Red Midge Larvae Are an Invertebrate Alternative Diet to Beef Liver for Planarian Husbandry
Abstract
1. Introduction
2. Materials and Methods
2.1. Planarian Species and Husbandry
2.2. Regeneration Assays
2.3. Long-Term Population Growth Maintenance and Tracking
2.3.1. Imaging and Image Analysis of Planarians for Population Growth
2.3.2. Statistical Analysis for Long-Term Population Growth
2.4. Food Choice Assays
2.5. RNA-Sequencing
2.5.1. RNA Preparation and Sequencing
2.5.2. Bioinformatic Analysis
2.6. Chemical Screening
2.6.1. Chemical Preparations and Exposure
2.6.2. Behavioral Screening
2.6.3. Statistical Analysis for Chemical Screening
Lowest-Observed-Effect-Levels (LOELs)
Benchmark Concentrations (BMCs)
2.7. RNA Interference (RNAi)
3. Results
3.1. Planarians Can Be Maintained Long-Term on an RML Diet
3.2. Planarians Have a Mild Preference for Liver
3.3. Gene Expression Differences Between Liver-Fed and RML-Fed D. japonica
3.4. RML-Fed Planarians Are Suitable for High-Throughput Chemical Screening
3.5. The RML Diet Is Suitable for Mechanistic Studies in Planarians
4. Discussion
4.1. A RML Mono Diet Can Sustain D. japonica Planarians for at Least 1 Year with Minimal Physiological Changes Compared to a Liver Diet
4.2. A RML Diet Is Suitable for Chemical Screening and Mechanistic Studies
4.3. Further Considerations to Optimize Planarian Diet
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NAM | New Approach Methodology |
| RML | Red Midge Fly Larvae |
| DMSO | Dimethyl sulfoxide |
| DZN | Diazinon |
| FLU | Fluoxetine |
| LOEL | Lowest Observed Effect Level |
| BMC | Benchmark Concentration |
| RNAi | RNA Interference |
| BMR | Benchmark Response |
| AITC | Allyl isothiocyanate |
| PCA | Principal Component Analysis |
| DEGs | Differentially expressed genes |
| FDR | False discovery rate |
| GSEA | Gene Set Enrichment Analysis |
| DjTRPAa | Dugeisa japonica Transient Receptor Potential Ankyrin 1 |
| LB | Locomotor bursts |
| NS | Noxious stimuli |
References
- Ivankovic, M.; Haneckova, R.; Thommen, A.; Grohme, M.A.; Vila-Farré, M.; Werner, S.; Rink, J.C. Model Systems for Regeneration: Planarians. Development 2019, 146, dev167684. [Google Scholar] [CrossRef]
- Buttarelli, F.R.; Pellicano, C.; Pontieri, F.E. Neuropharmacology and Behavior in Planarians: Translations to Mammals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 147, 399–408. [Google Scholar] [CrossRef]
- Cebrià, F. Regenerating the Central Nervous System: How Easy for Planarians! Dev. Genes Evol. 2007, 217, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.G.; Currie, K.W.; Pearson, B.J.; Zayas, R.M. Nervous System Development and Regeneration in Freshwater Planarians. Wiley Interdiscip. Rev. Dev. Biol. 2017, 6, e266. [Google Scholar] [CrossRef] [PubMed]
- Ireland, D.; Collins, E.S. Planarians as a Model to Study Neurotoxic Agents. In Advances in Neurotoxicology; Volume 9: Alternative Methods in Neurotoxicology; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 29–60. [Google Scholar] [CrossRef]
- Ireland, D.; Collins, E.-M.S. New Worm on the Block: Planarians in (Neuro)Toxicology. Curr. Protoc. 2022, 2, e637. [Google Scholar] [CrossRef]
- Zhang, S.; Hagstrom, D.; Hayes, P.; Graham, A.; Collins, E.-M.S. Multi-Behavioral Endpoint Testing of an 87-Chemical Compound Library in Freshwater Planarians. Toxicol. Sci. 2019, 167, 26–44. [Google Scholar] [CrossRef]
- Venturini, G.; Stocchi, F.; Margotta, V.; Ruggieri, S.; Bravi, D.; Bellantuono, P.; Palladini, G. A Pharmacological Study of Dopaminergic Receptors in Planaria. Neuropharmacology 1989, 28, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Buttarelli, F.R.; Pontieri, F.E.; Margotta, V.; Palladini, G. Acetylcholine/Dopamine Interaction in Planaria. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2000, 125, 225–231. [Google Scholar] [CrossRef]
- Rawls, S.M.; Patil, T.; Tallarida, C.S.; Baron, S.; Kim, M.; Song, K.; Ward, S.; Raffa, R.B. Nicotine Behavioral Pharmacology: Clues from Planarians. Drug Alcohol Depend. 2011, 118, 274–279. [Google Scholar] [CrossRef]
- Wu, J.P.; Li, M.H. The Use of Freshwater Planarians in Environmental Toxicology Studies: Advantages and Potential. Ecotoxicol. Environ. Saf. 2018, 161, 45–56. [Google Scholar] [CrossRef]
- Miyamoto, M.; Hattori, M.; Hosoda, K.; Sawamoto, M.; Motoishi, M.; Hayashi, T.; Inoue, T.; Umesono, Y. The Pharyngeal Nervous System Orchestrates Feeding Behavior in Planarians. Sci. Adv. 2020, 6, eaaz0882. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Sakurai, T. Food Ingestion by Planarian Intestinal Phagocytic Cells—A Study by Scanning Electron Microscopy. Hydrobiologia 1991, 227, 179–185. [Google Scholar] [CrossRef]
- Forsthoefel, D.J.; Cejda, N.I.; Khan, U.W.; Newmark, P.A. Cell-Type Diversity and Regionalized Gene Expression in the Planarian Intestine. eLife 2020, 9, e52613. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.B. Further Studies on Feeding and Digestion in Triclad Turbellaria. Biol. Bull. 1962, 123, 571–581. [Google Scholar] [CrossRef]
- Vila-Farré, M.; Rink, J.C. The Ecology of Freshwater Planarians. In Planarian Regeneration: Methods and Protocols; Rink, J.C., Ed.; Springer: New York, NY, USA, 2018; pp. 173–205. ISBN 978-1-4939-7802-1. [Google Scholar] [CrossRef]
- Dean, M.R.P.; Duncan, E.M. Laboratory Maintenance and Propagation of Freshwater Planarians. Curr. Protoc. Microbiol. 2020, 59, e120. [Google Scholar] [CrossRef]
- Abel, C.; Powers, K.; Gurung, G.; Pellettieri, J. Defined Diets for Freshwater Planarians. Dev. Dyn. 2022, 251, 390–402. [Google Scholar] [CrossRef]
- Legner, E.F.; Yu, H.S.; Medved, R.A.; Badgley, M.E. Mosquito and Chironomid Midge Control by Planaria. Calif. Agric. 1975, 29, 3–6. [Google Scholar]
- Ireland, D.; Bochenek, V.; Chaiken, D.; Rabeler, C.; Onoe, S.; Soni, A.; Collins, E.-M.S. Dugesia japonica Is the Best Suited of Three Planarian Species for High-Throughput Toxicology Screening. Chemosphere 2020, 253, 126718. [Google Scholar] [CrossRef]
- Ireland, D.; Coffinas, E.; Rabeler, C.; Collins, E.-M.S. Planarian Behavioral Screening Is a Useful Invertebrate Model for Evaluating Seizurogenic Chemicals. bioRxiv 2025. [Google Scholar] [CrossRef]
- Galindo, P.A.; Feo, F.; Gómez, E.; Borja, J.; Melero, R.; Lombardero, M.; Barber, D.; García Rodríguez, R. Hypersensitivity to Chironomid Larvae. J. Investig. Allergol. Clin. Immunol. 1998, 8, 219–225. [Google Scholar]
- Meseguer Arce, J.; Villajos, I.M.S.-G.; Iraola, V.; Carnés, J.; Fernández Caldas, E. Occupational Allergy to Aquarium Fish Food: Red Midge Larva, Freshwater Shrimp, and Earthworm. A Clinical and Immunological Study. J. Investig. Allergol. Clin. Immunol. 2013, 23, 462–470. [Google Scholar]
- Dunkel, J.; Talbot, J.; Schötz, E.-M. Memory and Obesity Affect the Population Dynamics of Asexual Freshwater Planarians. Phys. Biol. 2011, 8, 026003. [Google Scholar] [CrossRef]
- Campillo, N.; Ireland, D.; Patel, Y.; Collins, E.-M.S. A Simple Method for Quantifying Blastema Growth in Regenerating Planarians. Curr. Protoc. 2023, 3, e684. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji—An Open Source Platform for Biological Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Shibata, N.; Agata, K. RNA Interference in Planarians: Feeding and Injection of Synthetic dsRNA. In Planarian Regeneration: Methods and Protocols; Rink, J.C., Ed.; Springer: New York, NY, USA, 2018; pp. 455–466. ISBN 978-1-4939-7802-1. [Google Scholar] [CrossRef]
- An, Y.; Kawaguchi, A.; Zhao, C.; Toyoda, A.; Sharifi-Zarchi, A.; Mousavi, S.A.; Bagherzadeh, R.; Inoue, T.; Ogino, H.; Fujiyama, A.; et al. Draft Genome of Dugesia japonica Provides Insights into Conserved Regulatory Elements of the Brain Restriction Gene Nou-Darake in Planarians. Zool. Lett. 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, O.; Hosoda, K.; Kawaguchi, E.; Yazawa, S.; Hayashi, T.; Inoue, T.; Umesono, Y.; Agata, K. Unusually Large Number of Mutations in Asexually Reproducing Clonal Planarian Dugesia japonica. PLoS ONE 2015, 10, e0143525. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Guo, Q.; Guo, Y.; Luo, L.; Kristiansen, K.; Han, Z.; Fang, H.; Zhang, S. Whole-Genome Sequence of the Planarian Dugesia japonica Combining Illumina and PacBio Data. Genomics 2022, 114, 110293. [Google Scholar] [CrossRef]
- Rozanski, A.; Moon, H.; Brandl, H.; Martín-Durán, J.M.; Grohme, M.A.; Hüttner, K.; Bartscherer, K.; Henry, I.; Rink, J.C. PlanMine 3.0—Improvements to a Mineable Resource of Flatworm Biology and Biodiversity. Nucleic Acids Res. 2019, 47, D812–D820. [Google Scholar] [CrossRef] [PubMed]
- Hagstrom, D.; Cochet-Escartin, O.; Zhang, S.; Khuu, C.; Collins, E.-M.S. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology. Toxicol. Sci. 2015, 147, 270–285. [Google Scholar] [CrossRef]
- Ireland, D.; Rabeler, C.; Rao, S.; Richardson, R.J.; Collins, E.-M.S. Distinguishing Classes of Neuroactive Drugs Based on Computational Physicochemical Properties and Experimental Phenotypic Profiling in Planarians. PLoS ONE 2025, 20, e0315394. [Google Scholar] [CrossRef]
- Ireland, D.; Zhang, S.; Bochenek, V.; Hsieh, J.-H.; Rabeler, C.; Meyer, Z.; Collins, E.-M.S. Differences in Neurotoxic Outcomes of Organophosphorus Pesticides Revealed via Multi-Dimensional Screening in Adult and Regenerating Planarians. Front. Toxicol. 2022, 4, 948455. [Google Scholar] [CrossRef]
- Bayingana, K.; Ireland, D.; Rosenthal, E.; Rabeler, C.; Collins, E.-M.S. Adult and Regenerating Planarians Respond Differentially to Chronic Drug Exposure. Neurotoxicol. Teratol. 2023, 96, 107148. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Ryan, K.; Sedykh, A.; Lin, J.A.; Shapiro, A.J.; Parham, F.; Behl, M. Application of Benchmark Concentration (BMC) Analysis on Zebrafish Data: A New Perspective for Quantifying Toxicity in Alternative Animal Models. Toxicol. Sci. 2019, 167, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Sabry, Z.; Ho, A.; Ireland, D.; Rabeler, C.; Cochet-Escartin, O.; Collins, E.-M.S. Pharmacological or Genetic Targeting of Transient Receptor Potential (TRP) Channels Can Disrupt the Planarian Escape Response. PLoS ONE 2019, 14, e0226104. [Google Scholar] [CrossRef]
- Morgan, T.H.; Schiedt, A.E. Regenerating in the Planarian Phagocata gracilis. Biol. Bull. 1904, 7, 160–165. [Google Scholar] [CrossRef]
- Goel, T.; Ireland, D.; Shetty, V.; Rabeler, C.; Diamond, P.H.; Collins, E.-M.S. Let It Rip: The Mechanics of Self-Bisection in Asexual Planarians Determines Their Population Reproductive Strategies. Phys. Biol. 2021, 19, 016002. [Google Scholar] [CrossRef]
- Stevens, A.S.; Pirotte, N.; Plusquin, M.; Willems, M.; Neyens, T.; Artois, T.; Smeets, K. Toxicity Profiles and Solvent-Toxicant Interference in the Planarian Schmidtea mediterranea after Dimethylsulfoxide (DMSO) Exposure. J. Appl. Toxicol. 2014, 35, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Pagán, O.R.; Rowlands, A.L.; Urban, K.R. Toxicity and Behavioral Effects of Dimethylsulfoxide in Planaria. Neurosci. Lett. 2006, 407, 274–278. [Google Scholar] [CrossRef]
- Hagstrom, D.; Hirokawa, H.; Zhang, L.; Radic, Z.; Taylor, P.; Collins, E.-M.S. Planarian Cholinesterase: In Vitro Characterization of an Evolutionarily Ancient Enzyme to Study Organophosphorus Pesticide Toxicity and Reactivation. Arch. Toxicol. 2017, 91, 2837–2847. [Google Scholar] [CrossRef] [PubMed]
- Cochet-Escartin, O.; Mickolajczyk, K.J.; Collins, E.-M.S. Scrunching: A Novel Escape Gait in Planarians. Phys. Biol. 2015, 12, 056010. [Google Scholar] [CrossRef]
- Arenas, O.M.; Zaharieva, E.E.; Para, A.; Vásquez-Doorman, C.; Petersen, C.P.; Gallio, M. Activation of Planarian TRPA1 by Reactive Oxygen Species Reveals a Conserved Mechanism for Animal Nociception. Nat. Neurosci. 2017, 20, 1686–1693. [Google Scholar] [CrossRef]
- Pfeifer, L.M.; Sensbach, J.; Pipp, F.; Werkmann, D.; Hewitt, P. Increasing Sustainability and Reproducibility of in Vitro Toxicology Applications: Serum-Free Cultivation of HepG2 Cells. Front. Toxicol. 2024, 6, 1439031. [Google Scholar] [CrossRef]
- Reddien, P.W. The Cellular and Molecular Basis for Planarian Regeneration. Cell 2018, 175, 327–345. [Google Scholar] [CrossRef]
- Baguñà, J.; Romero, R.; Saló, E.; Collet, J.; Auladell, C.; Ribas, M.; Riutort, M.; García-Fernàndez, J.; Burgaya, F.; Bueno, D. Growth, Degrowth and Regeneration as Developmental Phenomena in Adult Freshwater Planarians. In Experimental Embryology in Aquatic Plants and Animals; Marthy, H.-J., Ed.; Springer: Boston, MA, USA, 1990; pp. 129–162. ISBN 978-1-4613-6709-3. [Google Scholar] [CrossRef]
- Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; Quek, Y.; Fahmy, K.; Shevchenko, A.; Friedrich, B.M.; Jülicher, F.; et al. Body Size-Dependent Energy Storage Causes Kleiber’s Law Scaling of the Metabolic Rate in Planarians. eLife 2019, 8, e38187. [Google Scholar] [CrossRef]
- Miller, G.W.; Truong, L.; Barton, C.L.; Labut, E.M.; Lebold, K.M.; Traber, M.G.; Tanguay, R.L. The Influences of Parental Diet and Vitamin E Intake on the Embryonic Zebrafish Transcriptome. Comp. Biochem. Physiol. Part D Genom. Proteom. 2014, 10, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Lüersen, K.; Röder, T.; Rimbach, G. Drosophila Melanogaster in Nutrition Research—The Importance of Standardizing Experimental Diets. Genes Nutr. 2019, 14, 3. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, K.; Wang, Q.; Zhong, G.; Zhang, W.; Jiang, Y.; Mao, X.; Li, X.; Huang, Z. Caenorhabditis elegans as an Emerging Model in Food and Nutrition Research: Importance of Standardizing Base Diet. Crit. Rev. Food Sci. Nutr. 2024, 64, 3167–3185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, Y.; Hu, N.; Long, D.; Cao, Y. The Uses of Zebrafish (Danio rerio) as an in Vivo Model for Toxicological Studies: A Review Based on Bibliometrics. Ecotoxicol. Environ. Saf. 2024, 272, 116023. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.W.; Labut, E.M.; Lebold, K.M.; Floeter, A.; Tanguay, R.L.; Traber, M.G. Zebrafish (Danio rerio) Fed Vitamin E-Deficient Diets Produce Embryos with Increased Morphologic Abnormalities and Mortality. J. Nutr. Biochem. 2012, 23, 478–486. [Google Scholar] [CrossRef]
- Fowler, L.A.; Williams, M.B.; Dennis-Cornelius, L.N.; Farmer, S.; Barry, R.J.; Powell, M.L.; Watts, S.A. Influence of Commercial and Laboratory Diets on Growth, Body Composition, and Reproduction in the Zebrafish Danio rerio. Zebrafish 2019, 16, 508–521. [Google Scholar] [CrossRef]
- Ireland, D.; Word, L.J.; Collins, E.-M.S. Statistical Analysis of Multi-Endpoint Phenotypic Screening Increases Sensitivity of Planarian Neurotoxicity Testing. Toxicol. Sci. 2025, 208, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Sharifian Fard, M.; Pasmans, F.; Adriaensen, C.; Laing, G.D.; Janssens, G.P.J.; Martel, A. Chironomidae Bloodworms Larvae as Aquatic Amphibian Food: Bloodworms as Aquatic Amphibian Food. Zoo Biol. 2014, 33, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Tye, M.; Masino, M.A. Dietary Contaminants and Their Effects on Zebrafish Embryos. Toxics 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Zečić, A.; Dhondt, I.; Braeckman, B.P. The Nutritional Requirements of Caenorhabditis elegans. Genes Nutr. 2019, 14, 15. [Google Scholar] [CrossRef]




| Chemical | CASRN | Purity | Tested Concentrations |
|---|---|---|---|
| Diazinon | 333-41-5 | 98.0% | 1, 3.16, 10, 31.6, 100 μM |
| Dimethyl sulfoxide (DMSO) | 67-68-5 | 99.9% | 0.1, 0.5, 1, 3, 4% |
| Fluoxetine hydrochloride | 56296-78-7 | 98% | 0.1, 0.316, 1, 3.16, 10 μM |
| Planarian Type | Chemical | Diet | BMCmin |
|---|---|---|---|
| Adult | DMSO | Liver | 1.5% |
| DMSO | RML | 1.0% | |
| Diazinon | Liver | 1.0 µM | |
| Diazinon | RML | 1.0 µM | |
| Fluoxetine | Liver | 0.15 µM | |
| Fluoxetine | RML | 0.57 µM | |
| Regenerating | DMSO | Liver | 0.79% |
| DMSO | RML | 0.79% | |
| Diazinon | Liver | 1.0 µM | |
| Diazinon | RML | 1.0 µM | |
| Fluoxetine | Liver | 0.57 µM | |
| Fluoxetine | RML | 5.5 µM |
| Diet | RNAi Population | # Planarians Scrunching/Total |
|---|---|---|
| liver | unc22 | 10/10 |
| Djtrpaa | 1/10 | |
| RML | unc22 | 10/10 |
| Djtrpaa | 0/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacis, J.; Ireland, D.; Coffinas, E.; Sheehan, J.; Sun, K.; Collins, E.-M.S. Red Midge Larvae Are an Invertebrate Alternative Diet to Beef Liver for Planarian Husbandry. Biomolecules 2025, 15, 1659. https://doi.org/10.3390/biom15121659
Pacis J, Ireland D, Coffinas E, Sheehan J, Sun K, Collins E-MS. Red Midge Larvae Are an Invertebrate Alternative Diet to Beef Liver for Planarian Husbandry. Biomolecules. 2025; 15(12):1659. https://doi.org/10.3390/biom15121659
Chicago/Turabian StylePacis, Jonah, Danielle Ireland, Evangeline Coffinas, Jerome Sheehan, Kate Sun, and Eva-Maria S. Collins. 2025. "Red Midge Larvae Are an Invertebrate Alternative Diet to Beef Liver for Planarian Husbandry" Biomolecules 15, no. 12: 1659. https://doi.org/10.3390/biom15121659
APA StylePacis, J., Ireland, D., Coffinas, E., Sheehan, J., Sun, K., & Collins, E.-M. S. (2025). Red Midge Larvae Are an Invertebrate Alternative Diet to Beef Liver for Planarian Husbandry. Biomolecules, 15(12), 1659. https://doi.org/10.3390/biom15121659

