | M16 Protease Subfamily | Description/Function | Tested Substrates |
|---|---|---|---|
| pitrilysin (Escherichia coli) | M16A | located in the periplasmic space, degrades β-galactosidase, function unknown [141] | insulin, secretin, vasoactive intestinal peptide, thyrocalcitronin, substance P, angiotensinogen, luteinizing hormone-releasing hormone peptide and synthetic substrate QF27 [142] |
| PqqF (Serratia sp.) | M16A | cleaving two residues, glutamate and tyrosine from PqqA which are subsequently used for coenzyme pyrroloquinoline quinone (PQQ) biosynthesis [31], | n/a |
| hrrP (Sinorhizobium meliloti) | M16A | encoded on accessory plasmid, capable of degrading a range of nodule-specific cysteine-rich peptides used by Medicago truncatula for inducing and maintaining rhizobial differentiation [143] | n/a |
| SidC (Vibrio vulnificus) | M16A/C | degrades insulin and glucagon affecting glucose levels in infected mice [144] | n/a |
| FusC (Pectobacterium atrosepticum) | M16B | periplasmic, used to acquire iron [29] | ferredoxin [145] |
| PqqL (Escherichia coli) | M16B | periplasmic, used to acquire iron [30] | n/a |
| BHP (BH2405, YmxG peptidase, Bacillus halodurans) [25] | M16B | n/a | n/a |
| TTHA1264/TTHA1265 (Thermus thermophilus) [28] | M16B | n/a | n/a |
| SPH2682/2681 (Sphingomonas sp., A1) | M16B | n/a | endorphin, insulin, dynorphin A (1–13), Leu-enkephalin and bradykinin [26] |
| AlbF/AlbE (Quasibacillus thermotolerans) | M16B | involved in maturation of subtilosin, a bacteriocin exhibiting antibacterial activity against Gram-negative and Gram-positive bacteria [27] | n/a |
| ppBH4 (Bacillus halodurans) | M16B | n/a | insulin, neurotensin, dynorphin A, kemptide, leucine-enkephalin [146] |
| RPP (Rickettsia prowazekii) | M16B | n/a | preferring positively charged peptides like dymorphin A; vasoactive intestinal peptide; mastoparan; and αMSH amide but also mitochondrial presequence peptides [147] |
| PqqE (HP1012, Helicobacter pylori) | M16B | junctional adhesion molecule A (JAM-A) disrupting gastric epithelial integrity [148] | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarzab, M.; Skorko-Glonek, J. It Takes Two to Tango: Current Understanding of the Role of M16 Family of Proteases and Their Structural Properties. Biomolecules 2025, 15, 1697. https://doi.org/10.3390/biom15121697
Jarzab M, Skorko-Glonek J. It Takes Two to Tango: Current Understanding of the Role of M16 Family of Proteases and Their Structural Properties. Biomolecules. 2025; 15(12):1697. https://doi.org/10.3390/biom15121697
Chicago/Turabian StyleJarzab, Miroslaw, and Joanna Skorko-Glonek. 2025. "It Takes Two to Tango: Current Understanding of the Role of M16 Family of Proteases and Their Structural Properties" Biomolecules 15, no. 12: 1697. https://doi.org/10.3390/biom15121697
APA StyleJarzab, M., & Skorko-Glonek, J. (2025). It Takes Two to Tango: Current Understanding of the Role of M16 Family of Proteases and Their Structural Properties. Biomolecules, 15(12), 1697. https://doi.org/10.3390/biom15121697

