Antimicrobial Peptides for Skin Wound Healing
Abstract
1. Introduction
2. AMPs for Wound Healing
2.1. Broad-Spectrum Antimicrobial Activity
2.1.1. Human-Derived AMPs: Endogenous Defense and Repair Engines
2.1.2. Naturally Sourced AMPs from Animals, Microbes and Plants
2.1.3. Engineered and Synthetic AMPs: Rationally Designed Enhanced Weapons
| Category | AMP Name | Source/Type | Key Antimicrobial Characteristics/Mechanisms | Demonstrated Efficacy in Wound Healing Models |
|---|---|---|---|---|
| Human-Derived | Human β-Defensin 3 (hBD-3) | Human | Broad-spectrum; activates TLR signaling; stabilizes keratinocytes [66,67,68] | Diabetic wound models [66] |
| Salivary Histatin 1 | Human Saliva | Promotes wound healing and maintains microbial balance [69,70] | Acute skin wound healing [70] | |
| LL-37 (hCAP-18) | Human (Cathelicidin) | Inhibits Group A Streptococcus and Pythium insidiosum; immunomodulatory [71,72,73] | Clinical trials for leg ulcers [71]; diabetic mouse models [73] | |
| DCD-1L | Human (Dermcidin) | Inhibits Acinetobacter baumannii adhesion and biofilm formation [74] | Mouse wound model [74] | |
| Collagen VI-derived Peptides (C6DP) | Human (Collagen VI) | Antibacterial activity against S. aureus, E. coli, and P. aeruginosa [75] | - | |
| Myxinidin2/Myxinidin3 | Synthetic (Inspired by N. flexuosus) | Inhibits inflammatory factors; regulates downstream mediators [76] | Antibiotic-resistant infection models [76] | |
| Laminin α3-derived LG4-5 Peptides | Human (Laminin α3) | Crucial role in wound healing and antimicrobial defense [77] | - | |
| Catestatin (Cst) | Human (Chromogranin A) | Bridges neuroendocrine and cutaneous immune responses [78] | - | |
| Lactoferricin | Human (Lactoferrin) | Broad-spectrum; disrupts Gram−/− and Gram/+ membranes; iron deprivation [79,80] | - | |
| Ubiquicidin | Human (Ubiquitin) | Targets bacteria (e.g., S. aureus, K. pneumoniae) and fungi; interacts with membrane phospholipids [81,131] | - | |
| Animal-Derived | Scyreptin1-30 | Crab (Scylla paramamosain) | Broad-spectrum; disrupts membrane integrity; anti-biofilm [82] | Murine burn infection model [82] |
| MPX | Wasp Venom | Disrupts membrane integrity and potential; kills S. aureus [83] | Mouse scratch model [83] | |
| Cathelicidin-DM | Toad (Duttaphrynus melanostictus) | Rapid bactericidal activity; mechanism independent of cytokine alteration [84,85] | Mouse wound infection model [84] | |
| Stigmurin | Scorpion (Tityus stigmurus) | Significant antioxidant and antibacterial activities [86] | - | |
| DMS-PS1/DMS-PS2 | Frog (Phyllomedusa distincta) | Broad-spectrum; combats bacterial biofilms [87] | MRSA-infected wounds in mice [87] | |
| Esculentin-1a(1-21)NH2 | Frog (Pelophylax lessonae) | Broad-spectrum against P. aeruginosa; immunomodulatory [88] D-amino acid version has enhanced stability [89] | - | |
| Brevinin-2Ta | Frog | Antibacterial and anti-inflammatory against K. pneumoniae [90] | Dermally wounded rats [90] | |
| Equine MSC Secretome | Horse (Mesenchymal Stem Cells) | Inhibits E. coli and S. aureus; suppresses/disrupts MRSA biofilms via cysteine protease [91,92] | - | |
| Magainins | Frog (Xenopus laevis) | Inhibits growth of bacteria and fungi [93] | - | |
| PaTx-II | Snake (Pseudechis australis) | Moderate activity vs. Gram−/+ bacteria; disrupts membranes; increases collagen I; anti-inflammatory [94] | - | |
| svPLA~2~s | Snake Venom (Viperidae, Elapidae) | Effective against S. aureus skin infections; dose-dependent bacteriostatic/bactericidal [95] | - | |
| Snake Venom Peptides | Snake Venom | Binds integrins; modulates NF-κB and TGF-β1/Smad pathways [96] | - | |
| Epinecidin-1 (Epi-1) | Fish (Epinephelus coioides) | Reduces MRSA counts; lowers pro-inflammatory cytokines; increases angiogenesis [97,98] | Mouse and swine burn wound models [97,98] | |
| Tilapia Piscidin 3 (TP3) | Fish (Oreochromis niloticus) | Improves survival, antimicrobial and immunomodulatory responses [99] | MRSA-infected mice [99] | |
| Plant/Microbial-Derived | Plantaricin A (PlnA) | Bacterium (Lactobacillus plantarum) | Synergistic with ciprofloxacin against MDSA [100] | Skin wound infection model [100] |
| OH-CATH30 (PEG-GO conjugate) | Fish (O. niloticus)/Synthetic Delivery | Graphene oxide conjugate enhances delivery; combats S. aureus [101] | Murine skin wound infection model [101] | |
| Ba49 Peptide | Bacterium (Bacillus subtilis) | Alters membrane potential; induces ROS; anti-biofilm; intracellular killing [102] | - | |
| Tyrothricin | Bacterium (Bacillus brevis) | Broad-spectrum; low resistance risk [103] | Minor infected wounds (clinical use) [103] | |
| Engineered and Synthetic | DP1 | Synthetic Peptide | No acute toxicity; reduces bacterial load and oxidative stress [104] | S. aureus-infected murine wounds [104] |
| Pep 6 | Engineered Peptide | Reduces bacterial load in bacteremia and skin infection; inhibits MRSA biofilms [105] | E. coli bacteremia and S. aureus skin infection models [105] | |
| Abhisin-like peptide (AB7) | Synthetic (Inspired by A. halotolerans) | Broad-spectrum; reduces bacterial load and pro-inflammatory mediators [106] | Murine skin wound model [106] | |
| AH-4 (hHK-1 analog) | Synthetic (Neuropeptide Analogue) | Strong activity; rapid membrane disruption [107] | - | |
| Ll-LEAP2 | Fish (Leptobrachium liui) | Selective activity; disrupts membranes and hydrolyzes bacterial gDNA [108] | - | |
| RP557 | Designed HDP | Inhibits bacterial growth in MRSA-infected wounds [109] | Diabetic mouse model (topical) [109] | |
| TP11A (Tachyplesin I analog) | Synthetic Analog | Combats C. albicans-S. aureus poly-biofilm and mixed infections [110] | - | |
| At5 (from Ponericin-W1) | Synthetic Derivative | High antimicrobial selectivity and activity [111] | Mouse infection model [111] | |
| Trx-Ib-AMP4/Trx-E50-52 | Recombinant Peptides | Synergistic effects against MRSA [112] | - | |
| PP4-3.1 (Chimeric) | Synthetic Chimeric Peptide | Effective against various bacteria and Candida [113] | - | |
| GRAPN | Gelatinase-Responsive Peptide | Strong photodynamic antimicrobial activity [114] | Mouse model [114] | |
| RV3 | Designed Peptide | Kills P. aeruginosa and inhibits inflammation [115] | - | |
| UAASPLOs | Unnatural Amino Acid Polymers | Broad-spectrum; disrupts biofilms [116] | P. aeruginosa-infected burn wounds [116] | |
| Novel CAMPs | Synthetic Cationic AMPs | Reduce bacterial load, CAMP-A vs. P. aeruginosa [117] | Mouse skin wound model [117] | |
| CIP 3.1-PP4 | Collagenesis-Inducing Peptide | Potent vs. MDR Gram-negative bacteria; low toxicity [118] | - | |
| Pse-T2 | Synthetic Peptide | Disrupts membranes and binds DNA; effective vs. MDR P. aeruginosa [119] | MDR P. aeruginosa-infected wounds [119] | |
| LI-F AMP-jsa9 | Bacterium (Paenibacillus polymyxa) | Targets MRSA membranes; anti-biofilm; increases VEGF/e-NOS [120] | Murine scalded epidermis model [120] | |
| SR-0379 | Functional Peptide | Safe, well-tolerated, and effective in clinical trials [121] | Chronic leg ulcers (clinical trial) [121] | |
| WRL3 | Amphoteric Peptide | Inhibits MRSA biofilms; reduces bacterial burden [122] | Burn wound infection model [122] | |
| Chensinin-1b | Synthetic (Derived from R. chensinensis) | Disrupts bacterial membranes [123] | Wound infection model [123] | |
| BVN-Tβ4 | Recombinant Fusion Protein | Promotes wound healing [124] | Diabetic mice [124] | |
| PMO Conjugates + Gel | Peptide-Morpholino Oligomer | Improves healing of S. aureus-infected wounds [125] | S. aureus-infected mouse wound model [125] | |
| Synthetic Decapeptide (SDP) | Synthetic Peptide | Improved stability and activity with Pluronic F68 carrier [126] | Restraint-stressed mice [126] | |
| OETP-PRELP | Optimized End-Tagged Peptides | Antimicrobial activity with low cell toxicity [127] | - | |
| P-novispirin G10 | Recombinant Designer Peptide | Broad-spectrum; reduces bacterial counts [128] | Porcine skin wound model [128] | |
| CPP-JDlys | Cell-Penetrating Peptide Conjugate | Suppresses intracellular MRSA proliferation [129] | Keratinocytes infection model [129] | |
| AC7 (Abaecin Analog) | Rationally Designed | Significant efficacy against drug-resistant P. aeruginosa [130] | Murine skin wound model [130] |
2.2. Immunomodulatory Effects
| Category | AMP Name | Source | Key Immunomodulatory Mechanisms | Role in Wound Healing |
|---|---|---|---|---|
| Human-Derived | LL-37 | Human (Cathelicidin) | Essential for re-epithelialization; absent in chronic ulcers [132] | Promotes healing in diabetic mice [133] |
| Regulates TFEB-dependent autophagy in high-glucose environments [133] | ||||
| Human Host Defense Peptides (HDPs) | Human | Interact with neutrophils, monocytes, and T cells to enhance cytokine production. | Broad defense and immune regulation. | |
| Neutralize LPS [134] | ||||
| MRGPRX2/B2 Agonists | Human (Mast Cell Receptor) | Activates mast cells to inhibit bacterial proliferation and prevent biofilm formation. | Host defense and promotion of wound healing [135] | |
| Mobilizes neutrophils [135] | ||||
| IDR-1018 | Synthetic (Innate Defense Regulator) | Modulates host immune pathways rather than direct antibacterial activity. | Promotes healing in diabetic wounds [136] | |
| Improves immune regulation [136] | ||||
| Animal-Derived | BugaCATH | Toad (Bufo gargarizans) | Recruits neutrophils and macrophages. | Accelerates healing by initiating/expediting inflammation and resolving it [137] |
| Regulates neutrophil phagocytosis. | ||||
| Stimulates cytokine/chemokine production in macrophages and promotes M2 polarization via MAPK and NF-κB-NLRP3 pathways [137] | ||||
| Cathelicidin-OA1 | Frog (Odorrana andersonii) | Enhances macrophage recruitment. | Accelerates re-epithelialization and granulation tissue formation [138] | |
| Induces keratinocyte and fibroblast activity. | ||||
| Possesses antioxidant properties [138] | ||||
| Ss-SCPs/Tn-SCPs | Fish Skin Collagen | Upregulate NOD2 and BD14 in wound tissue. | Promote wound healing by modulating local inflammation and defense [139] | |
| Reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-8). | ||||
| Increase anti-inflammatory cytokine IL-10 [139] | ||||
| Epinecidin-1 (Epi-1) | Fish (Epinephelus coioides) | Reduces serum levels of TNF-α, IL-6, and MCP-1. | Promotes healing in MRSA-infected burns [97,98] | |
| Regulates monocyte recruitment and lymphocyte clearance [97] | ||||
| TK-CATH | Salamander (Tylototriton kweichowensis) | Potent anti-inflammatory and free radical scavenging activity. | Promotes wound healing with low cytotoxicity [142] | |
| Lacks direct antimicrobial activity [142] | ||||
| Other Sources | Nisin A | Bacterium (Lactococcus lactis) | Reduces pro-inflammatory cytokines (TNF-α, IL-6, IL-8). | Demonstrates strong immunomodulatory effects in wound healing [140] |
| Diminishes LPS-induced inflammation. | ||||
| Inhibits MCP-1 production [140] | ||||
| Andersonin-W1 (AW1) | Insect (O. andersonii) | Binds directly to TLR4, modulating NF-κB pathway. | Aids re-epithelialization and angiogenesis in diabetic wounds [141] | |
| Suppresses LPS-induced excessive inflammation. | ||||
| Promotes macrophage polarization [141] | ||||
| Esc(1-21)-1c | Frog (Esculentin-1a derivative) | Protects pancreatic β-cells from cytokine-induced apoptosis. | Potential for managing type 2 diabetes, indirectly aiding diabetic wound healing [143] | |
| Enhances cell proliferation and insulin secretion [143] | ||||
| Medicinal Maggot ES | Fly (Lucilia sericata) | Possesses anti-inflammatory properties. | Aids corneal wound healing [144] | |
| Reduces TLR-induced inflammatory cytokines [144] |
2.3. Collagen Synthesis and Tissue Remodeling
| Category | AMP Name | Source | Key Effects on Fibroblasts and Tissue Remodeling | Demonstrated Efficacy in Wound Healing |
|---|---|---|---|---|
| Human-Derived | Human β-Defensins (hBD-1, -2, -3, -4) | Human | Stimulate angiogenin secretion in dermal fibroblasts via EGFR, Src, JNK, p38, and NF-kB pathways [146] | - |
| Histatin 1 | Human Saliva | Enhances fibroblast migration and transformation into myofibroblasts via mTOR signaling [147] | - | |
| Histatin 2 | Human Saliva | Promotes fibroblast migration with minimal effect on proliferation [148] | - | |
| LL-37 | Human (Cathelicidin) | Stimulates human dermal fibroblast migration in a time- and dose-dependent manner; increases CXCR4 and SDF-1α expression [149] | - | |
| AMP-IBP5 | Human (IGFBP-5 derived) | Induces fibroblast migration and proliferation by upregulating the LRP1 receptor [155,156] | - | |
| Psoriasin (S100A7) and Koebnerisin (S100A15) | Human | Reduce extracellular matrix production and proliferation in human fibroblasts; expression decreased in keloid tissue [158] | Implicated in pathological scarring [158] | |
| Synthetic HNP-1 | Human (Neutrophil Peptide-1) | Increases proalpha1(I) collagen mRNA and protein expression; decreases MMP-1 levels [159] | Potential aid in wound healing by enhancing ECM deposition [159] | |
| Animal-Derived | Brevinin-2PN | Frog (Pelophylax nigromaculatus) | Encourages migration of human skin fibroblast cells; boosts expression of growth factor genes [150] | Expedites wound healing in models [150] |
| PM-7 | Frog (Polypedates megacephalus) | Promotes proliferation and migration in HSF cells via MAPK signaling pathway [151] | Aids healing of wounds in mice [151] | |
| Cathelicidin-NV | Frog (Nanorana ventripunctata) | Fosters proliferation of fibroblasts and their differentiation into myofibroblasts; promotes collagen production via MAPK pathways [152] | Accelerates wound healing in mice [152] | |
| Pt5-1c | Frog/Egg (Phosvitin-derived) | Stimulates migration and proliferation of fibroblasts; facilitates collagen contraction by activating fibroblasts into myofibroblasts [153] | Speeds up dermal wound healing and re-epithelialization in mice [153] | |
| Tilapia Piscidin (TP)2-5 and TP2-6 | Fish (Oreochromis niloticus) | Enhance proliferation and migration of fibroblasts; upregulate expression of collagen I and III [154] | Promote tissue remodeling in wound models [154] | |
| Aquaphilus dolomiae extract (ADE-G2) | Bacterium | Enhances fibroblast proliferation and significantly promotes keratinocyte migration [157] | Accelerates re-epithelialization of ex vivo skin explants [157] |
2.4. Promotion of Angiogenesis
| Category | AMP Name | Source | Pro-Angiogenic Mechanisms and Activities | Demonstrated Efficacy in Wound Healing |
|---|---|---|---|---|
| Human-Derived | Human β-Defensins (hBD-1, -2, -3, -4) | Human | Induce angiogenin secretion in dermal fibroblasts via EGFR, Src, JNK, p38, and NF-kB pathways [146] | - |
| hBD-3 | Human | Enhances angiogenesis and increases secretion of angiogenic growth factors via the FGFR1/JAK2/STAT3 pathway [160] | - | |
| Histatin-1 | Human Saliva | Promotes wound healing by facilitating the migration of endothelial cells [161] | - | |
| Neurotensin, Substance P, Insulin | Human/Synthetic | Increase monocyte chemoattractant protein-1 levels and promote angiogenesis [162] | - | |
| Proadrenomedullin N-terminal 20 peptide (PAMP) | Human | Significantly promotes angiogenesis and re-epithelialization in both normoxic and ischemic wounds [164] | Restores wound contraction and prevents necrosis in ischemic conditions, especially with stem/progenitor cells [164] | |
| Animal-Derived | PM-7 | Frog (Polypedates megacephalus) | Fosters cell proliferation and migration in HUVECs via the MAPK signaling pathway [151] | Promotes wound healing in mice [151] |
| Tilapia Piscidin (TP)2-5 and TP2-6 | Fish (Oreochromis niloticus) | Enhance migration of HUVECs and promote neovascularization in vitro [154] | Topical application reduces wound size and accelerates healing in a murine model [154] | |
| Other and Synthetic | Nisin A | Bacterium (Lactococcus lactis) | Enhances the migration of HUVECs and promotes neovascularization; indirectly affects angiogenesis by reducing pro-inflammatory cytokines [140] | - |
| AG30/5C | Synthetic Angiogenic Peptide | Novel angiogenic peptide with inherent antimicrobial properties [163] | Demonstrated good safety and efficacy in a clinical study for severe leg ulcers [163] |
2.5. Impact on Keratinocytes
| Category | AMP Name | Source | Key Effects on Keratinocytes and Mechanisms | Role in Wound Healing |
|---|---|---|---|---|
| Human-Derived | Human β-Defensins (hBD-2, -3, -4) | Human | Activate EGFR and STAT3 signaling, enhancing migration, proliferation, and cytokine production [165,166] | Facilitate re-epithelialization. |
| hBD-2 | Human | Promotes migration via EGFR/STAT3 phosphorylation, PLC activation, and intracellular Ca2+ mobilization [167] | Enhances wound closure. | |
| hBD-3 | Human | Accelerates healing through the FGFR/JAK2/STAT3 signaling pathway [160] | Promotes keratinocyte migration and proliferation. | |
| Histatins (Hst1, Hst2) | Human Saliva | Promote migration and accelerate wound closure by activating the ERK1/2 pathway [168,169,170] | Critical for oral and skin wound closure. | |
| LL-37 | Human (Cathelicidin) | Protects from apoptosis (reduces caspase-3, upregulates COX-2/IAP-2); promotes migration via EGFR transactivation [171,172] | Promotes re-epithelialization; deficient in chronic ulcers [132] | |
| S100A7 (Psoriasin) | Human | Exhibits biphasic response to bacteria via NF-κB/p38MAPK, caspase-1, and IL-1α; sustained secretion requires caspase-8 downregulation [175] | Involved in skin defense and homeostasis. | |
| SPINK9 | Human | Enhances migration by inducing EGFR transactivation [177] | Contributes to epidermal repair. | |
| AMP-IBP5 | Human (IGFBP-5 derived) | Promotes migration and proliferation via MrgX receptors and LRP1 upregulation, mediated by MAPK and NF-κB pathways [155,156] | Enhances re-epithelialization. | |
| Pep19-2.5 | Synthetic | Stimulates migration and ERK1/2 phosphorylation by activating P2X7 receptor, increasing cytosolic Ca2+ and mitochondrial ROS [185] | Promotes keratinocyte migration. | |
| Animal-Derived | Esculentin-1a(1-21)NH2 | Frog (Pelophylax lessonae) | Promotes HaCaT migration via EGF receptor and STAT3 activation; greater efficacy than LL-37; no cytotoxicity [178] | Supports wound healing. |
| Cathelicidin-NV | Frog (Nanorana ventripunctata) | Enhances keratinocyte proliferation and accelerates re-epithelialization via MAPK pathway [152] Also protects from UVB-induced photoaging [179] | Promotes cutaneous wound healing in mice [152] | |
| Temporins A and B | Frog (Rana temporaria) | Promote HaCaT migration and wound healing via the EGFR signaling pathway [180] | Dual antibacterial and immune modulatory functions. | |
| AH90 | Frog Skin | Accelerates wound healing in mice through NF-κB and JNK MAPK pathways [181] | Potential wound healing-promoting peptide. | |
| Tilapia Piscidin (TP)2-5 and TP2-6 | Fish (Oreochromis niloticus) | Stimulate cell proliferation and migration by activating EGFR signaling [154] | Contribute to wound healing with angiogenic properties. | |
| Gj-CATH3 Derivative | Gecko (Gekko japonicus) | Displays significant antioxidant activity and promotes wound healing, facilitating cell proliferation and diminishing oxidative stress [183] | Facilitates wound repair. | |
| Other and Synthetic | AG-30/5C | Synthetic Angiogenic Peptide | Promotes migration, proliferation, and enhances cytokine/chemokine production through MrgX receptors and MAPK/NF-κB pathways [176] | Multifunctional role in healing. |
| Tylotoin-sC18 | Synthetic Chimeric Peptide | Accelerates healing by boosting keratinocyte migration and proliferation, with additional antimicrobial properties [184] | Chimeric peptide with cell-penetrating capability. | |
| Nisin A | Bacterium (Lactococcus lactis) | Significantly enhances migration of HaCaT keratinocytes without affecting proliferation; reduces pro-inflammatory cytokines and increases re-epithelialization [140] | Promotes healing in porcine skin models. |
3. Clinical Trials
| Name | Target | Administration | Phase | ID | Mechanism |
|---|---|---|---|---|---|
| Gramicidin [186] | Infected wounds and ulcers | Topical | III | NCT00534391 | Membrane disruption/immunomodulation |
| Polymyxin B [187] | Gram-negative bacteria | Topical | III | NCT00490477; NCT00534391 | Membrane disruption/immunomodulation |
| Daptomycin [188] | Skin infection/bacteremia | Intravenous | III | NCT01922011; NCT00093067; NCT01104662; NCT02972983 | Membrane disruption/immunomodulation |
| LL-37 [189] | Leg ulcers | Topical | II | EUCTR2012-002100-41 | Membrane disruption/immunomodulation |
| Melittin [190] | Inflammation | Intradermal | I/II | NCT02364349, NCT01526031 | Membrane disruption/immunomodulation |
| Pexiganan (MSI-78) [191] | Diabetic foot ulcers | Topical | III | NCT00563394; NCT00563433; NCT01590758; NCT01594762 | Membrane disruption/immunomodulation |
| p2TA (AB103) [192] | Necrotic tissue infection | Intravenous | III | Immunomodulation | |
| D2A21 [193] | Burn wound infections | Topical | III | Membrane disruption | |
| GSK1322322 [194] | Bacterial skin infection | Oral | II | NCT01209078 | Peptide deformylase inhibitor |
| PMX-30063 [195] | Acute bacterial skin infection | Intravenous | II | NCT01211470; NCT02052388 | Membrane disruption/immunomodulation |
| XF-73 [196] | Staphylococcal infection | Topical | II | NCT03915470 | Membrane disruption |
| Nisin [197] | Gram-positive bacteria | Oral | NCT02928042; NCT02467972 | Depolarization of cell membrane | |
| PL-5 [198] | Skin infections | Topical | I | Membrane disruption | |
| Brilacidin [199,200] | ABSSSI | Intravenous/Oral | II/III | NCT02052388; NCT04240223; NCT04784897 | Membrane disruption/PDE4 inhibitor |
4. Peptide Formulations
4.1. Hydrogels
4.2. Nanomaterials
4.3. Other Peptide Formulations
5. Prospects and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pissarenko, A.; Meyers, M.A. The Materials Science of Skin: Analysis, Characterization, and Modeling. Prog. Mater. Sci. 2020, 110, 100634. [Google Scholar] [CrossRef]
- Peña, O.A.; Martin, P. Cellular and Molecular Mechanisms of Skin Wound Healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, F.; Momeni-Moghaddam, M.; Naderi-Meshkin, H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. Int. J. Low. Extrem. Wounds 2019, 18, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Martin, P. Wound Healing—Aiming for Perfect Skin Regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Sainson, R.C.A.; Johnston, D.A.; Chu, H.C.; Holderfield, M.T.; Nakatsu, M.N.; Crampton, S.P.; Davis, J.; Conn, E.; Hughes, C.C.W. TNF Primes Endothelial Cells for Angiogenic Sprouting by Inducing a Tip Cell Phenotype. Blood 2008, 111, 4997–5007. [Google Scholar] [CrossRef]
- Elieh Ali Komi, D.; Wöhrl, S.; Bielory, L. Mast Cell Biology at Molecular Level: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2020, 58, 342–365. [Google Scholar] [CrossRef]
- Xie, J.; Wu, X.; Zheng, S.; Lin, K.; Su, J. Aligned Electrospun Poly(l-Lactide) Nanofibers Facilitate Wound Healing by Inhibiting Macrophage M1 Polarization via the JAK-STAT and NF-κB Pathways. J. Nanobiotechnol. 2022, 20, 342. [Google Scholar] [CrossRef]
- Knoedler, S.; Broichhausen, S.; Guo, R.; Dai, R.; Knoedler, L.; Kauke-Navarro, M.; Diatta, F.; Pomahac, B.; Machens, H.-G.; Jiang, D.; et al. Fibroblasts—The Cellular Choreographers of Wound Healing. Front. Immunol. 2023, 14, 1233800. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, K.; Jiang, T.; Li, S.; Chen, J.; Wu, Z.; Li, W.; Tan, R.; Wei, W.; Yang, X.; et al. GelMA/PEGDA Microneedles Patch Loaded with HUVECs-Derived Exosomes and Tazarotene Promote Diabetic Wound Healing. J. Nanobiotechnol. 2022, 20, 147. [Google Scholar] [CrossRef]
- Lai, Y.; Li, D.; Li, C.; Muehleisen, B.; Radek, K.A.; Park, H.J.; Jiang, Z.; Li, Z.; Lei, H.; Quan, Y.; et al. The Antimicrobial Protein REG3A Regulates Keratinocyte Proliferation and Differentiation after Skin Injury. Immunity 2012, 37, 74–84. [Google Scholar] [CrossRef]
- Diao, J.; Liu, J.; Wang, S.; Chang, M.; Wang, X.; Guo, B.; Yu, Q.; Yan, F.; Su, Y.; Wang, Y. Sweat Gland Organoids Contribute to Cutaneous Wound Healing and Sweat Gland Regeneration. Cell Death Dis. 2019, 10, 238. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human Skin Wounds: A Major and Snowballing Threat to Public Health and the Economy. Wound Repair Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef]
- Trautinger, F. Management of Acute Cutaneous Wounds. N. Engl. J. Med. 2008, 359, 2395–2396. [Google Scholar] [CrossRef]
- Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev. 2001, 14, 244–269. [Google Scholar] [CrossRef]
- Raghuram, A.C.; Yu, R.P.; Lo, A.Y.; Sung, C.J.; Bircan, M.; Thompson, H.J.; Wong, A.K. Role of Stem Cell Therapies in Treating Chronic Wounds: A Systematic Review. World J. Stem Cells 2020, 12, 659–675. [Google Scholar] [CrossRef]
- Ding, X.; Tang, Q.; Xu, Z.; Xu, Y.; Zhang, H.; Zheng, D.; Wang, S.; Tan, Q.; Maitz, J.; Maitz, P.K.; et al. Challenges and Innovations in Treating Chronic and Acute Wound Infections: From Basic Science to Clinical Practice. Burns Trauma 2022, 10, tkac014. [Google Scholar] [CrossRef]
- Epand, R.M.; Vogel, H.J. Diversity of Antimicrobial Peptides and Their Mechanisms of Action. Biochim. Biophys. Acta BBA—Biomembr. 1999, 1462, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Sahl, H.-G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef]
- Bahar, A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Chapple, D.S. Peptide Antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323. [Google Scholar] [CrossRef]
- Nizet, V. Antimicrobial Peptide Resistance Mechanisms of Human Bacterial Pathogens. Curr. Issues Mol. Biol. 2006, 8, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Lohner, K. New Strategies for Novel Antibiotics: Peptides Targeting Bacterial Cell Membranes. Gen. Physiol. Biophys. 2009, 28, 105–116. [Google Scholar] [CrossRef]
- Powers, J.-P.S.; Hancock, R.E.W. The Relationship between Peptide Structure and Antibacterial Activity. Peptides 2003, 24, 1681–1691. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Bozzi, A.; Di Giulio, A.; Aschi, M.; Rinaldi, A.C. Antimicrobial Peptides: Natural Templates for Synthetic Membrane-Active Compounds. Cell. Mol. Life Sci. 2008, 65, 2450–2460. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Chai, J.; Chen, X.; Ye, T.; Zeng, B.; Zeng, Q.; Wu, J.; Kascakova, B.; Martins, L.A.; Prudnikova, T.; Smatanova, I.K.; et al. Characterization and Functional Analysis of Cathelicidin-MH, a Novel Frog-Derived Peptide with Anti-Septicemic Properties. eLife 2021, 10, e64411. [Google Scholar] [CrossRef]
- Li, H.; Shen, X.-F.; Zhou, X.-E.; Shi, Y.-E.; Deng, L.-X.; Ma, Y.; Wang, X.-Y.; Li, J.-Y.; Huang, N. Antibacterial Mechanism of High-Mobility Group Nucleosomal-Binding Domain 2 on the Gram-Negative Bacteria Escherichia coli. J. Zhejiang Univ. Sci. B 2017, 18, 410–420. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, A.; Baeder, D.Y.; Johnston, P.; Regoes, R.R.; Rolff, J. Bacteria Primed by Antimicrobial Peptides Develop Tolerance and Persist. PLoS Pathog. 2021, 17, e1009443. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, J.M.; Bandy, A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024, 16, e58178. [Google Scholar] [CrossRef]
- Wang, X.; Duan, H.; Li, M.; Xu, W.; Wei, L. Characterization and Mechanism of Action of Amphibian-Derived Wound-Healing-Promoting Peptides. Front. Cell Dev. Biol. 2023, 11, 1219427. [Google Scholar] [CrossRef]
- Li, G.; Wang, Q.; Feng, J.; Wang, J.; Wang, Y.; Huang, X.; Shao, T.; Deng, X.; Cao, Y.; Zhou, M.; et al. Recent Insights into the Role of Defensins in Diabetic Wound Healing. Biomed. Pharmacother. 2022, 155, 113694. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of Peptides for Antibacterial Applications. Colloids Surf. B Biointerfaces 2021, 202, 111682. [Google Scholar] [CrossRef]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial Host Defence Peptides: Functions and Clinical Potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial Peptides and Wound Healing: Biological and Therapeutic Considerations. Exp. Dermatol. 2016, 25, 167–173. [Google Scholar] [CrossRef]
- Gueta, O.; Sheinenzon, O.; Azulay, R.; Shalit, H.; Strugach, D.S.; Hadar, D.; Gelkop, S.; Milo, A.; Amiram, M. Tuning the Properties of Protein-Based Polymers Using High-Performance Orthogonal Translation Systems for the Incorporation of Aromatic Non-Canonical Amino Acids. Front. Bioeng. Biotechnol. 2022, 10, 913057. [Google Scholar] [CrossRef]
- Petkovic, M.; Mouritzen, M.V.; Mojsoska, B.; Jenssen, H. Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing. Biomolecules 2021, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, F.; Nagaoka, I.; Ogawa, H. Human Defensins and Cathelicidins in the Skin: Beyond Direct Antimicrobial Properties. Crit. Rev. Immunol. 2006, 26, 545–576. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Zhang, X.; Gao, Q. Effects and Mechanisms of Histatins as Novel Skin Wound-Healing Agents. J. Tissue Viability 2021, 30, 190–195. [Google Scholar] [CrossRef]
- Răileanu, M.; Borlan, R.; Campu, A.; Janosi, L.; Turcu, I.; Focsan, M.; Bacalum, M. No Country for Old Antibiotics! Antimicrobial Peptides (AMPs) as next-Generation Treatment for Skin and Soft Tissue Infection. Int. J. Pharm. 2023, 642, 123169. [Google Scholar] [CrossRef] [PubMed]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Gallo, R.L. Antimicrobial Peptides: Old Molecules with New Ideas. J. Investig. Dermatol. 2012, 132, 887–895. [Google Scholar] [CrossRef]
- Brogden, N.K.; Mehalick, L.; Fischer, C.L.; Wertz, P.W.; Brogden, K.A. The Emerging Role of Peptides and Lipids as Antimicrobial Epidermal Barriers and Modulators of Local Inflammation. Skin Pharmacol. Physiol. 2012, 25, 167–181. [Google Scholar] [CrossRef]
- Arnett, E.; Seveau, S. The Multifaceted Activities of Mammalian Defensins. Curr. Pharm. Des. 2011, 17, 4254–4269. [Google Scholar] [CrossRef]
- Shi, J.; Wu, J.; Feng, G.; Yang, H.; Mu, L. Natural Amphibian-Derived Host Defense Peptides: Peptide Immunomodulators with Potential Therapeutic Value. Protein Pept. Lett. 2023, 30, 562–573. [Google Scholar] [CrossRef]
- De Souza, G.S.; De Jesus Sonego, L.; Santos Mundim, A.C.; De Miranda Moraes, J.; Sales-Campos, H.; Lorenzón, E.N. Antimicrobial-Wound Healing Peptides: Dual-Function Molecules for the Treatment of Skin Injuries. Peptides 2022, 148, 170707. [Google Scholar] [CrossRef]
- Da Silva, J.; Leal, E.C.; Carvalho, E. Bioactive Antimicrobial Peptides as Therapeutic Agents for Infected Diabetic Foot Ulcers. Biomolecules 2021, 11, 1894. [Google Scholar] [CrossRef]
- Gomes, A.; Teixeira, C.; Ferraz, R.; Prudêncio, C.; Gomes, P. Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries. Molecules 2017, 22, 1743. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Kiatsurayanon, C.; Chieosilapatham, P.; Ogawa, H. Friends or Foes? Host Defense (Antimicrobial) Peptides and Proteins in Human Skin Diseases. Exp. Dermatol. 2017, 26, 989–998. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; McClements, D.J. Bioactive Functional Ingredients from Aquatic Origin: A Review of Recent Progress in Marine-Derived Nutraceuticals. Crit. Rev. Food Sci. Nutr. 2022, 62, 1242–1269. [Google Scholar] [CrossRef]
- Steinstraesser, L.; Lam, M.C.; Jacobsen, F.; Porporato, P.E.; Chereddy, K.K.; Becerikli, M.; Stricker, I.; Hancock, R.E.; Lehnhardt, M.; Sonveaux, P.; et al. Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing. Mol. Ther. 2014, 22, 734–742. [Google Scholar] [CrossRef]
- Panigrahi, S.; Ghosh, S.K.; Ferrari, B.; Wyrick, J.M.; Podrez, E.A.; Weinberg, A.; Sieg, S.F. Human β-Defensin-3 Is Associated with Platelet-Derived Extracellular Vesicles and Is a Potential Contributor to Endothelial Dysfunction. Front. Mol. Biosci. 2022, 9, 824954. [Google Scholar] [CrossRef] [PubMed]
- Mateusz, M.; Seweryn, K.M.; Janusz, S.; Piotr, K.; Panek, M.G. Assessment of the Effectiveness of the Peptide Inhibitor Homologous to the Transforming Growth Factor β Cytokine Blocking the TGFβRI/TGFβRII Receptor Complex—Pilot Study. Clin. Transl. Allergy 2024, 14, e12320. [Google Scholar] [CrossRef] [PubMed]
- Belair, D.G.; Lee, J.S.; Kellner, A.V.; Huard, J.; Murphy, W.L. Receptor Mimicking TGF-Β1 Binding Peptide for Targeting TGF-Β1 Signaling. Biomater. Sci. 2021, 9, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; De Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas aeruginosa Biofilm Formation and Expression of Virulence Genes by Selective Epimerization in the Peptide Esculentin-1a(1-21) NH2. FEBS J. 2019, 286, 3874–3891. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; Yang, C.; Zhang, H.; Fareed, M.S.; He, Y.; Su, J.; Wang, P.; Shen, Z.; Yan, W.; et al. A Carrier-Free, Dual-Functional Hydrogel Constructed of Antimicrobial Peptide Jelleine-1 and 8Br-cAMP for MRSA Infected Diabetic Wound Healing. Acta Biomater. 2022, 151, 223–234. [Google Scholar] [CrossRef]
- Gera, S.; Kankuri, E.; Kogermann, K. Antimicrobial Peptides—Unleashing Their Therapeutic Potential Using Nanotechnology. Pharmacol. Ther. 2022, 232, 107990. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, L.; Sethi, G.; Wang, J.; Li, B. Peptide-Driven Approaches in Advanced Wound Healing Materials. Drug Discov. Today 2025, 30, 104440. [Google Scholar] [CrossRef]
- Uzbay, T. Germ-Free Animal Experiments in the Gut Microbiota Studies. Curr. Opin. Pharmacol. 2019, 49, 6–10. [Google Scholar] [CrossRef]
- Uberti, M.G.; Pierpont, Y.N.; Ko, F.; Wright, T.E.; Smith, C.A.; Cruse, C.W.; Robson, M.C.; Payne, W.G. Amnion-Derived Cellular Cytokine Solution (ACCS) Promotes Migration of Keratinocytes and Fibroblasts. Ann. Plast. Surg. 2010, 64, 632–635. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, G.; Wang, Y.; Mao, Q.; Zhang, D.; Wu, J. LL37 Promotes Angiogenesis: A Potential Therapeutic Strategy for Lower Limb Ischemic Diseases. Front. Pharmacol. 2025, 16, 1587351. [Google Scholar] [CrossRef] [PubMed]
- Podolnikova, N.P.; Lishko, V.K.; Roberson, R.; Koh, Z.; Derkach, D.; Richardson, D.; Sheller, M.; Ugarova, T.P. Platelet Factor 4 Improves Survival in a Murine Model of Antibiotic-Susceptible and Methicillin-Resistant Staphylococcus aureus Peritonitis. Front. Cell. Infect. Microbiol. 2023, 13, 1217103. [Google Scholar] [CrossRef]
- Hirsch, T.; Spielmann, M.; Zuhaili, B.; Fossum, M.; Metzig, M.; Koehler, T.; Steinau, H.; Yao, F.; Onderdonk, A.B.; Steinstraesser, L.; et al. Human Beta-defensin-3 Promotes Wound Healing in Infected Diabetic Wounds. J. Gene Med. 2009, 11, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Sanapalli, B.K.R.; Yele, V.; Kalidhindi, R.S.R.; Singh, S.K.; Gulati, M.; Karri, V.V.S.R. Human Beta Defensins May Be a Multifactorial Modulator in the Management of Diabetic Wound. Wound Repair Regen. 2020, 28, 416–421. [Google Scholar] [CrossRef]
- Van Kilsdonk, J.W.J.; Jansen, P.A.M.; Van Den Bogaard, E.H.; Bos, C.; Bergers, M.; Zeeuwen, P.L.J.M.; Schalkwijk, J. The Effects of Human Beta-Defensins on Skin Cells in Vitro. Dermatology 2017, 233, 155–163. [Google Scholar] [CrossRef]
- Waasdorp, M. How Does Saliva Contribute to Wound Healing? Ned. Tijdschr. Tandheelkd. 2022, 129, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.-X.; Cheng, L.H.-H.; Lin, H.-Y.; Yang, Y.; Lu, Y.-Y.; Pang, M.-R.; Dong, Y.-Q.; Bikker, F.J.; Forouzanfar, T.; Cheng, B.; et al. The Minimal Active Domain of Human Salivary Histatin 1 Is Efficacious in Promoting Acute Skin Wound Healing. Mil. Med. Res. 2022, 9, 41. [Google Scholar] [CrossRef]
- Dorschner, R.A.; Pestonjamasp, V.K.; Tamakuwala, S.; Ohtake, T.; Rudisill, J.; Nizet, V.; Agerberth, B.; Gudmundsson, G.H.; Gallo, R.L. Cutaneous Injury Induces the Release of Cathelicidin Anti-Microbial Peptides Active against Group A Streptococcus. J. Investig. Dermatol. 2001, 117, 91–97. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Ogawa, H. Protective Roles of the Skin against Infection: Implication of Naturally Occurring Human Antimicrobial Agents β-Defensins, Cathelicidin LL-37 and Lysozyme. J. Dermatol. Sci. 2005, 40, 157–168. [Google Scholar] [CrossRef]
- Denardi, L.B.; Weiblen, C.; Ianiski, L.B.; Stibbe, P.C.; Pinto, S.C.; Santurio, J.M. Anti-Pythium insidiosum Activity of MSI-78, LL-37, and Magainin-2 Antimicrobial Peptides. Braz. J. Microbiol. 2022, 53, 509–512. [Google Scholar] [CrossRef]
- Neshani, A.; Sedighian, H.; Mirhosseini, S.A.; Ghazvini, K.; Zare, H.; Jahangiri, A. Antimicrobial Peptides as a Promising Treatment Option against Acinetobacter baumannii Infections. Microb. Pathog. 2020, 146, 104238. [Google Scholar]
- Abdillahi, S.M.; Maaß, T.; Kasetty, G.; Strömstedt, A.A.; Baumgarten, M.; Tati, R.; Nordin, S.L.; Walse, B.; Wagener, R.; Schmidtchen, A.; et al. Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity. J. Immunol. 2018, 201, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Ko, S.; Cheong, M.-J.; Bang, J.K.; Seo, C.H.; Luchian, T.; Park, Y. Myxinidin2 and Myxinidin3 Suppress Inflammatory Responses through STAT3 and MAPKs to Promote Wound Healing. Oncotarget 2017, 8, 87582–87597. [Google Scholar] [CrossRef]
- Senyürek, I.; Kempf, W.E.; Klein, G.; Maurer, A.; Kalbacher, H.; Schäfer, L.; Wanke, I.; Christ, C.; Stevanovic, S.; Schaller, M.; et al. Processing of Laminin α Chains Generates Peptides Involved in Wound Healing and Host Defense. J. Innate Immun. 2014, 6, 467–484. [Google Scholar] [CrossRef]
- Radek, K.A.; Lopez-Garcia, B.; Hupe, M.; Niesman, I.R.; Elias, P.M.; Taupenot, L.; Mahata, S.K.; O’Connor, D.T.; Gallo, R.L. The Neuroendocrine Peptide Catestatin Is a Cutaneous Antimicrobial and Induced in the Skin after Injury. J. Investig. Dermatol. 2008, 128, 1525–1534. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Q.; Sun, M.-C.; Luo, Y.; Zhao, C. Characterization of Tea Polyphenol-Modified Lactoferrin Complexes and Their Antimicrobial Activity against Escherichia coli. J. Dairy Sci. 2025; in press. [Google Scholar]
- Kim, S.; Hwang, J.S.; Lee, D.G. Lactoferricin B like Peptide Triggers Mitochondrial Disruption-mediated Apoptosis by Inhibiting Respiration under Nitric Oxide Accumulation in Candida albicans. IUBMB Life 2020, 72, 1515–1527. [Google Scholar] [CrossRef] [PubMed]
- Tegge, W.; Guerra, G.; Höltke, A.; Schiller, L.; Beutling, U.; Harmrolfs, K.; Gröbe, L.; Wullenkord, H.; Xu, C.; Weich, H.; et al. Selective Bacterial Targeting and Infection-triggered Release of Antibiotic Colistin Conjugates. Angew. Chem. Int. Ed. 2021, 60, 17989–17997. [Google Scholar] [CrossRef]
- Zhang, W.; An, Z.; Bai, Y.; Zhou, Y.; Chen, F.; Wang, K.-J. A Novel Antimicrobial Peptide Scyreptin1-30 from Scylla paramamosain Exhibiting Potential Therapy of Pseudomonas aeruginosa Early Infection in a Mouse Burn Wound Model. Biochem. Pharmacol. 2023, 218, 115917. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, Y.; Zhao, X.; Liu, S.; Xia, X.; Zhang, S.; Wang, Y.; Zhang, H.; Xu, Y.; Chen, S.; et al. The Antimicrobial Peptide MPX Can Kill Staphylococcus aureus, Reduce Biofilm Formation, and Effectively Treat Bacterial Skin Infections in Mice. Front. Vet. Sci. 2022, 9, 819921. [Google Scholar] [CrossRef]
- Shi, Y.; Li, C.; Wang, M.; Chen, Z.; Luo, Y.; Xia, X.-S.; Song, Y.; Sun, Y.; Zhang, A.-M. Cathelicidin-DM Is an Antimicrobial Peptide from Duttaphrynus melanostictus and Has Wound-Healing Therapeutic Potential. ACS Omega 2020, 5, 9301–9310. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, Z.; Tian, P.; Han, Q.; Zhang, J.; Zhang, A.-M.; Song, Y. Wound Healing Mechanism of Antimicrobial Peptide Cathelicidin-DM. Front. Bioeng. Biotechnol. 2022, 10, 977159. [Google Scholar] [CrossRef]
- Daniele-Silva, A.; Rodrigues, S.D.C.S.; Dos Santos, E.C.G.; Queiroz Neto, M.F.D.; Rocha, H.A.D.O.; Silva-Júnior, A.A.D.; Resende, J.M.; Araújo, R.M.; Fernandes-Pedrosa, M.D.F. NMR Three-Dimensional Structure of the Cationic Peptide Stigmurin from Tityus stigmurus Scorpion Venom: In Vitro Antioxidant and In Vivo Antibacterial and Healing Activity. Peptides 2021, 137, 170478. [Google Scholar] [CrossRef]
- Song, X.; Pan, H.; Wang, H.; Liao, X.; Sun, D.; Xu, K.; Chen, T.; Zhang, X.; Wu, M.; Wu, D.; et al. Identification of New Dermaseptins with Self-Assembly Tendency: Membrane Disruption, Biofilm Eradication, and Infected Wound Healing Efficacy. Acta Biomater. 2020, 109, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, B.; Cappiello, F.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr. Med. Chem. 2020, 27, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Di Grazia, A.; Cappiello, F.; Cohen, H.; Casciaro, B.; Luca, V.; Pini, A.; Di, Y.P.; Shai, Y.; Mangoni, M.L. D-Amino Acids Incorporation in the Frog Skin-Derived Peptide Esculentin-1a(1-21)NH2 Is Beneficial for Its Multiple Functions. Amino Acids 2015, 47, 2505–2519. [Google Scholar] [CrossRef]
- Liu, S.; Long, Q.; Xu, Y.; Wang, J.; Xu, Z.; Wang, L.; Zhou, M.; Wu, Y.; Chen, T.; Shaw, C. Assessment of Antimicrobial and Wound Healing Effects of Brevinin-2Ta against the Bacterium Klebsiella pneumoniae in Dermally-Wounded Rats. Oncotarget 2017, 8, 111369–111385. [Google Scholar] [CrossRef]
- Marx, C.; Gardner, S.; Harman, R.M.; Van De Walle, G.R. The Mesenchymal Stromal Cell Secretome Impairs Methicillin-Resistant Staphylococcus aureus Biofilms via Cysteine Protease Activity in the Equine Model. Stem Cells Transl. Med. 2020, 9, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Harman, R.M.; Yang, S.; He, M.K.; Van De Walle, G.R. Antimicrobial Peptides Secreted by Equine Mesenchymal Stromal Cells Inhibit the Growth of Bacteria Commonly Found in Skin Wounds. Stem Cell Res. Ther. 2017, 8, 157. [Google Scholar] [CrossRef]
- Zasloff, M. Magainins, a Class of Antimicrobial Peptides from Xenopus Skin: Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor. Proc. Natl. Acad. Sci. USA 1987, 84, 5449–5453. [Google Scholar] [CrossRef] [PubMed]
- Samy, R.P.; Mackessy, S.P.; Jeyasankar, A.; Ponraj, M.R.; Franco, O.L.; Cooper, M.A.; Kandasamy, M.; Mohanta, T.K.; Bhagavathsingh, J.; Vaiyapuri, S. Purification of PaTx-II from the Venom of the Australian King Brown Snake and Characterization of Its Antimicrobial and Wound Healing Activities. Int. J. Mol. Sci. 2023, 24, 4359. [Google Scholar] [CrossRef] [PubMed]
- Samy, R.P.; Stiles, B.G.; Gopalakrishnakone, P.; Chow, V.T. Antimicrobial Proteins from Snake Venoms: Direct Bacterial Damage and Activation of Innate Immunity against Staphylococcus aureus Skin Infection. Curr. Med. Chem. 2011, 18, 5104–5113. [Google Scholar] [CrossRef]
- Samy, R.P.; Sethi, G.; Lim, L.H.K. A Brief Update on Potential Molecular Mechanisms Underlying Antimicrobial and Wound-Healing Potency of Snake Venom Molecules. Biochem. Pharmacol. 2016, 115, 1–9. [Google Scholar] [CrossRef]
- Huang, H.-N.; Rajanbabu, V.; Pan, C.-Y.; Chan, Y.-L.; Wu, C.-J.; Chen, J.-Y. Use of the Antimicrobial Peptide Epinecidin-1 to Protect against MRSA Infection in Mice with Skin Injuries. Biomaterials 2013, 34, 10319–10327. [Google Scholar] [CrossRef]
- Huang, H.-N.; Pan, C.-Y.; Wu, H.-Y.; Chen, J.-Y. Antimicrobial Peptide Epinecidin-1 Promotes Complete Skin Regeneration of Methicillin-Resistant Staphylococcus aureus-Infected Burn Wounds in a Swine Model. Oncotarget 2017, 8, 21067–21080. [Google Scholar] [CrossRef]
- Huang, H.-N.; Chan, Y.-L.; Hui, C.-F.; Wu, J.-L.; Wu, C.-J.; Chen, J.-Y. Use of Tilapia Piscidin 3 (TP3) to Protect against MRSA Infection in Mice with Skin Injuries. Oncotarget 2015, 6, 12955–12969. [Google Scholar] [CrossRef]
- Meng, F.; Nie, T.; Lyu, Y.; Lyu, F.; Bie, X.; Lu, Y.; Zhao, M.; Lu, Z. Plantaricin A Reverses Resistance to Ciprofloxacin of Multidrug-resistant Staphylococcus aureus by Inhibiting Efflux Pumps. Environ. Microbiol. 2022, 24, 4818–4833. [Google Scholar] [CrossRef]
- Mei, D.; Guo, X.; Wang, Y.; Huang, X.; Guo, L.; Zou, P.; Ge, D.; Wang, X.; Lee, W.; Sun, T.; et al. PEGylated Graphene Oxide Carried OH-CATH30 to Accelerate the Healing of Infected Skin Wounds. Int. J. Nanomed. 2021, 16, 4769–4780. [Google Scholar] [CrossRef]
- Taggar, R.; Singh, S.; Bhalla, V.; Bhattacharyya, M.S.; Sahoo, D.K. Deciphering the Antibacterial Role of Peptide from Bacillus subtilis Subsp. Spizizenii Ba49 against Staphylococcus aureus. Front. Microbiol. 2021, 12, 708712. [Google Scholar] [CrossRef]
- Lang, C.; Staiger, C. Tyrothricin—An Underrated Agent for the Treatment of Bacterial Skin Infections and Superficial Wounds? Int. J. Pharm. Sci. 2016, 71, 299–305. [Google Scholar]
- Barman, P.; Sharma, C.; Joshi, S.; Sharma, S.; Maan, M.; Rishi, P.; Singla, N.; Saini, A. In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model. Probiotics Antimicrob. Proteins 2025, 17, 843–856. [Google Scholar] [CrossRef]
- Shang, L.; Wu, Y.; Wei, N.; Yang, F.; Wang, M.; Zhang, L.; Fei, C.; Liu, Y.; Xue, F.; Gu, F. Novel Arginine End-Tagging Antimicrobial Peptides to Combat Multidrug-Resistant Bacteria. ACS Appl. Mater. Interfaces 2022, 14, 245–258. [Google Scholar] [CrossRef]
- Wu, P.; Yang, J.; Chen, C.; Li, R.; Chen, S.; Weng, Y.; Lin, Y.; Chen, Z.; Yu, F.; Lü, X.; et al. Rational Design of Abhisin-like Peptides Enables Generation of Potent Antimicrobial Activity against Pathogens. Appl. Microbiol. Biotechnol. 2023, 107, 6621–6640. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhang, W.; Li, S.; Xie, H.; Zhang, Z.; Jia, B.; Huang, S.; Li, W.; Ma, L.; Gao, Y.; et al. Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. J. Med. Chem. 2023, 66, 6617–6630. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, C.-Y.; Chen, J.-Y.; Seah, R.W.X.; Zhang, L.; Ma, L.; Ding, G.-H. Host Defence Peptide LEAP2 Contributes to Antimicrobial Activity in a Mustache Toad (Leptobrachium liui). BMC Vet. Res. 2023, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.; Garcia, G.; Rivara, K.; Woodburn, K.; Clemens, L.E.; Simon, S.I. A Designed Host Defense Peptide for the Topical Treatment of MRSA-Infected Diabetic Wounds. Int. J. Mol. Sci. 2023, 24, 2143. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Tai, Z.; Wang, Y.; Zhu, Q.; Fang, J.K.-H.; Hu, M. Tachyplesin I Analogue Peptide as an Effective Antimicrobial Agent against Candida albicans—Staphylococcus aureus Poly-Biofilm Formation and Mixed Infection. ACS Infect. Dis. 2022, 8, 1839–1850. [Google Scholar] [CrossRef]
- Lv, S.; Wang, J.; You, R.; Liu, S.; Ding, Y.; Hadianamrei, R.; Tomeh, M.A.; Pan, F.; Cai, Z.; Zhao, X. Highly Selective Performance of Rationally Designed Antimicrobial Peptides Based on Ponericin-W1. Biomater. Sci. 2022, 10, 4848–4865. [Google Scholar] [CrossRef] [PubMed]
- Satei, P.; Ghaznavi-Rad, E.; Fahimirad, S.; Abtahi, H. Recombinant Production of Trx-Ib-AMP4 and Trx-E50-52 Antimicrobial Peptides and Antimicrobial Synergistic Assessment on the Treatment of Methicillin-Resistant Staphylococcus aureus under In Vitro and In Vivo Situations. Protein Expr. Purif. 2021, 188, 105949. [Google Scholar] [CrossRef]
- Gomes, A.; Bessa, L.J.; Fernandes, I.; Ferraz, R.; Monteiro, C.; Martins, M.C.L.; Mateus, N.; Gameiro, P.; Teixeira, C.; Gomes, P. Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics 2021, 13, 1962. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Wang, C.; Lei, X.; Du, X.; Guo, Q.; Zhou, S.; Cui, P.; Hong, T.; Jiang, P.; Wang, J.; et al. Gelatinase-Responsive Release of an Antibacterial Photodynamic Peptide against Staphylococcus aureus. Biomater. Sci. 2021, 9, 3433–3444. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shao, C.; Fang, Y.; Wang, J.; Dong, N.; Shan, A. Binding Loop of Sunflower Trypsin Inhibitor 1 Serves as a Design Motif for Proteolysis-Resistant Antimicrobial Peptides. Acta Biomater. 2021, 124, 254–269. [Google Scholar] [CrossRef]
- Pan, M.; Lu, C.; Zheng, M.; Zhou, W.; Song, F.; Chen, W.; Yao, F.; Liu, D.; Cai, J. Unnatural Amino-acid-based Star-shaped Poly(l -ornithine)s as Emerging Long-term and Biofilm-disrupting Antimicrobial Peptides to Treat Pseudomonas aeruginosa-infected Burn Wounds. Adv. Healthc. Mater. 2022, 11, 2200944. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, C.; Hansen, S.A.; Mitchell, W.J.; Zhang, M.Z.; Zhang, S. Antimicrobial Efficacy and Toxicity of Novel CAMPs against P. aeruginosa Infection in a Murine Skin Wound Infection Model. BMC Microbiol. 2019, 19, 293. [Google Scholar] [CrossRef]
- Gomes, A.; Bessa, L.J.; Fernandes, I.; Ferraz, R.; Mateus, N.; Gameiro, P.; Teixeira, C.; Gomes, P. Turning a Collagenesis-Inducing Peptide into a Potent Antibacterial and Antibiofilm Agent against Multidrug-Resistant Gram-Negative Bacteria. Front. Microbiol. 2019, 10, 1915. [Google Scholar] [CrossRef]
- Kang, H.K.; Seo, C.H.; Luchian, T.; Park, Y. Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection. Antimicrob. Agents Chemother. 2018, 62, e01493-18. [Google Scholar] [CrossRef]
- Han, J.; Ma, Z.; Gao, P.; Lu, Z.; Liu, H.; Gao, L.; Lu, W.; Ju, X.; Lv, F.; Zhao, H.; et al. The Antibacterial Activity of LI-F Type Peptide against Methicillin-Resistant Staphylococcus aureus (MRSA) in Vitro and Inhibition of Infections in Murine Scalded Epidermis. Appl. Microbiol. Biotechnol. 2018, 102, 2301–2311. [Google Scholar] [CrossRef]
- Nakagami, H.; Sugimoto, K.; Ishikawa, T.; Fujimoto, T.; Yamaoka, T.; Hayashi, M.; Kiyohara, E.; Ando, H.; Terabe, Y.; Takami, Y.; et al. Physician-Initiated Clinical Study of Limb Ulcers Treated with a Functional Peptide, SR-0379: From Discovery to a Randomized, Double-Blind, Placebo-Controlled Trial. npj Aging Mech. Dis. 2018, 4, 2. [Google Scholar] [CrossRef]
- Ma, Z.; Han, J.; Chang, B.; Gao, L.; Lu, Z.; Lu, F.; Zhao, H.; Zhang, C.; Bie, X. Membrane-Active Amphipathic Peptide WRL3 with In Vitro Antibiofilm Capability and In Vivo Efficacy in Treating Methicillin-Resistant Staphylococcus aureus Burn Wound Infections. ACS Infect. Dis. 2017, 3, 820–832. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Sun, L.; Ma, L.; Shang, D. Insights into the Membrane Interaction Mechanism and Antibacterial Properties of Chensinin-1b. Biomaterials 2015, 37, 299–311. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, S.; Ma, K.; Li, C. Expression of a Novel Recombinant Fusion Protein BVN-Tβ4 and Its Effects on Diabetic Wound Healing. J. Biosci. Bioeng. 2014, 118, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, A.J.; Wesolowski, D.; Gandotra, N.; Stojadinovic, A.; Izadjoo, M.; Altman, S.; Kyriakides, T.R. A Peptide-Morpholino Oligomer Conjugate Targeting Staphylococcus aureus gyrA mRNA Improves Healing in an Infected Mouse Cutaneous Wound Model. Int. J. Pharm. 2013, 453, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.L.; Sroussi, H.Y.; Abercrombie, J.J.; Leung, K.; Marucha, P.T. Synthetic Decapeptide Reduces Bacterial Load and Accelerates Healing in the Wounds of Restraint-Stressed Mice. Brain. Behav. Immun. 2012, 26, 588–596. [Google Scholar] [CrossRef]
- Malmsten, M.; Kasetty, G.; Pasupuleti, M.; Alenfall, J.; Schmidtchen, A. Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP. PLoS ONE 2011, 6, e16400. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, F.; Mohammadi-Tabrisi, A.; Hirsch, T.; Mittler, D.; Mygind, P.H.; Sonksen, C.P.; Raventos, D.; Kristensen, H.H.; Gatermann, S.; Lehnhardt, M.; et al. Antimicrobial Activity of the Recombinant Designer Host Defence Peptide P-Novispirin G10 in Infected Full-Thickness Wounds of Porcine Skin. J. Antimicrob. Chemother. 2007, 59, 493–498. [Google Scholar] [CrossRef]
- Wang, Z.; Kong, L.; Liu, Y.; Fu, Q.; Cui, Z.; Wang, J.; Ma, J.; Wang, H.; Yan, Y.; Sun, J. A Phage Lysin Fused to a Cell-Penetrating Peptide Kills Intracellular Methicillin-Resistant Staphylococcus aureus in Keratinocytes and Has Potential as a Treatment for Skin Infections in Mice. Appl. Environ. Microbiol. 2018, 84, e00380-18. [Google Scholar] [CrossRef]
- Yang, J.; Wu, P.; Weng, Y.; Lin, Y.; Chen, Z.; Yu, F.; Lv, X.; Ni, L.; Han, J. Rational Design and Antimicrobial Potency Assessment of Abaecin Analogues. ACS Biomater. Sci. Eng. 2023, 9, 6698–6714. [Google Scholar] [CrossRef]
- Nuding, S.; Fellermann, K.; Wehkamp, J.; Stange, E.F. Reduced Mucosal Antimicrobial Activity in Crohn’s Disease of the Colon. Gut 2007, 56, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Heilborn, J.D.; Nilsson, M.F.; Sørensen, O.; Ståhle-Bäckdahl, M.; Kratz, G.; Weber, G.; Borregaard, N. The Cathelicidin Anti-Microbial Peptide LL-37 Is Involved in Re-Epithelialization of Human Skin Wounds and Is Lacking in Chronic Ulcer Epithelium. J. Investig. Dermatol. 2003, 120, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Du, J.; Xue, W.; Shao, K.; Jiang, X.; Peng, W.; Li, W.; Huang, S. Cathelicidin LL-37 Promotes Wound Healing in Diabetic Mice by Regulating TFEB-Dependent Autophagy. Peptides 2024, 175, 171183. [Google Scholar] [CrossRef] [PubMed]
- Dawgul, M.A.; Greber, K.E.; Sawicki, W.; Kamysz, W. Human Host Defense Peptides—Role in Maintaining Human Homeostasis and Pathological Processes. Curr. Med. Chem. 2016, 24, 654–672. [Google Scholar] [CrossRef]
- Chompunud Na Ayudhya, C.; Roy, S.; Thapaliya, M.; Ali, H. Roles of a Mast Cell–Specific Receptor MRGPRX2 in Host Defense and Inflammation. J. Dent. Res. 2020, 99, 882–890. [Google Scholar] [CrossRef]
- Steinstraesser, L.; Hirsch, T.; Schulte, M.; Kueckelhaus, M.; Jacobsen, F.; Mersch, E.A.; Stricker, I.; Afacan, N.; Jenssen, H.; Hancock, R.E.W.; et al. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection. PLoS ONE 2012, 7, e39373. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, H.; Wu, S.; Mu, L.; Yang, H.; Wu, J. An Amphibian-Derived Cathelicidin Accelerates Cutaneous Wound Healing through Its Main Regulatory Effect on Phagocytes. Int. Immunopharmacol. 2024, 129, 111595. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wu, C.; Li, X.; Fu, Z.; Yang, M.; Bian, W.; Wang, S.; Song, Y.; Tang, J.; et al. Author Correction: Cathelicidin-OA1, a Novel Antioxidant Peptide Identified from an Amphibian, Accelerates Skin Wound Healing. Sci. Rep. 2018, 8, 15906. [Google Scholar] [CrossRef]
- Mei, F.; Liu, J.; Wu, J.; Duan, Z.; Chen, M.; Meng, K.; Chen, S.; Shen, X.; Xia, G.; Zhao, M. Collagen Peptides Isolated from Salmo salar and Tilapia nilotica Skin Accelerate Wound Healing by Altering Cutaneous Microbiome Colonization via Upregulated NOD2 and BD14. J. Agric. Food Chem. 2020, 68, 1621–1633. [Google Scholar] [CrossRef]
- Mouritzen, M.V.; Andrea, A.; Qvist, K.; Poulsen, S.S.; Jenssen, H. Immunomodulatory Potential of Nisin a with Application in Wound Healing. Wound Repair Regen. 2019, 27, 650–660. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Fu, Z.; Ji, Y.; Yan, J.; Kong, Y.; Peng, Y.; Ru, Z.; Huang, Y.; Li, Y.; et al. The Direct Binding of Bioactive Peptide Andersonin-W1 to TLR4 Expedites the Healing of Diabetic Skin Wounds. Cell. Mol. Biol. Lett. 2024, 29, 24. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ouyang, J.; Wang, Y.; Zhang, M.; Fu, L.; Xiao, N.; Gao, L.; Zhang, P.; Zhou, J.; Wang, Y. A Novel Anionic Cathelicidin Lacking Direct Antimicrobial Activity but with Potent Anti-Inflammatory and Wound Healing Activities from the Salamander Tylototriton kweichowensis. Biochimie 2021, 191, 37–50. [Google Scholar] [CrossRef]
- Musale, V.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Conlon, J.M.; Mangoni, M.L. Insulinotropic, Glucose-Lowering, and Beta-Cell Anti-Apoptotic Actions of Peptides Related to Esculentin-1a(1-21).NH2. Amino Acids 2018, 50, 723–734. [Google Scholar] [CrossRef]
- Lema, C.; Baidouri, H.; Sun, M.; Pohl, S.; Cookson, S.; Redfern, R.; McDermott, A.M. Anti-Inflammatory and Wound Healing Potential of Medicinal Maggot Excretions/Secretions at the Ocular Surface. Ocul. Surf. 2022, 26, 244–254. [Google Scholar] [CrossRef]
- Wang, J.; Duan, Z.; Chen, X.; Li, M. The Immune Function of Dermal Fibroblasts in Skin Defence against Pathogens. Exp. Dermatol. 2023, 32, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Umehara, Y.; Takahashi, M.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Okumura, K.; Ogawa, H.; Niyonsaba, F. The Antimicrobial Peptides Human β-Defensins Induce the Secretion of Angiogenin in Human Dermal Fibroblasts. Int. J. Mol. Sci. 2022, 23, 8800. [Google Scholar] [CrossRef]
- Cheng, L.; Lei, X.; Yang, Z.; Kong, Y.; Xu, P.; Peng, S.; Wang, J.; Chen, C.; Dong, Y.; Hu, X.; et al. Histatin 1 Enhanced the Speed and Quality of Wound Healing through Regulating the Behaviour of Fibroblast. Cell Prolif. 2021, 54, e13087. [Google Scholar] [CrossRef]
- Oudhoff, M.J.; Blaauboer, M.E.; Nazmi, K.; Scheres, N.; Bolscher, J.G.M.; Veerman, E.C.I. The Role of Salivary Histatin and the Human Cathelicidin LL-37 in Wound Healing and Innate Immunity. Biol. Chem. 2010, 391, 541–548. [Google Scholar] [CrossRef]
- Yang, E.-J.; Bang, S.-I. Effects of Conditioned Medium from LL-37 Treated Adipose Stem Cells on Human Fibroblast Migration. Exp. Ther. Med. 2017, 14, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-L.; Yu, S.-S.; Zhao, J.-L.; Li, Y.; Zhan, D.-J.; Xu, F.; Lin, Z.-H.; Chen, J. Brevinin-2PN, an Antimicrobial Peptide Identified from Dark-Spotted Frog (Pelophylax nigromaculatus), Exhibits Wound-Healing Activity. Dev. Comp. Immunol. 2022, 137, 104519. [Google Scholar] [CrossRef]
- Fu, S.; Du, C.; Zhang, Q.; Liu, J.; Zhang, X.; Deng, M. A Novel Peptide from Polypedates megacephalus Promotes Wound Healing in Mice. Toxins 2022, 14, 753. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Wang, X.; Wei, L.; Mi, K.; Shen, Y.; Liu, T.; Yang, H.; Mu, L. A Frog Cathelicidin Peptide Effectively Promotes Cutaneous Wound Healing in Mice. Biochem. J. 2018, 475, 2785–2799. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Gong, Y.; Song, L.; Li, H.; Zhang, X.; Li, H.; Zhang, S. In Vitro and In Vivo Wound Healing-Promoting Activities of Phosvitin-Derived Peptide Pt5-1c. Eur. J. Pharmacol. 2022, 920, 174833. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-W.; Hsieh, C.-Y.; Chen, J.-Y. Investigations on the Wound Healing Potential of Tilapia Piscidin (TP)2-5 and TP2-6. Mar. Drugs 2022, 20, 205. [Google Scholar] [CrossRef]
- Chieosilapatham, P.; Niyonsaba, F.; Kiatsurayanon, C.; Okumura, K.; Ikeda, S.; Ogawa, H. The Antimicrobial Peptide Derived from Insulin-like Growth Factor-Binding Protein 5, AMP-IBP5, Regulates Keratinocyte Functions through Mas-Related Gene X Receptors. J. Dermatol. Sci. 2017, 88, 117–125. [Google Scholar] [CrossRef]
- Chieosilapatham, P.; Yue, H.; Ikeda, S.; Ogawa, H.; Niyonsaba, F. Involvement of the Lipoprotein Receptor LRP1 in AMP-IBP5-Mediated Migration and Proliferation of Human Keratinocytes and Fibroblasts. J. Dermatol. Sci. 2020, 99, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Noizet, M.; Bianchi, P.; Galliano, M.F.; Caruana, A.; Brandner, J.M.; Bessou-Touya, S.; Duplan, H. Broad Spectrum Repairing Properties of an Extract of Aquaphilus dolomiae on In Vitro and Ex Vivo Models of Injured Skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 37–42. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Bureik, D.; Zwicker, S.; Ruzicka, T.; Wolf, R. The Antimicrobial Peptides Psoriasin (S100A7) and Koebnerisin (S100A15) Suppress Extracellular Matrix Production and Proliferation of Human Fibroblasts. Skin Pharmacol. Physiol. 2015, 28, 115–123. [Google Scholar] [CrossRef]
- Oono, T.; Shirafuji, Y.; Huh, W.-K.; Akiyama, H.; Iwatsuki, K. Effects of Human Neutrophil Peptide-1 on the Expression of Interstitial Collagenase and Type I Collagen in Human Dermal Fibroblasts. Arch. Dermatol. Res. 2002, 294, 185–189. [Google Scholar] [CrossRef]
- Takahashi, M.; Umehara, Y.; Yue, H.; Trujillo-Paez, J.V.; Peng, G.; Nguyen, H.L.T.; Ikutama, R.; Okumura, K.; Ogawa, H.; Ikeda, S.; et al. The Antimicrobial Peptide Human β-Defensin-3 Accelerates Wound Healing by Promoting Angiogenesis, Cell Migration, and Proliferation through the FGFR/JAK2/STAT3 Signaling Pathway. Front. Immunol. 2021, 12, 712781. [Google Scholar] [CrossRef]
- Torres, P.; Castro, M.; Reyes, M.; Torres, V. Histatins, Wound Healing, and Cell Migration. Oral Dis. 2018, 24, 1150–1160. [Google Scholar] [CrossRef]
- Mouritzen, M.V.; Abourayale, S.; Ejaz, R.; Ardon, C.B.; Carvalho, E.; Dalgaard, L.T.; Roursgaard, M.; Jenssen, H. Neurotensin, Substance P, and Insulin Enhance Cell Migration. J. Pept. Sci. 2018, 24, e3093. [Google Scholar] [CrossRef]
- Nakagami, H.; Yamaoka, T.; Hayashi, M.; Tanemura, A.; Takeya, Y.; Kurinami, H.; Sugimoto, K.; Nakamura, A.; Tomono, K.; Tamai, K.; et al. Physician-initiated First-in-human Clinical Study Using a Novel Angiogenic Peptide, AG30/5C, for Patients with Severe Limb Ulcers. Geriatr. Gerontol. Int. 2017, 17, 2150–2156. [Google Scholar] [CrossRef] [PubMed]
- García-Honduvilla, N.; Cifuentes, A.; Bellón, J.M.; Buján, J.; Martínez, A. The Angiogenesis Promoter, Proadrenomedullin N-Terminal 20 Peptide (PAMP), Improves Healing in both Normoxic and Ischemic Wounds Either Alone or in Combination with Autologous Stem/Progenitor Cells. Histol. Histopathol. 2013, 28, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Bick, R.J.; Poindexter, B.J.; Buja, L.M.; Lawyer, C.H.; Milner, S.M.; Bhat, S. Nuclear Localization of HBD-1 in Human Keratinocytes. J. Burns Wounds 2007, 7, e3. [Google Scholar]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial Peptides Human β-Defensins Stimulate Epidermal Keratinocyte Migration, Proliferation and Production of Proinflammatory Cytokines and Chemokines. J. Investig. Dermatol. 2007, 127, 594–604. [Google Scholar] [CrossRef]
- Mi, B.; Liu, J.; Liu, Y.; Hu, L.; Liu, Y.; Panayi, A.C.; Zhou, W.; Liu, G. The Designer Antimicrobial Peptide A-hBD-2 Facilitates Skin Wound Healing by Stimulating Keratinocyte Migration and Proliferation. Cell. Physiol. Biochem. 2018, 51, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Oudhoff, M.J.; Kroeze, K.L.; Nazmi, K.; Keijbus, P.A.M.; Hof, W.; Fernandez-Borja, M.; Hordijk, P.L.; Gibbs, S.; Bolscher, J.G.M.; Veerman, E.C.I. Structure-activity Analysis of Histatin, a Potent Wound Healing Peptide from Human Saliva: Cyclization of Histatin Potentiates Molar Activity 1000-fold. FASEB J. 2009, 23, 3928–3935. [Google Scholar] [CrossRef]
- Oudhoff, M.J.; Van Den Keijbus, P.A.M.; Kroeze, K.L.; Nazmi, K.; Gibbs, S.; Bolscher, J.G.M.; Veerman, E.C.I. Histatins Enhance Wound Closure with Oral and Non-Oral Cells. J. Dent. Res. 2009, 88, 846–850. [Google Scholar] [CrossRef]
- Oudhoff, M.J.; Bolscher, J.G.M.; Nazmi, K.; Kalay, H.; Hof, W.; Amerongen, A.V.N.; Veerman, E.C.I. Histatins Are the Major Wound-closure Stimulating Factors in Human Saliva as Identified in a Cell Culture Assay. FASEB J. 2008, 22, 3805–3812. [Google Scholar] [CrossRef]
- Chamorro, C.I.; Weber, G.; Grönberg, A.; Pivarcsi, A.; Ståhle, M. The Human Antimicrobial Peptide LL-37 Suppresses Apoptosis in Keratinocytes. J. Investig. Dermatol. 2009, 129, 937–944. [Google Scholar] [CrossRef]
- Tokumaru, S.; Sayama, K.; Shirakata, Y.; Komatsuzawa, H.; Ouhara, K.; Hanakawa, Y.; Yahata, Y.; Dai, X.; Tohyama, M.; Nagai, H.; et al. Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-37. J. Immunol. 2005, 175, 4662–4668. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.S.; Sørensen, O.E.; Liu, P.T.; Jalian, H.R.; Eshtiaghpour, D.; Behmanesh, B.E.; Chung, W.; Starner, T.D.; Kim, J.; Sieling, P.A.; et al. TGF-α Regulates TLR Expression and Function on Epidermal Keratinocytes. J. Immunol. 2005, 174, 6137–6143. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Cowland, J.B.; Theilgaard-Mönch, K.; Liu, L.; Ganz, T.; Borregaard, N. Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factors. J. Immunol. 2003, 170, 5583–5589. [Google Scholar] [CrossRef]
- Bhatt, T.; Bhosale, A.; Bajantri, B.; Mathapathi, M.S.; Rizvi, A.; Scita, G.; Majumdar, A.; Jamora, C. Sustained Secretion of the Antimicrobial Peptide S100A7 Is Dependent on the Downregulation of Caspase-8. Cell Rep. 2019, 29, 2546–2555.e4. [Google Scholar] [CrossRef]
- Kiatsurayanon, C.; Niyonsaba, F.; Chieosilapatham, P.; Okumura, K.; Ikeda, S.; Ogawa, H. Angiogenic Peptide (AG)-30/5C Activates Human Keratinocytes to Produce Cytokines/Chemokines and to Migrate and Proliferate via MrgX Receptors. J. Dermatol. Sci. 2016, 83, 190–199. [Google Scholar] [CrossRef]
- Sperrhacke, M.; Fischer, J.; Wu, Z.; Klünder, S.; Sedlacek, R.; Schroeder, J.-M.; Meyer-Hoffert, U.; Reiss, K. SPINK9 Stimulates Metalloprotease/EGFR–Dependent Keratinocyte Migration via Purinergic Receptor Activation. J. Investig. Dermatol. 2014, 134, 1645–1654. [Google Scholar] [CrossRef]
- Di Grazia, A.; Cappiello, F.; Imanishi, A.; Mastrofrancesco, A.; Picardo, M.; Paus, R.; Mangoni, M.L. The Frog Skin-Derived Antimicrobial Peptide Esculentin-1a(1-21)NH2 Promotes the Migration of Human HaCaT Keratinocytes in an EGF Receptor-Dependent Manner: A Novel Promoter of Human Skin Wound Healing? PLoS ONE 2015, 10, e0128663. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Wei, L.; Che, H.; Shen, Y.; Mi, K.; Bian, H.; Yang, H.; Wu, J.; Mu, L. Cathelicidin-NV from Nanorana ventripunctata Effectively Protects HaCaT Cells, Ameliorating Ultraviolet B-Induced Skin Photoaging. Peptides 2022, 150, 170712. [Google Scholar] [CrossRef] [PubMed]
- Di Grazia, A.; Luca, V.; Segev-Zarko, L.-A.T.; Shai, Y.; Mangoni, M.L. Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 2520–2527. [Google Scholar] [CrossRef]
- Liu, H.; Mu, L.; Tang, J.; Shen, C.; Gao, C.; Rong, M.; Zhang, Z.; Liu, J.; Wu, X.; Yu, H.; et al. A Potential Wound Healing-Promoting Peptide from Frog Skin. Int. J. Biochem. Cell Biol. 2014, 49, 32–41. [Google Scholar] [CrossRef]
- Lee, P.H.A.; Rudisill, J.A.; Lin, K.H.; Zhang, L.; Harris, S.M.; Falla, T.J.; Gallo, R.L. HB-107, a Nonbacteriostatic Fragment of the Antimicrobial Peptide Cecropin B, Accelerates Murine Wound Repair. Wound Repair Regen. 2004, 12, 351–358. [Google Scholar] [CrossRef]
- Cai, S.; Lu, C.; Liu, Z.; Wang, W.; Lu, S.; Sun, Z.; Wang, G. Derivatives of Gecko Cathelicidin-Related Antioxidant Peptide Facilitate Skin Wound Healing. Eur. J. Pharmacol. 2021, 890, 173649. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.; Neundorf, I. Design of a Novel Cell-Permeable Chimeric Peptide to Promote Wound Healing. Sci. Rep. 2018, 8, 16279. [Google Scholar] [CrossRef] [PubMed]
- Pfalzgraff, A.; Bárcena-Varela, S.; Heinbockel, L.; Gutsmann, T.; Brandenburg, K.; Martinez-de-Tejada, G.; Weindl, G. Antimicrobial Endotoxin-neutralizing Peptides Promote Keratinocyte Migration via P2X7 Receptor Activation and Accelerate Wound Healing In Vivo. Br. J. Pharmacol. 2018, 175, 3581–3593. [Google Scholar] [CrossRef] [PubMed]
- Hirunwiwatkul, P.; Wachirasereechai, K. Effectiveness of Combined Antibiotic Ophthalmic Solution in the Treatment of Hordeolum after Incision and Curettage: A Randomized, Placebo-Controlled Trial: A Pilot Study. J. Med. Assoc. Thai. 2005, 88, 647–650. [Google Scholar]
- Cantaluppi, V.; Assenzio, B.; Pasero, D.; Romanazzi, G.M.; Pacitti, A.; Lanfranco, G.; Puntorieri, V.; Martin, E.L.; Mascia, L.; Monti, G.; et al. Polymyxin-B Hemoperfusion Inactivates Circulating Proapoptotic Factors. Intensive Care Med. 2008, 34, 1638–1645. [Google Scholar] [CrossRef]
- Bradley, J.S.; Arrieta, A.C.; Digtyar, V.A.; Popejoy, M.W.; Grandhi, A.; Bokesch, P.; Hershberger, E.; Dorr, M.B.; Tan, C.M.; Murata, Y.; et al. Daptomycin for Pediatric Gram-Positive Acute Hematogenous Osteomyelitis. Pediatr. Infect. Dis. J. 2020, 39, 814–823. [Google Scholar] [CrossRef]
- Brown, K.L.; Poon, G.F.T.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. J. Immunol. 2011, 186, 5497–5505. [Google Scholar] [CrossRef]
- Lee, G.; Bae, H. Anti-Inflammatory Applications of Melittin, a Major Component of Bee Venom: Detailed Mechanism of Action and Adverse Effects. Molecules 2016, 21, 616. [Google Scholar] [CrossRef]
- Gottler, L.M.; Ramamoorthy, A. Structure, Membrane Orientation, Mechanism, and Function of Pexiganan—A Highly Potent Antimicrobial Peptide Designed from Magainin. Biochim. Biophys. Acta BBA—Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef]
- Bulger, E.M.; Maier, R.V.; Sperry, J.; Joshi, M.; Henry, S.; Moore, F.A.; Moldawer, L.L.; Demetriades, D.; Talving, P.; Schreiber, M.; et al. A Novel Drug for Treatment of Necrotizing Soft-Tissue Infections: A Randomized Clinical Trial. JAMA Surg. 2014, 149, 528. [Google Scholar] [CrossRef]
- Muchintala, D.; Suresh, V.; Raju, D.; Sashidhar, R.B. Synthesis and Characterization of Cecropin Peptide-Based Silver Nanocomposites: Its Antibacterial Activity and Mode of Action. Mater. Sci. Eng. C 2020, 110, 110712. [Google Scholar] [CrossRef] [PubMed]
- Peyrusson, F.; Butler, D.; Tulkens, P.M.; Van Bambeke, F. Cellular Pharmacokinetics and Intracellular Activity of the Novel Peptide Deformylase Inhibitor GSK1322322 against Staphylococcus aureus Laboratory and Clinical Strains with Various Resistance Phenotypes: Studies with Human THP-1 Monocytes and J774 Murine Macrophages. Antimicrob. Agents Chemother. 2015, 59, 5747–5760. [Google Scholar] [CrossRef]
- Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative Mechanistic Studies of Brilacidin, Daptomycin, and the Antimicrobial Peptide LL16. Antimicrob. Agents Chemother. 2014, 58, 5136–5145. [Google Scholar] [CrossRef] [PubMed]
- Ooi, N.; Miller, K.; Hobbs, J.; Rhys-Williams, W.; Love, W.; Chopra, I. XF-73, a Novel Antistaphylococcal Membrane-Active Agent with Rapid Bactericidal Activity. J. Antimicrob. Chemother. 2009, 64, 735–740. [Google Scholar] [CrossRef]
- Prince, A.; Sandhu, P.; Ror, P.; Dash, E.; Sharma, S.; Arakha, M.; Jha, S.; Akhter, Y.; Saleem, M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends on Its Crowding and Degree of Oligomerization. Sci. Rep. 2016, 6, 37908. [Google Scholar] [CrossRef] [PubMed]
- Miyake, O.; Ochiai, A.; Hashimoto, W.; Murata, K. Origin and Diversity of Alginate Lyases of Families PL-5 and -7 in Sphingomonas sp. Strain A1. J. Bacteriol. 2004, 186, 2891–2896. [Google Scholar] [CrossRef]
- Dos Reis, T.F.; De Castro, P.A.; Bastos, R.W.; Pinzan, C.F.; Souza, P.F.N.; Ackloo, S.; Hossain, M.A.; Drewry, D.H.; Alkhazraji, S.; Ibrahim, A.S.; et al. A Host Defense Peptide Mimetic, Brilacidin, Potentiates Caspofungin Antifungal Activity against Human Pathogenic Fungi. Nat. Commun. 2023, 14, 2052. [Google Scholar] [CrossRef]
- Bassetti, M.; Del Puente, F.; Magnasco, L.; Giacobbe, D.R. Innovative Therapies for Acute Bacterial Skin and Skin-Structure Infections (ABSSSI) Caused by Methicillin-Resistant Staphylococcus aureus: Advances in Phase I and II Trials. Expert Opin. Investig. Drugs 2020, 29, 495–506. [Google Scholar] [CrossRef]
- Wang, C.; Shirzaei Sani, E.; Shih, C.-D.; Lim, C.T.; Wang, J.; Armstrong, D.G.; Gao, W. Wound Management Materials and Technologies from Bench to Bedside and Beyond. Nat. Rev. Mater. 2024, 9, 550–566. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, Y.; Li, P.; Xu, Q.; Li, K.; Hu, H.; Bing, W.; Zhang, Z. Peptide Hydrogel Based Sponge Patch for Wound Infection Treatment. Front. Bioeng. Biotechnol. 2022, 10, 1066306. [Google Scholar] [CrossRef]
- Wang, S.; Wu, S.; Yang, Y.; Zhang, J.; Wang, Y.; Zhang, R.; Yang, L. Versatile Hydrogel Dressings That Dynamically Regulate the Healing of Infected Deep Burn Wounds. Adv. Healthc. Mater. 2023, 12, 2301224. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, C.; Zhao, M.; Liu, N.; Chen, Z.; Liu, J.; Li, G.; Deng, Y.; Sai, X.; Huang, H.; et al. Histatin-1 Loaded Multifunctional, Adhesive and Conductive Biomolecular Hydrogel to Treat Diabetic Wound. Int. J. Biol. Macromol. 2022, 209, 1020–1031. [Google Scholar] [CrossRef]
- Biscari, G.; Pitarresi, G.; Fiorica, C.; Schillaci, D.; Catania, V.; Palumbo, F.S.; Giammona, G. Near-Infrared Light-Responsive and Antibacterial Injectable Hydrogels with Antioxidant Activity Based on a Dopamine-Functionalized Gellan Gum for Wound Healing. Int. J. Pharm. 2022, 627, 122257. [Google Scholar] [CrossRef]
- Feng, T.; Wu, H.; Ma, W.; Wang, Z.; Wang, C.; Wang, Y.; Wang, S.; Zhang, M.; Hao, L. An Injectable Thermosensitive Hydrogel with a Self-Assembled Peptide Coupled with an Antimicrobial Peptide for Enhanced Wound Healing. J. Mater. Chem. B 2022, 10, 6143–6157. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Huang, Z.; Xu, Z.; Cao, R.; Li, J.; Wu, B.; Lu, J.R.; Zhu, H. An Additive-Free Multifunctional β-Glucan-Peptide Hydrogel Participates in the Whole Process of Bacterial-Infected Wound Healing. J. Controlled Release 2023, 362, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe, D.I.U.; D’Souza, A.; Ramezani, M.; Carroll, R.J.; Chicón, Q.; Muenzel, C.L.; Soule, J.; Monroe, M.B.B.; Patteson, A.E.; Makhlynets, O.V. Antibacterial and Cytocompatible pH-Responsive Peptide Hydrogel. Molecules 2023, 28, 4390. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cheng, J.; Cai, X.; Han, J.; Chen, X.; You, L.; Xiong, C.; Wang, S. pH-Switchable Antimicrobial Supramolecular Hydrogels for Synergistically Eliminating Biofilm and Promoting Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 18120–18132. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Wang, S.; Dong, C.; Zhang, X.; Zhang, R.; Yang, L. Dextran and Peptide-Based pH-Sensitive Hydrogel Boosts Healing Process in Multidrug-Resistant Bacteria-Infected Wounds. Carbohydr. Polym. 2022, 278, 118994. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Ma, X.; Wei, L.; Wang, J. Antibacterial Peptide NZ2114-Loaded Hydrogel Accelerates Staphylococcus aureus-Infected Wound Healing. Appl. Microbiol. Biotechnol. 2022, 106, 3639–3656. [Google Scholar] [CrossRef]
- D’Souza, A.; Yoon, J.H.; Beaman, H.; Gosavi, P.; Lengyel-Zhand, Z.; Sternisha, A.; Centola, G.; Marshall, L.R.; Wehrman, M.D.; Schultz, K.M.; et al. Nine-Residue Peptide Self-Assembles in the Presence of Silver to Produce a Self-Healing, Cytocompatible, Antimicrobial Hydrogel. ACS Appl. Mater. Interfaces 2020, 12, 17091–17099. [Google Scholar] [CrossRef]
- Patarroyo, J.L.; Cifuentes, J.; Muñoz, L.N.; Cruz, J.C.; Reyes, L.H. Novel Antibacterial Hydrogels Based on Gelatin/Polyvinyl-Alcohol and Graphene Oxide/Silver Nanoconjugates: Formulation, Characterization, and Preliminary Biocompatibility Evaluation. Heliyon 2022, 8, e09145. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; He, J.; Wei, X.; Li, H.; Liu, X.; Cheng, F. A Polyphenol and ε-Polylysine Functionalized Bacterial Cellulose/PVA Multifunctional Hydrogel for Wound Healing. Int. J. Biol. Macromol. 2023, 247, 125663. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Fu, T.; Lei, Y.; Xu, J.; Wang, S.; He, F.; Xie, Z.; Zhang, L. An Injectable and Light Curable Hyaluronic Acid Composite Gel with Anti-Biofilm, Anti-Inflammatory and pro-Healing Characteristics for Accelerating Infected Wound Healing. Int. J. Biol. Macromol. 2023, 253, 127190. [Google Scholar] [CrossRef]
- Tian, M.-P.; Zhang, A.-D.; Yao, Y.-X.; Chen, X.-G.; Liu, Y. Mussel-Inspired Adhesive and Polypeptide-Based Antibacterial Thermo-Sensitive Hydroxybutyl Chitosan Hydrogel as BMSCs 3D Culture Matrix for Wound Healing. Carbohydr. Polym. 2021, 261, 117878. [Google Scholar] [CrossRef]
- Ran, P.; Xia, T.; Zheng, H.; Lei, F.; Zhang, Z.; Wei, J.; Li, X. Light-Triggered Theranostic Hydrogels for Real-Time Imaging and on-Demand Photodynamic Therapy of Skin Abscesses. Acta Biomater. 2023, 155, 292–303. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; To, K.K.W.; Liu, Y.; Bai, C.; Leung, S.S.Y. A Thermosensitive Hydrogel Formulation of Phage and Colistin Combination for the Management of Multidrug-Resistant Acinetobacter baumannii Wound Infections. Biomater. Sci. 2024, 12, 151–163. [Google Scholar] [CrossRef]
- Jian, K.; Yang, C.; Li, T.; Wu, X.; Shen, J.; Wei, J.; Yang, Z.; Yuan, D.; Zhao, M.; Shi, J. PDGF-BB-Derived Supramolecular Hydrogel for Promoting Skin Wound Healing. J. Nanobiotechnol. 2022, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Dahan, S.; Aibinder, P.; Khalfin, B.; Moran-Gilad, J.; Rapaport, H. Hybrid Hydrogels of FKF-Peptide Assemblies and Gelatin for Sustained Antimicrobial Activity. ACS Biomater. Sci. Eng. 2023, 9, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ahmed, A.; Cong, H.; Yu, B.; Shen, Y. Effective Strategies for Developing Potent, Broad-Spectrum Antibacterial and Wound Healing Promotion from Short-Chain Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2023, 15, 32136–32147. [Google Scholar] [CrossRef]
- Banerjee, A.; Koul, V.; Bhattacharyya, J. Fabrication of in Situ Layered Hydrogel Scaffold for the Co-Delivery of PGDF-BB/Chlorhexidine to Regulate Proinflammatory Cytokines, Growth Factors, and MMP-9 in a Diabetic Skin Defect Albino Rat Model. Biomacromolecules 2021, 22, 1885–1900. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Tsai, W.-B. Development of an In Situ Photo-Crosslinking Antimicrobial Collagen Hydrogel for the Treatment of Infected Wounds. Polymers 2023, 15, 4701. [Google Scholar] [CrossRef]
- Jiang, J.; Hou, X.; Xu, K.; Ji, K.; Ji, Z.; Xi, J.; Wang, X. Bacteria-Targeted Magnolol-Loaded Multifunctional Nanocomplexes for Antibacterial and Anti-Inflammatory Treatment. Biomed. Mater. 2024, 19, 25029. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Wang, J.; Sun, X.; Yang, X.; Liu, G. Mussel-Inspired Electroactive, Antibacterial and Antioxidative Composite Membranes with Incorporation of Gold Nanoparticles and Antibacterial Peptides for Enhancing Skin Wound Healing. J. Biol. Eng. 2024, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ding, Y.; Hadianamrei, R.; Lv, S.; You, R.; Pan, F.; Zhang, P.; Wang, N.; Zhao, X. Antimicrobial Peptide Functionalized Gold Nanorods Combining Near-Infrared Photothermal Therapy for Effective Wound Healing. Colloids Surf. B Biointerfaces 2022, 220, 112887. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Tang, J.; Sun, D.; Yang, Y.; Liu, N.; Li, Y.; Fu, Z.; Wang, Y.; Li, C.; Li, X.; et al. Zn2+ Cross-Linked Alginate Carrying Hollow Silica Nanoparticles Loaded with RL-QN15 Peptides Provides Promising Treatment for Chronic Skin Wounds. ACS Appl. Mater. Interfaces 2022, 14, 29491–29505. [Google Scholar] [CrossRef]
- Ryan, A.; Patel, P.; Ratrey, P.; O’Connor, P.M.; O’Sullivan, J.; Ross, R.P.; Hill, C.; Hudson, S.P. The Development of a Solid Lipid Nanoparticle (SLN)-Based Lacticin 3147 Hydrogel for the Treatment of Wound Infections. Drug Deliv. Transl. Res. 2023, 13, 2407–2423. [Google Scholar] [CrossRef]
- Siritapetawee, J.; Limphirat, W.; Pakawanit, P.; Phoovasawat, C. Application of Bacillus sp. Protease in the Fabrication of Silver/Silver Chloride Nanoparticles in Solution and Cotton Gauze Bandages. Biotechnol. Appl. Biochem. 2022, 69, 20–29. [Google Scholar] [CrossRef]
- Yu, K.; Lu, F.; Li, Q.; Chen, H.; Lu, B.; Liu, J.; Li, Z.; Dai, F.; Wu, D.; Lan, G. In Situ Assembly of Ag Nanoparticles (AgNPs) on Porous Silkworm Cocoon-Based Wound Film: Enhanced Antimicrobial and Wound Healing Activity. Sci. Rep. 2017, 7, 2107. [Google Scholar] [CrossRef] [PubMed]
- Stefan, L.M.; Iosageanu, A.; Ilie, D.; Stanciuc, A.-M.; Matei, C.; Berger, D.; Craciunescu, O. Extracellular Matrix Biomimetic Polymeric Membranes Enriched with Silver Nanoparticles for Wound Healing. Biomed. Mater. 2021, 16, 35010. [Google Scholar] [CrossRef]
- Xuan, C.; Hao, L.; Liu, X.; Zhu, Y.; Yang, H.; Ren, Y.; Wang, L.; Fujie, T.; Wu, H.; Chen, Y.; et al. Wet-Adhesive, Haemostatic and Antimicrobial Bilayered Composite Nanosheets for Sealing and Healing Soft-Tissue Bleeding Wounds. Biomaterials 2020, 252, 120018. [Google Scholar] [CrossRef]
- Alamoudi, A.A.; Alharbi, A.S.; Abdel-Naim, A.B.; Badr-Eldin, S.M.; Awan, Z.A.; Okbazghi, S.Z.; Ahmed, O.A.A.; Alhakamy, N.A.; Fahmy, U.A.; Esmat, A. Novel Nanoconjugate of Apamin and Ceftriaxone for Management of Diabetic Wounds. Life 2022, 12, 1096. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhan, B.; Zhang, W.; Qin, D.; Xia, G.; Zhang, H.; Peng, M.; Li, S.-A.; Zhang, Y.; Gao, Y.; et al. Carboxymethyl Chitosan Nanoparticles Loaded with Bioactive Peptide OH-CATH30 Benefit Nonscar Wound Healing. Int. J. Nanomed. 2018, 13, 5771–5786. [Google Scholar] [CrossRef]
- Chouhan, D.; Janani, G.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Functionalized PVA –Silk Blended Nanofibrous Mats Promote Diabetic Wound Healing via Regulation of Extracellular Matrix and Tissue Remodelling. J. Tissue Eng. Regen. Med. 2018, 12, e1559–e1570. [Google Scholar] [CrossRef]
- Sabra, S.; Ragab, D.M.; Agwa, M.M.; Rohani, S. Recent Advances in Electrospun Nanofibers for Some Biomedical Applications. Eur. J. Pharm. Sci. 2020, 144, 105224. [Google Scholar] [CrossRef]
- Bombin, A.D.J.; Dunne, N.; McCarthy, H.O. Delivery of a Peptide/microRNA Blend via Electrospun Antimicrobial Nanofibres for Wound Repair. Acta Biomater. 2023, 155, 304–322. [Google Scholar] [CrossRef]
- Nanditha, C.K.; Kumar, G.S.V. Bioactive Peptides Laden Nano and Micro-Sized Particles Enriched ECM Inspired Dressing for Skin Regeneration in Diabetic Wounds. Mater. Today Bio 2022, 14, 100235. [Google Scholar] [CrossRef]
- Ghasemi Hamidabadi, H.; Alizadeh, S.; Mahboobi, L.; Khosrowpour, Z.; Nazm Bojnordi, M.; Aliakbar Ahovan, Z.; Malekzadeh Shafaroudi, M.; Zahiri, M.; Chauhan, N.P.S.; Gholipourmalekabadi, M. Antimicrobial Peptide-Loaded Decellularized Placental Sponge as an Excellent Antibacterial Skin Substitute against XDR Clinical Isolates. Amino Acids 2023, 55, 955–967. [Google Scholar] [CrossRef] [PubMed]
- Silveira, B.B.B.; Teixeira, L.N.; Miron, R.J.; Martinez, E.F. Effect of Platelet-Rich Fibrin (PRF) Membranes on the Healing of Infected Skin Wounds. Arch. Dermatol. Res. 2022, 315, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.U.; Kim, S.-C.; Choi, D.Y.; Jung, W.-K.; Moon, M.J. Basic Amino Acid-Mediated Cationic Amphiphilic Surfaces for Antimicrobial pH Monitoring Sensor with Wound Healing Effects. Biomater. Res. 2023, 27, 14. [Google Scholar] [CrossRef]
- Wang, R.; Li, R.; Li, F.; Zheng, P.; Wang, Z.; Qian, S. Glycerol and Antimicrobial Peptide-Modified Natural Latex for Bacteriostasis of Skin Wounds. ACS Omega 2023, 8, 1505–1513. [Google Scholar] [CrossRef]
- Cao, Y.; Shi, X.; Zhao, X.; Chen, B.; Li, X.; Li, Y.; Chen, Y.; Chen, C.; Lu, H.; Liu, J. Acellular Dermal Matrix Decorated with Collagen-Affinity Peptide Accelerate Diabetic Wound Healing through Sustained Releasing Histatin-1 Mediated Promotion of Angiogenesis. Int. J. Pharm. 2022, 624, 122017. [Google Scholar] [CrossRef]
- Rai, A.; Ferrão, R.; Marta, D.; Vilaça, A.; Lino, M.; Rondão, T.; Ji, J.; Paiva, A.; Ferreira, L. Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS Appl. Mater. Interfaces 2022, 14, 24213–24228. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Li, Y.; Lan, X.; Leung, P.H.; Li, J.; Li, G.; Xie, M.; Han, Y.; Lin, X. Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-Lactic Acid) (PLLA) for Biomedical Application. Sci. Rep. 2016, 6, 31149. [Google Scholar] [CrossRef]
- Alencar-Silva, T.; Díaz-Martín, R.D.; Zonari, A.; Foyt, D.; Guiang, M.; Pogue, R.; Saldanha-Araujo, F.; Dias, S.C.; Franco, O.L.; Carvalho, J.L. The Combination of Synoeca-MP Antimicrobial Peptide with IDR-1018 Stimulates Proliferation, Migration, and the Expression of pro-Regenerative Genes in Both Human Skin Cell Cultures and 3D Skin Equivalents. Biomolecules 2023, 13, 804. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Sharma, N.S.; John, J.V.; Ganguli-Indra, G.; Indra, A.K.; Gombart, A.F.; Xie, J. Engineered Exosomes Containing Cathelicidin/LL-37 Exhibit Multiple Biological Functions. Adv. Healthc. Mater. 2022, 11, 2200849. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Bessa, L.J.; Correia, P.; Fernandes, I.; Ferraz, R.; Gameiro, P.; Teixeira, C.; Gomes, P. “Clicking” an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability. Int. J. Mol. Sci. 2020, 21, 6174. [Google Scholar] [CrossRef]
- Olesk, J.; Donahue, D.; Ross, J.; Sheehan, C.; Bennett, Z.; Armknecht, K.; Kudary, C.; Hopf, J.; Ploplis, V.A.; Castellino, F.J.; et al. Antimicrobial Peptide-Conjugated Phage-Mimicking Nanoparticles Exhibit Potent Bactericidal Action against Streptococcus pyogenes in Murine Wound Infection Models. Nanoscale Adv. 2024, 6, 1145–1162. [Google Scholar] [CrossRef]
- Hansbrough, J.F.; Achauer, B.; Dawson, J.; Himel, H.; Luterman, A.; Slater, H.; Levenson, S.; Salzberg, C.A.; Hansbrough, W.B.; Dor, C. Wound Healing in Partial-Thickness Burn Wounds Treated with Collagenase Ointment versus Silver Sulfadiazine Cream. J. Burn Care Rehabil. 1995, 16, 241–247. [Google Scholar] [CrossRef]
- Hou, L.; Wang, W.; Wang, M.-K.; Song, X.-S. Acceleration of Healing in Full-Thickness Wound by Chitosan-Binding bFGF and Antimicrobial Peptide Modification Chitosan Membrane. Front. Bioeng. Biotechnol. 2022, 10, 878588. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Peng, C.; Li, C.; Qi, Z.; Zhan, J.; Pan, S. Dual Bio-Active Factors with Adhesion Function Modified Electrospun Fibrous Scaffold for Skin Wound and Infections Therapeutics. Sci. Rep. 2021, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, A.; Maritato, R.; La Gatta, A.; Fusco, A.; Reale, S.; Stellavato, A.; Pirozzi, A.; De Rosa, M.; Donnarumma, G.; Schiraldi, C. In Vitro Evaluation of Novel Hybrid Cooperative Complexes in a Wound Healing Model: A Step toward Improved Bioreparation. Int. J. Mol. Sci. 2019, 20, 4727. [Google Scholar] [CrossRef]
- De Silva, C.C.; Israni, N.; Zanwar, A.; Jagtap, A.; Leophairatana, P.; Koberstein, J.T.; Modak, S.M. “Smart” Polymer Enhances the Efficacy of Topical Antimicrobial Agents. Burns 2019, 45, 1418–1429. [Google Scholar] [CrossRef]
- Li, W.; Yu, Q.; Yao, H.; Zhu, Y.; Topham, P.D.; Yue, K.; Ren, L.; Wang, L. Superhydrophobic Hierarchical Fiber/Bead Composite Membranes for Efficient Treatment of Burns. Acta Biomater. 2019, 92, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-A.; Liu, J.; Wu, H.-J.; Xu, Y.; Si, C.-C.; Zhou, B.-R.; Luo, D. The Effects of Antimicrobial Peptides and Hyaluronic Acid Compound Mask on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing. J. Cosmet. Laser Ther. 2019, 21, 217–224. [Google Scholar] [CrossRef]
- Chouhan, D.; Thatikonda, N.; Nilebäck, L.; Widhe, M.; Hedhammar, M.; Mandal, B.B. Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts. ACS Appl. Mater. Interfaces 2018, 10, 23560–23572. [Google Scholar] [CrossRef]
- Krishnan, S.S.; Jayanthi, N.N.; Vajravelu, L.K.; Santhiya, D. Nanoparticle-Mediated Delivery of Antimicrobial Peptides for Multidrug-Resistant Ventilator-Associated Pneumonia: A Comprehensive Review of a Promising Therapeutic Strategy. Arch. Microbiol. 2025, 207, 316. [Google Scholar] [CrossRef]
- Si, W.; Wang, L.; Usongo, V.; Zhao, X. Colistin Induces S. aureus Susceptibility to Bacitracin. Front. Microbiol. 2018, 9, 2805. [Google Scholar] [CrossRef]
- Infectious Diseases Society of China; Chinese Thoracic Society; Chinese Society of Critical Care Medicine; Chinese Society of Hematology; Chinese Society of Bacterial Infection and Resistance; Committee of Drug Clinical Evaluate Research of Chinese Pharmaceutical Association; Global Chinese Association of Clinical Microbiology and Infectious Diseases. Multi-Disciplinary Expert Consensus on the Optimal Clinical Use of the Polymyxins in China. Chin. J. Tuberc. Respir. Dis. 2021, 44, 292–310. [Google Scholar] [CrossRef]
- Wang, H.; Duan, C.; Keate, R.L.; Ameer, G.A. Panthenol Citrate Biomaterials Accelerate Wound Healing and Restore Tissue Integrity. Adv. Healthc. Mater. 2023, 12, 2301683. [Google Scholar] [CrossRef]
- Liu, J.; Dong, J.; Pei, X. Apoptotic Extracellular Vesicles Derived from Human Umbilical Vein Endothelial Cells Promote Skin Repair by Enhancing Angiogenesis: From Death to Regeneration. Int. J. Nanomed. 2024, 19, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Chen, T.; Liu, Z.; Fan, L.; Xie, Y.; You, S.; Sun, H.; Xu, Y.; Wang, G.; Dai, H.; et al. A Dual-Layer Chitosan-Based Conductive Hydrogel and Piezoelectric Film for Ultrasound-Driven Wound Repair and Scar Reduction. Carbohydr. Polym. 2025, 370, 124305. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A.; Van Zile, P.S.; Li, Q.; Shermock, K.M.; McCormick, W.G.; Kohut, B. Topical Triple-Antibiotic Ointment as a Novel Therapeutic Choice in Wound Management and Infection Prevention: A Practical Perspective. Expert Rev. Anti Infect. Ther. 2007, 5, 773–782. [Google Scholar] [CrossRef]
- Berger, R.S.; Pappert, A.S.; Van Zile, P.S.; Cetnarowski, W.E. A Newly Formulated Topical Triple-Antibiotic Ointment Minimizes Scarring. Cutis 2000, 65, 401–404. [Google Scholar] [PubMed]
- Lu, S.; Lu, A.; Paslin, D. A Comparison of the Wound Healing Efficacy of Trolamine Emulsion, Manuka Gel, and Polymyxin-Bacitracin Ointment. Adv. Skin Wound Care 2020, 33, 217–220. [Google Scholar] [CrossRef]
- Neff, J.A.; Bayramov, D.F.; Patel, E.A.; Miao, J. Novel Antimicrobial Peptides Formulated in Chitosan Matrices Are Effective against Biofilms of Multidrug-Resistant Wound Pathogens. Mil. Med. 2020, 185, 637–643. [Google Scholar] [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections. Drug Resist. Updat. 2023, 68, 100954. [Google Scholar] [CrossRef]
- Makowski, M.; Felício, M.R.; Fensterseifer, I.C.M.; Franco, O.L.; Santos, N.C.; Gonçalves, S. EcDBS1R4, an Antimicrobial Peptide Effective against Escherichia coli with In Vitro Fusogenic Ability. Int. J. Mol. Sci. 2020, 21, 9104. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.T.; Saha, S.K.; Haque, M.E.; Biswas, N. Nanotechnology-Based Therapeutic Applications: In Vitro and In Vivo Clinical Studies for Diabetic Wound Healing. Biomater. Sci. 2021, 9, 7705–7747. [Google Scholar] [CrossRef]
- Mohid, S.A.; Bhunia, A. Combining Antimicrobial Peptides with Nanotechnology: An Emerging Field in Theranostics. Curr. Protein Pept. Sci. 2020, 21, 413–428. [Google Scholar] [CrossRef]
- Chen, T.; Lyu, Y.; Tan, M.; Yang, C.; Li, Y.; Shao, C.; Zhu, Y.; Shan, A. Fabrication of Supramolecular Antibacterial Nanofibers with Membrane-Disruptive Mechanism. J. Med. Chem. 2021, 64, 16480–16496. [Google Scholar] [CrossRef]
- Guadarrama-Acevedo, M.C.; Mendoza-Flores, R.A.; Del Prado-Audelo, M.L.; Urbán-Morlán, Z.; Giraldo-Gomez, D.M.; Magaña, J.J.; González-Torres, M.; Reyes-Hernández, O.D.; Figueroa-González, G.; Caballero-Florán, I.H.; et al. Development and Evaluation of Alginate Membranes with Curcumin-Loaded Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2019, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Shaoyong, W.; Wang, L.; Yang, C.; Chen, T.; Jiang, X.; Yan, R.; Jiang, Z.; Zhang, P.; Jin, M.; et al. Gut-Targeted Nanoparticles Deliver Specifically Targeted Antimicrobial Peptides against Clostridium perfringens Infections. Sci. Adv. 2023, 9, eadf8782. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Du, H.; Zhao, D.; Liu, C.; Lu, K. Antimicrobial Peptides: Design, Chemical Synthesis, Activity Evaluation, and Application. Int. Food Res. J. 2023, 30, 814–831. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Cheng, J.; Zhang, Z.; Kang, F.; Wu, X.; Chu, Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J. Med. Chem. 2023, 66, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Q. Role of Gene Engineering in the Research and Applications of Antimicrobial Peptides. Med. Recapitul. 2012, 18, 1800–1802. [Google Scholar] [CrossRef]
- Shi, Z.; Dai, C.; Deng, P.; Li, X.; Wu, Y.; Lv, J.; Xiong, C.; Shuai, Y.; Zhang, F.; Wang, D.; et al. Wearable Battery-Free Smart Bandage with Peptide Functionalized Biosensors Based on MXene for Bacterial Wound Infection Detection. Sens. Actuators B Chem. 2023, 383, 133598. [Google Scholar] [CrossRef]
- Felgueiras, H.P.; Amorim, M.T.P. Functionalization of Electrospun Polymeric Wound Dressings with Antimicrobial Peptides. Colloids Surf. B Biointerfaces 2017, 156, 133–148. [Google Scholar] [CrossRef]
- Ersanli, C.; Tzora, A.; Skoufos, I.; Voidarou, C.; Zeugolis, D.I. Recent Advances in Collagen Antimicrobial Biomaterials for Tissue Engineering Applications: A Review. Int. J. Mol. Sci. 2023, 24, 7808. [Google Scholar] [CrossRef] [PubMed]
- Power, R.N.; Cavanagh, B.L.; Dixon, J.E.; Curtin, C.M.; O’Brien, F.J. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int. J. Mol. Sci. 2022, 23, 1460. [Google Scholar] [CrossRef]
- McLoone, P.; Tabys, D.; Fyfe, L. Honey Combination Therapies for Skin and Wound Infections: A Systematic Review of the Literature. Clin. Cosmet. Investig. Dermatol. 2020, 13, 875–888. [Google Scholar] [CrossRef]
- Wu, C.-L.; Peng, K.-L.; Yip, B.-S.; Chih, Y.-H.; Cheng, J.-W. Boosting Synergistic Effects of Short Antimicrobial Peptides with Conventional Antibiotics against Resistant Bacteria. Front. Microbiol. 2021, 12, 747760. [Google Scholar] [CrossRef]
- Kokel, A.; Torok, M. Recent Advances in the Development of Antimicrobial Peptides (AMPs): Attempts for Sustainable Medicine? Curr. Med. Chem. 2018, 25, 2503–2519. [Google Scholar] [CrossRef]
- Korting, H.C.; Schöllmann, C.; Stauss-Grabo, M.; Schäfer-Korting, M. Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine. Skin Pharmacol. Physiol. 2012, 25, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Sun, H.; Wu, Y.; Li, C.; Wang, Y.; Liu, Y.; Li, Y.; Nie, J.; Sun, D.; Zhang, Y.; et al. A Cyclic Heptapeptide-Based Hydrogel Boosts the Healing of Chronic Skin Wounds in Diabetic Mice and Patients. NPG Asia Mater. 2022, 14, 99. [Google Scholar] [CrossRef]
- Turky, N.O.; Abdelmonem, N.A.; Tammam, S.N.; Gad, M.Z.; Breitinger, H.; Breitinger, U. Antibacterial and In Vitro Anticancer Activities of the Antimicrobial Peptide NRC-07 Encapsulated in Chitosan Nanoparticles. J. Pept. Sci. 2024, 30, e3550. [Google Scholar] [CrossRef]
- Chouhan, D.; Mandal, B.B. Silk Biomaterials in Wound Healing and Skin Regeneration Therapeutics: From Bench to Bedside. Acta Biomater. 2020, 103, 24–51. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Limjunyawong, N.; Sypek, E.I.; Wang, G.; Ortines, R.V.; Youn, C.; Alphonse, M.P.; Dikeman, D.; Wang, Y.; Lay, M.; et al. Keratinocyte-Derived Defensins Activate Neutrophil-Specific Receptors Mrgpra2a/b to Prevent Skin Dysbiosis and Bacterial Infection. Immunity 2022, 55, 1645–1662.e7. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yao, X.; Soladoye, O.P.; Zhang, Y.; Fu, Y. Phosphorylation Modification of Collagen Peptides from Fish Bone Enhances Their Calcium-Chelating and Antioxidant Activity. LWT 2022, 155, 112978. [Google Scholar] [CrossRef]
- Umehara, Y.; Kamata, Y.; Tominaga, M.; Niyonsaba, F.; Ogawa, H.; Takamori, K. Effects of Antimicrobial Peptides on Expression of Axon Guidance Molecules in Normal Human Epidermal Keratinocytes. J. Dermatol. Sci. 2016, 84, e166. [Google Scholar] [CrossRef]
- Umehara, Y.; Kamata, Y.; Tominaga, M.; Niyonsaba, F.; Ogawa, H.; Takamori, K. Antimicrobial Peptides Human LL-37 and β-Defensin-3 Modulate the Expression of Nerve Elongation Factors in Human Epidermal Keratinocytes. J. Dermatol. Sci. 2017, 88, 365–367. [Google Scholar] [CrossRef]
- Qi, H.; Gao, Y.; Zhang, L.; Cui, Z.; Sui, X.; Ma, J.; Yang, J.; Shu, Z.; Zhang, L. Rational Design of and Mechanism Insight into an Efficient Antifreeze Peptide for Cryopreservation. Engineering 2024, 34, 164–173. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, T.; Jin, L.; Wang, C.; Zhang, D. Antimicrobial Peptides for Skin Wound Healing. Biomolecules 2025, 15, 1613. https://doi.org/10.3390/biom15111613
Wu Y, Liu T, Jin L, Wang C, Zhang D. Antimicrobial Peptides for Skin Wound Healing. Biomolecules. 2025; 15(11):1613. https://doi.org/10.3390/biom15111613
Chicago/Turabian StyleWu, Yifan, Tingting Liu, Lili Jin, Chuyuan Wang, and Dianbao Zhang. 2025. "Antimicrobial Peptides for Skin Wound Healing" Biomolecules 15, no. 11: 1613. https://doi.org/10.3390/biom15111613
APA StyleWu, Y., Liu, T., Jin, L., Wang, C., & Zhang, D. (2025). Antimicrobial Peptides for Skin Wound Healing. Biomolecules, 15(11), 1613. https://doi.org/10.3390/biom15111613

