Bioactivity and Chemical Profiling of the Sea-Ice Microalga Microglena antarctica (Chlorophyceae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cultivation and Extract Preparation
2.3. In Vitro Assays
2.3.1. RSA Towards the DPPH• Free Radical
2.3.2. RSA Towards the ABTS•+ Free Radical
2.3.3. Ferric Reducing Antioxidant Power (FRAP)
2.3.4. Iron Chelating Activity (ICA)
2.3.5. Copper Chelating Activity (CCA)
2.3.6. Inhibition of Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE)
2.3.7. Inhibition of α-Amylase
2.3.8. Inhibition of α-Glucosidase
2.3.9. Inhibition of Lipase
2.3.10. Inhibition of Tyrosinase
2.4. Ultra Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HR-MS) Analysis
2.5. Statistical Analysis
3. Results
3.1. Antioxidant Activity and Enzymatic Inhibition
3.2. Chemical Profiling
3.2.1. Glycolipids
3.2.2. Phospholipids
3.2.3. Betaine Lipids
3.2.4. Carotenoids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyon, B.R.; Mock, T. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef]
- Swadling, K.M.; Constable, A.J.; Fraser, A.D.; Massom, R.A.; Borup, M.D.; Ghigliotti, L.; Granata, A.; Guglielmo, L.; Johnston, N.M.; Kawaguchi, S.; et al. Biological Responses to Change in Antarctic Sea Ice Habitats. Front. Ecol. Evol. 2023, 10, 1073823. [Google Scholar] [CrossRef]
- Convey, P.; Peck, L.S. Antarctic Environmental Change and Biological Responses. Sci. Adv. 2019, 5, eaaz0888. [Google Scholar] [CrossRef]
- Trentin, R.; Negrisolo, E.; Moschin, E.; Veronese, D.; Cecchetto, M.; Moro, I. Microglena antarctica sp. nov. a New Antarctic Green Alga from Inexpressible Island (Terra Nova Bay, Ross Sea) Revealed through an Integrative Approach. Diversity 2022, 14, 337. [Google Scholar] [CrossRef]
- Trentin, R.; Moschin, E.; Duarte Lopes, A.; Schiaparelli, S.; Custódio, L.; Moro, I. Molecular, Morphological and Chemical Diversity of Two New Species of Antarctic Diatoms, Craspedostauros ineffabilis sp. nov. and Craspedostauros zucchellii sp. nov. J. Mar. Sci. Eng. 2022, 10, 1656. [Google Scholar] [CrossRef]
- Trentin, R.; Moschin, E.; Schiaparelli, S.; Moro, I. An Insight into the Cryptic Diversity of Fragilariaceae (Bacillariophyta), with the Description of a New Antarctic Species, Gedaniella antarctica sp. nov. Eur. J. Phycol. 2024, 59, 379–392. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wang, X.; Zhang, X.; Li, G.; Liu, C.; Huang, X.; Wang, X.; Zhang, X.; Li, G. Phylogenetic Studies on Two Strains of Antarctic Ice Algae Based on Morphological and Molecular Characteristics. Phycologia 2006, 45, 190–198. [Google Scholar] [CrossRef]
- Demchenko, E.; Mikhailyuk, T.; Coleman, A.W.; Pröschold, T. Generic and Species Concepts in Microglena (Previously the Chlamydomonas monadina Group) Revised Using an Integrative Approach. Eur. J. Phycol. 2012, 47, 264–290. [Google Scholar] [CrossRef]
- Zhang, Z.; An, M.; Miao, J.; Gu, Z.; Liu, C.; Zhong, B. The Antarctic Sea Ice Alga Chlamydomonas sp. ICE-L Provides Insights into Adaptive Patterns of Chloroplast Evolution. BMC Plant Biol. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovska, M.; Vakulenko, G.; Smith, D.R.; Zhang, X.; Hüner, N.P.A. Temperature Stress in Psychrophilic Green Microalgae: Minireview. Physiol. Plant 2022, 174, e13811. [Google Scholar] [CrossRef]
- Trentin, R.; Moschin, E.; Custódio, L.; Moro, I. Temperature Effects on Growth, Metabolome, Lipidic Profile and Photosynthetic Pigment Content of Microglena antarctica (Chlorophyceae): A Comprehensive Analysis. Algal Res. 2024, 79, 103461. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, C.; Zhang, K.; He, Y.; Zhao, X.; Yang, L.; Zheng, Z.; Ma, X.; Wang, X.; Wang, W.; et al. Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice Green Alga. Curr. Biol. 2020, 30, 3330–3341.e7. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Mou, S.; Zhang, X.; Ye, N.; Zheng, Z.; Cao, S.; Xu, D.; Fan, X.; Wang, Y.; Miao, J. Temperature Regulates Fatty Acid Desaturases at a Transcriptional Level and Modulates the Fatty Acid Profile in the Antarctic Microalga Chlamydomonas sp. ICE-L. Bioresour. Technol. 2013, 134, 151–157. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Liu, F.-M.; Zhang, X.-F.; Zhang, A.-J.; Wang, B.; Zheng, Z.; Sun, C.-J.; Miao, J.L. Composition and Regulation of Thylakoid Membrane of Antarctic Ice Microalgae Chlamydomonas sp. ICE-L in Response to Low-Temperature Environment Stress. J. Mar. Biol. Assoc. UK 2017, 97, 1241–1249. [Google Scholar] [CrossRef]
- An, M.; Mou, S.; Zhang, X.; Zheng, Z.; Ye, N.; Wang, D.; Zhang, W.; Miao, J. Expression of Fatty Acid Desaturase Genes and Fatty Acid Accumulation in Chlamydomonas sp. ICE-L under Salt Stress. Bioresour. Technol. 2013, 149, 77–83. [Google Scholar] [CrossRef]
- Trentin, R.; Moschin, E.; Custódio, L.; Moro, I. Bioprospection of the Antarctic Diatoms Craspedostauros ineffabilis IMA082A and Craspedostauros zucchelli IMA088A. Mar. Drugs 2024, 22, 35. [Google Scholar] [CrossRef]
- Lopes, D.; Aveiro, S.S.; Conde, T.; Rey, F.; Couto, D.; Melo, T.; Moreira, A.S.P.; Domingues, M.R. Algal Lipids: Structural Diversity, Analysis and Applications. In Functional Ingredients from Algae for Foods and Nutraceuticals, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2023; pp. 335–396. ISBN 9780323988193. [Google Scholar]
- Lim, M.C.X.; Loo, C.T.; Wong, C.Y.; Lee, C.S.; Koh, R.Y.; Lim, C.L.; Kok, Y.Y.; Chye, S.M. Prospecting Bioactivity in Antarctic Algae: A Review of Extracts, Isolated Compounds and Their Effects. Fitoterapia 2024, 176, 106025. [Google Scholar] [CrossRef]
- Lim, Y.H.; Park, S.H.; Kim, E.J.; Lim, H.J.; Jang, J.; Hong, I.S.; Kim, S.; Jung, Y.J. Polar Microalgae Extracts Protect Human HaCaT Keratinocytes from Damaging Stimuli and Ameliorate Psoriatic Skin Inflammation in Mice. Biol. Res. 2023, 56, 40. [Google Scholar] [CrossRef]
- Qu, C.; Li, N.; Liu, T.; He, Y.; Miao, J. Preparation of CPD Photolyase Nanoliposomes Derived from Antarctic Microalgae and Their Effect on UVB-Induced Skin Damage in Mice. Int. J. Mol. Sci. 2022, 23, 15148. [Google Scholar] [CrossRef] [PubMed]
- Herber, B.P. Bioprospecting in Antarctica: The Search for a Policy Regime. Polar Rec. 2006, 42, 139–146. [Google Scholar] [CrossRef]
- Secretary of State. The Antarctic Treaty; United States Treaties and Other International Agreements (UST) 794, Treaties and Other International Acts Series (TIAS); Secretary of State: Washington, DC, USA, 1959. [Google Scholar]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. Cult. Mar. Invertebr. Anim. 1975, 29–60. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Megías, C.; Pastor-Cavada, E.; Torres-Fuentes, C.; Girón-Calle, J.; Alaiz, M.; Juan, R.; Pastor, J.; Vioque, J. Chelating, Antioxidant and Antiproliferative Activity of Vicia sativa Polyphenol Extracts. Eur. Food Res. Technol. 2009, 230, 353–359. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A Quantitative Starch–Iodine Method for Measuring Alpha-Amylase and Glucoamylase Activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Apostolidis, E.; Shetty, K. In vitro Studies of Eggplant (Solanum melongena) Phenolics as Inhibitors of Key Enzymes Relevant for Type 2 Diabetes and Hypertension. Bioresour. Technol. 2008, 99, 2981–2988. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry Polyphenols Inhibit Pancreatic Lipase Activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Zengin, G. A Study on in vitro Enzyme Inhibitory Properties of Asphodeline anatolica: New Sources of Natural Inhibitors for Public Health Problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
- Silva, S.G.; Paula, P.; da Silva, J.P.; Mil-Homens, D.; Teixeira, M.C.; Fialho, A.M.; Costa, R.; Keller-Costa, T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina (Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar. Drugs 2022, 20, 423. [Google Scholar] [CrossRef]
- Takeda, H.; Matsuzawa, Y.; Takeuchi, M.; Takahashi, M.; Nishida, K.; Harayama, T.; Todoroki, Y.; Shimizu, K.; Sakamoto, N.; Oka, T.; et al. MS-DIAL 5 Multimodal Mass Spectrometry Data Mining Unveils Lipidome Complexities. Nat. Commun. 2024, 15, 9903. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Liu, K.H.; Lee, D.Y.; Defelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico Tandem Mass Spectrometry Database for Lipid Identification. Nat. Methods 2013, 10, 755–758. [Google Scholar] [CrossRef]
- Pais, R.; Conde, T.; Neves, B.B.; Pinho, M.; Coelho, M.; Pereira, H.; Rodrigues, A.M.C.; Domingues, P.; Gomes, A.M.; Urbatzka, R.; et al. Bioactive Lipids in Dunaliella salina: Implications for Functional Foods and Health. Foods 2024, 13, 3321. [Google Scholar] [CrossRef]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef]
- Trentin, R.; Custódio, L.; Rodrigues, M.J.; Moschin, E.; Sciuto, K.; da Silva, J.P.; Moro, I. Total Phenolic Levels, In vitro Antioxidant Properties, and Fatty Acid Profile of Two Microalgae, Tetraselmis marina Strain IMA043 and Naviculoid Diatom Strain IMA053, Isolated from the North Adriatic Sea. Mar. Drugs 2022, 20, 207. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Gangadhar, K.N.; Pereira, H.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Malcata, F.X.; Varela, J. Microalgae-Based Unsaponifiable Matter as Source of Natural Antioxidants and Metal Chelators to Enhance the Value of Wet Tetraselmis chuii Biomass. Open Chem. 2016, 14, 299–307. [Google Scholar] [CrossRef]
- Pereira, H.; Custódio, L.; Rodrigues, M.J.; De Sousa, C.B.; Oliveira, M.; Barreira, L.; Neng, N.D.R.; Nogueira, J.M.F.; Alrokayan, S.A.; Mouffouk, F.; et al. Biological Activities and Chemical Composition of Methanolic Extracts of Selected Autochthonous Microalgae Strains from the Red Sea. Mar. Drugs 2015, 13, 3531–3549. [Google Scholar] [CrossRef]
- Conde, T.A.; Couto, D.; Melo, T.; Costa, M.; Silva, J.; Domingues, M.R.; Domingues, P. Polar Lipidomic Profile Shows Chlorococcum amblystomatis as a Promising Source of Value-Added Lipids. Sci. Rep. 2021, 11, 4355. [Google Scholar] [CrossRef]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O’Leary, S.J.B. Antioxidant Properties and Lipid Composition of Selected Microalgae. J. Appl. Phycol. 2018, 31, 309–318. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Farias, F.O.; Tropea, A.; Santi, L.; Mondello, L.; Giuffrida, D.; Meléndez-Martínez, A.J.; Dufossé, L. Ketocarotenoids Adonirubin and Adonixanthin: Properties, Health Benefits, Current Technologies, and Emerging Challenges. Food Chem. 2024, 443, 138610. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Custódio, L.; Lopes, A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.F.; Martins, A.; Rauter, A.P.; Varela, J.; Barreira, L. Unlocking the in vitro Anti-Inflammatory and Antidiabetic Potential of Polygonum maritimum. Pharm. Biol. 2017, 55, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Youssef, S.; Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Calhelha, R.C.; Jekő, J.; Cziáky, Z.; Ben Hamed, K. Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile. Plants 2023, 12, 3391. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Paul Ross, R. The α-Amylase and α-Glucosidase Inhibitory Effects of Irish Seaweed Extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef]
- Tamel Selvan, K.; Goon, J.A.; Makpol, S.; Tan, J.K. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar. Drugs 2023, 21, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kang, Y.H.; Suh, J.K. Roasting Processed Oriental Melon (Cucumis melo L. Var. makuwa Makino) Seed Influenced the Triglyceride Profile and the Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia. Food Res. Int. 2014, 56, 236–242. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, Vegetables, and Mushrooms for the Preparation of Extracts with α-Amylase and α-Glucosidase Inhibition Properties: A Review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Cha, S.H.; Ko, S.C.; Kim, D.; Jeon, Y.J. Screening of Marine Algae for Potential Tyrosinase Inhibitor: Those Inhibitors Reduced Tyrosinase Activity and Melanin Synthesis in Zebrafish. J. Dermatol. 2011, 38, 354–363. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase Inhibitors Isolated from the Edible Brown Alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232. [Google Scholar] [CrossRef]
- Kose, A. Chemical Composition and Tyrosinase Inhibitory Activities of Fatty Acids Obtained from Heterotrophic Microalgae, S. limacinum and C. cohnii. Appl. Biochem. Biotechnol. 2023, 195, 369–385. [Google Scholar] [CrossRef]
- Da Costa, E.; Silva, J.; Mendonça, S.H.; Abreu, M.H.; Domingues, M.R. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar. Drugs 2016, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Bassi, A. Carotenoids from Microalgae: A Review of Recent Developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef] [PubMed]
- Zarrinmehr, M.J.; Daneshvar, E.; Nigam, S.; Gopinath, K.P.; Biswas, J.K.; Kwon, E.E.; Wang, H.; Farhadian, O.; Bhatnagar, A. The Effect of Solvents Polarity and Extraction Conditions on the Microalgal Lipids Yield, Fatty Acids Profile, and Biodiesel Properties. Bioresour. Technol. 2022, 344, 126303. [Google Scholar] [CrossRef] [PubMed]
| DPPH | ABTS | ABTS EC50 | FRAP | CCA | CCA EC50 | ICA | ||
|---|---|---|---|---|---|---|---|---|
| 4 °C | Acetone | 21.36 ± 1.31 b | 75.59 ± 4.24 d | 4.18 ± 0.21 c | 29.86 ± 4.17 b | 45.12 ± 0.72 c | 26.76 ± 2.81 c | |
| Methanol | 13.47 ± 1.18 a | 41.82 ± 4.53 b | 26.24 ± 12.04 b | 44.53 ± 2.01 c | 27.23 ± 2.01 c | |||
| 8 °C | Acetone | 32.85 ± 2.45 c | 83.59 ± 3.63 e | 3.89 ± 0.20 bc | 21.51 ± 4.41 ab | 58.10 ± 1.24 b | 6.31 ± 0.62 b | 25.13 ± 2.37 bc |
| Methanol | 11.32 ± 1.09 a | 50.84 ± 3.55 c | 19.39 ± 5.65 ab | 61.59 ± 4.00 b | 6.41 ± 1.82 b | 26.69 ± 4.65 c | ||
| 16 °C | Acetone | 38.73 ± 2.64 d | 90.67 ± 6.21 ef | 3.57 ± 0.09 b | 49.49 ± 14.51 c | 40.44 ± 1.73 c | 15.27 ± 1.37 a | |
| Methanol | 10.83 ± 1.14 a | 23.35 ± 2.80 a | 10.26 ± 2.93 a | 33.45 ± 1.26 a | 20.29 ± 1.48 ab | |||
| BHT | 91.16 ± 1.17 e | 93.20 ± 1.38 f | 0.12 ± 0.01 a | |||||
| EDTA | 95.50 ± 0.54 d | 0.18 ± 0.03 a | 91.16 ± 1.17 d |
| AChE | BChE | α-Glucosidase | α-Amylase | α-Amylase IC50 | Tyrosinase | Tyrosinase IC50 | Lipase | ||
|---|---|---|---|---|---|---|---|---|---|
| 4 °C | Acetone | 11.36 ± 4.88 a | 35.03 ± 4.11 d | 11.62 ± 2.50 a | 95.73 ± 6.62 c | 4.53 ± 0.29 c | 48.31 ± 0.70 a | 30.53 ± 1.44 b | |
| Methanol | 16.16 ± 3.15 ab | 16.82 ± 5.53 ab | 19.89 ± 1.84 b | nd | 69.57 ± 1.22 b | 5.47 ± 0.58 c | 26.92 ± 5.97 ab | ||
| 8 °C | Acetone | 14.06 ± 5.29 ab | 19.52 ± 4.71 ab | 36.82 ± 1.41 d | 109.55 ± 1.85 c | 3.34 ± 0.26 b | 46.55 ± 1.014 a | 30.62 ± 1.80 b | |
| Methanol | 21.53 ± 3.33 b | 25.11 ± 3.63 bc | 33.48 ± 4.15 cd | nd | 88.30 ± 1.56 d | 4.62 ± 0.49 bc | 13.76 ± 3.58 a | ||
| 16 °C | Acetone | 11.33 ± 8.21 a | 13.46 ± 3.69 a | 18.65 ± 1.412 b | 42.76 ± 4.25 a | 49.52 ± 2.73 a | 40.96 ± 7.24 c | ||
| Methanol | 30.84 ± 3.99 c | 33.35 ± 4.82 cd | 29.01 ± 1.63 c | nd | 76.59 ± 1.09 c | 3.82 ± 0.50 b | 27.40 ± 8.42 ab | ||
| Galanthamine | 84.47 ± 0.58 d | 85.67 ± 1.37 e | |||||||
| Acarbose | 83.85 ± 1.52 e | 57.18 ± 8.70 b | 0.42 ± 0.03 a | ||||||
| Orlistat | 70.49 ± 1.87 d | ||||||||
| Arbutin | 91.35 ± 1.37 d | 0.26 ± 0.02 a |
| Rt (min) | m/z Value | Annotated Metabolite | Adduct | Formula | 16 °C Acetone | 16 °C Methanol | 8 °C Acetone | 8 °C Methanol | 4 °C Acetone | 4 °C Methanol |
|---|---|---|---|---|---|---|---|---|---|---|
| 34.65 | 741.48016 | MGDG 30:3|MGDG 14:0_16:3 | [M+HCOO]- | C39H68O10 | + | − | + | − | + | − |
| 33.66 | 739.46454 | MGDG 30:4|MGDG 14:0_16:4 | [M+HCOO]- | C39H66O10 | + | − | + | − | + | − |
| 35.65 | 769.51099 | MGDG 32:3 | [M+HCOO]- | C41H72O10 | + | − | + | − | + | + |
| 34.63 | 767.49585 | MGDG 32:4|MGDG 16:1_16:3 | [M+HCOO]- | C41H70O10 | + | − | + | − | + | − |
| 33.56 | 765.47968 | MGDG 32:5|MGDG 16:2_16:3 | [M+HCOO]- | C41H68O10 | + | − | + | − | + | − |
| 32.94 | 763.46484 | MGDG 32:6|MGDG 16:3_16:3 | [M+HCOO]- | C41H66O10 | + | − | + | − | + | − |
| 31.96 | 761.44812 | MGDG 32:7|MGDG 16:3_16:4 | [M+HCOO]- | C41H64O10 | + | − | + | − | + | − |
| 30.87 | 759.43414 | MGDG 32:8|MGDG 16:4_16:4 | [M+HCOO]- | C41H62O10 | + | − | + | + | + | + |
| 35.12 | 799.55817 | MGDG 34:2|MGDG 16:0_18:2 | [M+HCOO]- | C43H78O10 | + | − | − | − | + | − |
| 37.25 | 797.5423 | MGDG 34:3|MGDG 18:1_16:2 | [M+HCOO]- | C43H76O10 | + | − | + | − | + | − |
| 35.50 | 795.52661 | MGDG 34:4|MGDG 16:2_18:2 | [M+HCOO]- | C43H74O10 | + | − | + | − | + | − |
| 34.83 | 793.51154 | MGDG 34:5|MGDG 18:2_16:3 | [M+HCOO]- | C43H72O10 | + | − | + | + | + | + |
| 33.87 | 791.49646 | MGDG 34:6|MGDG 16:3_18:3 | [M+HCOO]- | C43H70O10 | + | − | + | − | + | − |
| 32.92 | 789.4787 | MGDG 34:7|MGDG 18:3_16:4 | [M+HCOO]- | C43H68O10 | + | − | + | − | + | − |
| 34.37 | 825.57391 | MGDG 36:3|MGDG 18:1_18:2 | [M+HCOO]- | C45H80O10 | + | − | − | − | + | − |
| 35.74 | 821.54205 | MGDG 36:5|MGDG 18:2_18:3 | [M+HCOO]- | C45H76O10 | + | − | + | − | + | − |
| 35.02 | 931.56567 | DGDG 32:3 | [M+HCOO]- | C47H82O15 | + | − | + | − | + | − |
| 33.46 | 929.54871 | DGDG 32:4 | [M+HCOO]- | C47H80O15 | + | − | + | − | + | − |
| 31.53 | 927.53149 | DGDG 32:5 | [M+HCOO]- | C47H78O15 | + | − | + | − | + | − |
| 30.65 | 925.52118 | DGDG 32:6 | [M+HCOO]- | C47H76O15 | + | − | + | − | + | − |
| 29.51 | 923.5014 | DGDG 32:7|DGDG 16:3_16:4 | [M+HCOO]- | C47H74O15 | + | − | + | − | + | − |
| 28.46 | 921.48505 | DGDG 32:8 | [M+HCOO]- | C47H72O15 | + | − | + | − | + | − |
| 33.77 | 957.58032 | DGDG 34:4|DGDG 16:2_18:2 | [M+HCOO]- | C49H84O15 | + | − | + | − | + | − |
| 33.10 | 955.56403 | DGDG 34:5|DGDG 18:2_16:3 | [M+HCOO]- | C49H82O15 | + | − | + | − | + | − |
| 31.83 | 953.54889 | DGDG 34:6 | [M+HCOO]- | C49H80O15 | + | − | + | − | + | − |
| Rt (min) | m/z Value | Annotated Metabolite | Adduct | Formula | 16 °C Acetone | 16 °C Methanol | 8 °C Acetone | 8 °C Methanol | 4 °C Acetone | 4 °C Methanol |
|---|---|---|---|---|---|---|---|---|---|---|
| 26.343 | 483.2731 | LPG 16:0 | [M−H]- | C22H45O9P | + | + | + | + | + | + |
| 25.807 | 481.25751 | LPG 16:1 | [M−H]- | C22H43O9P | + | + | + | + | + | + |
| 26.939 | 509.28879 | LPG 18:1 | [M−H]- | C24H47O9P | + | + | + | + | + | + |
| 25.42 | 507.2738 | LPG 18:2 | [M−H]- | C24H45O9P | + | + | + | + | + | + |
| 24.331 | 505.25842 | LPG 18:3 | [M−H]- | C24H43O9P | + | + | + | + | + | − |
| 24.775 | 571.28925 | LPI 16:0 | [M−H]- | C25H49O12P | + | + | + | + | + | + |
| 22.098 | 565.24268 | LPI 16:3 | [M−H]- | C25H43O12P | + | + | + | + | + | + |
| 21.331 | 563.22723 | LPI 16:4 | [M−H]- | C25H41O12P | + | + | + | + | + | + |
| Rt (min) | m/z Value | Annotated Metabolite | Adduct | Formula | 16 °C Acetone | 16 °C Methanol | 8 °C Acetone | 8 °C Methanol | 4 °C Acetone | 4 °C Methanol |
|---|---|---|---|---|---|---|---|---|---|---|
| 26.924 | 472.36111 | LDGTS 16:1 | [M+H]+ | C26H49NO6 | + | + | + | + | + | + |
| 25.227 | 470.34564 | LDGTS 16:2 | [M+H]+ | C26H47NO6 | + | + | + | + | + | + |
| 24.409 | 468.33014 | LDGTS 16:3 | [M+H]+ | C26H45NO6 | + | + | + | + | + | + |
| 23.317 | 466.31412 | LDGTS 16:4 | [M+H]+ | C26H43NO6 | + | + | + | + | + | + |
| 27.628 | 498.3768 | LDGTS 18:2 | [M+H]+ | C28H51NO6 | + | + | + | + | + | + |
| 26.126 | 496.36139 | LDGTS 18:3 | [M+H]+ | C28H49NO6 | + | + | + | + | + | + |
| 22.143 | 494.34488 | LDGTS 18:4 | [M+H]+ | C28H47NO6 | + | + | + | + | + | + |
| Rt(min) | m/z Value | Annotated Metabolite | Adduct | Formula | 16 °C Acetone | 16 °C Methanol | 8 °C Acetone | 8 °C Methanol | 4 °C Acetone | 4 °C Methanol |
|---|---|---|---|---|---|---|---|---|---|---|
| 31.43 | 567.4167 | 3″-Hydroxyechinenone | [M+H]+ | C40H54O2 | + | + | + | − | + | + |
| 31.79 | 549.4075 | 4-Ketotorulene | [M+H]+ | C40H52O | + | + | + | + | + | + |
| 31.99 | 583.4119 | Adonixanthin | [M+H]+ | C40H54O3 | + | + | + | + | + | + |
| 32.01 | 565.4025 | Canthaxanthin | [M+H]+ | C40H52O2 | + | + | + | + | + | + |
| 33.57 | 699.4197 | Unkown catonenoid | [M+Na]+ | C42H60O7 | + | + | + | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trentin, R.; Moschin, E.; Custódio, L.; Moro, I. Bioactivity and Chemical Profiling of the Sea-Ice Microalga Microglena antarctica (Chlorophyceae). Biomolecules 2025, 15, 1658. https://doi.org/10.3390/biom15121658
Trentin R, Moschin E, Custódio L, Moro I. Bioactivity and Chemical Profiling of the Sea-Ice Microalga Microglena antarctica (Chlorophyceae). Biomolecules. 2025; 15(12):1658. https://doi.org/10.3390/biom15121658
Chicago/Turabian StyleTrentin, Riccardo, Emanuela Moschin, Luísa Custódio, and Isabella Moro. 2025. "Bioactivity and Chemical Profiling of the Sea-Ice Microalga Microglena antarctica (Chlorophyceae)" Biomolecules 15, no. 12: 1658. https://doi.org/10.3390/biom15121658
APA StyleTrentin, R., Moschin, E., Custódio, L., & Moro, I. (2025). Bioactivity and Chemical Profiling of the Sea-Ice Microalga Microglena antarctica (Chlorophyceae). Biomolecules, 15(12), 1658. https://doi.org/10.3390/biom15121658

